Efficient Model Checking Using Tabled Resolution*

Y.S. Ramakrishna, C.R. Ramakrishnan, I.V. Ramakrishnan, Scott A. Smolka, Terrance Swift, David S. Warren
Department of Computer Science
SUNY at Stony Brook
Stony Brook, NY 11794–4400
USA

Abstract

XSB is a logic programming system developed at SUNY Stony Brook that extends Prolog-style SLD resolution with tabled resolution. The principal merits of this extension are that XSB terminates on programs having finite models, avoids redundant subcomputations, and computes the well-founded model of normal logic programs.

In this paper, we demonstrate the feasibility of using XSB as a programmable fixed-point engine for implementing efficient local model checkers. In particular, we present XMC, an XSB-based local model checker for a CCS-like value-passing language and the alternation-free fragment of the modal mu-calculus. XMC is written in under 200 lines of XSB code, which constitute a declarative specification of CCS and the modal mu-calculus at the level of semantic equations.

In order to gauge the performance of XMC as an algorithmic model checker, we conducted a series of benchmarking experiments designed to compare the performance of XMC with the local model checkers implemented in C/C++ in the Concurrency Factory and SPIN specification and verification environments. After applying certain newly developed logic-programming-based optimizations (along with some standard ones), XMC’s performance became extremely competitive with that of the Factory and shows promise in its comparison with SPIN.

Contact Author’s Address:
Y.S. Ramakrishna
Department of Computer Science
SUNY at Stony Brook
Stony Brook, NY 11794–4400, USA
+1 (516) 632–8448 (voice)
+1 (516) 632–8334 (fax)
ysr@cs.sunysb.edu (email)

1 Introduction

Model checking [CE81, QS82, CES86] is a verification technique aimed at determining whether a system specification possesses a property expressed as a temporal logic formula. Model checking has enjoyed wide success in verifying, or finding design errors in, real-life systems. An interesting account of a number of these success stories can be found in [CW96b].

Model checking is the main verification technique deployed by the Concurrency Factory [CLSS96], NCSU Concurrency Workbench [CS96], SMV [CMCHG96], SPIN [HP96] and TempEst [JPO95] specification and verification environments. These tools use similar, but slightly different, system specification languages and property specification logics: the Concurrency Factory supports local model checking with partial order reductions in the alternation-depth-2 fragment of the modal mu-calculus for processes specified in a CCS-like value passing language; the Concurrency Workbench from NCSU offers global model-checking in the alternation-free modal mu-calculus for processes specified in pure CCS; SMV supports BDD-based symbolic model checking in CTL (with fairness) for a state-machine specification language; SPIN implements on-the-fly LTL model checking with partial order reductions for processes specified in Promela, a guarded-command language with buffered communication; and TempEst provides model checking of LTL with past operators for the Esterel synchronous language.

As is clear from this short list, there is a plethora of temporal logics and specification languages currently in use, and building a model checker for a particular combination involves having to confront the low-level computational details of the underlying model checking algorithm. One thing, however, these logics and process languages typically have in common is that their semantics are specified via structural recursion as fixed points of certain types of functionals.

To deal with the complexity of implementing model checkers, we would like ideally to focus only on declaratively specifying the semantics of the temporal logic and process language, while leaving the low-level computational details to an efficient underlying engine. Such an ideal can be realized by the availability of engines that (a) compute fixed points, since from a computational viewpoint, model checking can be formulated in terms of computing fixed points, and (b) are efficient enough to generate systems competitive with hand-crafted model checkers. One way to attain the second goal is for the fixed-point engine to provide programmability, so that optimizing program transformations can be made directly to the model checker specifications. Programmability also allows direct encoding of traditional model checking optimizations such as partial order reduction [HP96].

Recent advances in logic programming technology offer significant promise towards achieving the above objective. The key idea underlying these advances is the concept of tabled resolution [TS86, CW96a]. At a high-level, tabled resolution augments Prolog-style SLDNF resolution for evaluating normal logic programs (with default negation). Tabled evaluation overcomes the three major limitations of Prolog, namely, weak termination, redundancy of computations, and weak semantics for negation. The XSB tabled logic programming system developed at SUNY Stony Brook is a practical embodiment of the power and enhanced functionality of tabled resolution.

This paper shows that by using XSB as a programmable fixed-point engine, one can construct an efficient model checker in under 200 lines of code. In particular, we have specified the syntax and semantics of a CCS-like value passing language similar to one supported by the Concurrency Factory, along with the syntax and semantics of the alternation-free fragment of the modal mu-calculus. The specification is based on a parallel constant-time reduction from the alternation-free modal mu-calculus to Datalog with negation presented in [ZSS94]. Not surprisingly, the XSB spec-
ification directly reflects the structural operational semantics of CCS and the fixed-point semantics of the modal μ-calculus. The direct execution of these declarative specifications yields a local (on-the-fly) model checker, which we refer to as XMC.

In order to gauge the performance of XMC as an algorithmic model checker, we conducted a number of benchmarking experiments designed to compare the performance of XMC with the local model checkers implemented in the Concurrency Factory and SPIN. The model checking benchmarks we considered include Milner’s “scheduler of cyclers” [Mil89] and the leader election and sieve algorithms from the SPIN benchmark suite.¹ After applying certain newly developed logic-programming-based optimizations (along with some standard ones—see Section 4), XMC’s performance became extremely competitive with that of the Factory and shows promise in its comparison with SPIN.

These results (discussed further in Section 5) are somewhat surprising since the Factory’s and SPIN’s model checkers are written in low-level languages (C/C++) with the express purpose of temporal logic model checking, while XSB is a general-purpose logic programming system. Our experimental results provide evidence that writing efficient model checkers for various process languages and logics in XSB can be a viable idea.

Another distinguishing aspect of XMC is that the unification mechanism of XSB handles interpreted and uninterpreted variables in a value-passing language as ground and non-ground logical variables, respectively. This provides an effective way of realizing Wolper’s data independence scheme [Wol86]. Moreover, XSB automatically offers lazy grounding of variables. Since grounding can increase the search space of a query (every possible valuation must be considered), lazy grounding can result in substantial savings.

Concerning related work, XMC can be viewed as an algorithmic model checker in a deductive setting (XSB, after all, is a system to deduce theorems from normal logic programs). The recent literature contains a number of proposals for combining deductive methods with algorithmic model checking techniques in order to prove temporal properties of concurrent systems. For example, the STeP system [BBC+96] combines the deductive methods of [MP95] with decision procedures for automatically checking the validity of a large class of first-order and temporal formulas. [PS96] uses deduction to establish an invariant that is then used to constrain the state space exploration performed in model checking. [RSS95] embeds a symbolic model checking decision procedure into the PVs higher-order prover, and [SUM96] employs first-order linear temporal-logic formulas to construct an abstract representation of the state space to be explored, and deductive methods to successively refine this representation until an answer to the model checking problem can be ascertained.

In other related work, [SHIR96] also uses Horn logic to specify model checking (for a basic, non-value-passing process specification language) but reports no effort to implement or evaluate this approach. In [SCK+95], an efficient “fixpoint-analysis machine” (FAM) is presented which can be used on a variety of fixed point computation problems, including model checking. XMC is similar to FAM in that it relies on the fixed point engine capability of XSB to perform model checking. XMC’s efficiency, however, is derived from XSB’s programmability and support of tabled resolution, while FAM’s efficiency results from its innovative software architecture and bit-vector data structures.

The structure of the rest of this paper is as follows. Section 2 provides a brief introduction to the XSB system. Section 3 describes our encoding in XSB of a value-passing language and

¹The XMC source code and benchmark sources can be found at http://www.cs.sunysb.edu/~ysr/xmc.
the alternation-free modal mu-calculus. The logic-based optimizations we performed on the XMC model checker are the subject of Section 4, and our experimental results are discussed in Section 5. Finally, Section 6 concludes and presents directions for future work.

2 Logic Programming in XSB

XSB extends Prolog by providing tabled resolution in addition to the SLDNF resolution of Prolog. When tabled resolution is used (by declaring particular predicates to be tabled), XSB automatically maintains a table of predicate invocations and answers, using the table for all equivalent invocations after the first one. Many programs that would loop infinitely in Prolog will terminate in XSB because XSB calls a tabled predicate with the same arguments only once, whereas Prolog may call such a predicate infinitely often. For these terminating programs XSB efficiently computes the least model, which is the least fixed point of the program rules understood as “equations” over sets of atoms. More precisely, XSB is based on SLG resolution [CW96a], which computes queries to normal logic programs (containing default negation) according to the well-founded semantics.

The architecture of XSB is centered around an emulator for a virtual machine that executes tabled resolution. The emulator consists of about 20,000 lines of C code, and is supported by a compiler of about 10,000 lines of Prolog/XSB code, and system libraries of about 13,000 lines of Prolog/XSB code. Because XSB closely approximates the ISO standard of Prolog, many XSB programming techniques are familiar to a large body of programmers. The first release of XSB was in June 1993; it is now in its sixth release and has been installed in nearly a thousand registered sites on dozens of platforms.

3 Value-Passing Language and Modal Mu-Calculus Encoding

As described in the Introduction, we encoded in XSB a model checker for a CCS-like value-passing language and the alternation-free modal mu-calculus. The syntax of processes in our value-passing language is the following:

\[
P ::= X \mid a?Y \mid a!Y \mid P \circ P \mid P \# P \mid \text{if } X \text{ then } P \text{ else } P \mid P \mid P
\]

In the above, \(X \) is a Prolog formula. Thus, for example, the formula \(\text{length}(Buf, \text{Len}) \) is the process that binds \(\text{Len} \) to the length of list \(\text{Buf} \). Note that this process performs no actual transitions. Process \(a?Y \) inputs a value over port \(a \) into \(Y \), where \(Y \) is a Prolog term. Similarly, \(a!Y \) outputs the value of \(Y \) over port \(a \). Operator \(\circ \) is generalized prefixing. The remaining operators are like their CCS counterparts (modulo occasional changes in syntax to avoid clashes with Prolog lexicon). E.g., \(\# \) is nondeterministic choice; process \(\text{if } X \text{ then } P \text{ else } Q \) behaves like \(P \) if \(X \) succeeds and otherwise like \(Q \); \(P \mid Q \) is the parallel composition of \(P \) and \(Q \); \(\varnothing \) is relabeling; and \(C(Z_1, \ldots, Z_n) \) is a process constant \(C \), parameterized by \(Z_1, \ldots, Z_n \) (\(C \) and the \(Z_i \) are Prolog atoms). Recursion is provided by \textit{defining equations} of the form \(C(Z_1, \ldots, Z_n) ::= P \).

The formal semantics of our language is given using structural operational semantics. Due to space limitations, we present here the axioms and inference rules for a few key constructs. In order to emphasize the highly declarative nature of our encoding, these are presented exactly as they are encoded in XSB.
% Input, Output, and Internal Computation Processes:
trans(a!Y, a!Y, nil).
trans(X, nil, nil) :- call(X).
% Generalized Prefix:
trans(P1 o P2, Act_a, Q) :- trans(P1, Act_b, Q1),
 (Act_b == nil -> trans(P2, Act_a, Q);
 (Act_a = Act_b, (Q1 == nil -> Q = P2 ; Q = Q1 o P2))).
% Conditional:
trans(if X then P1 else P2, Act_a, Q) :- call(X) -> trans(P1, Act_a, Q) ; trans(P2, Act_a, Q).
% Parallel Composition:
trans(P || Q, Act_a, P || Q || Q) :- trans(P, Act_a, P1).
trans(P || Q, Act_a, P || Q1) :- trans(Q, Act_a, Q1).
trans(P || Q, tau, P || Q1) :- trans(P, Act_a, P1), trans(Q, Act_b, Q1), comp(Act_a, Act_b).

The \texttt{trans} predicate is of the form \texttt{trans(P, Act_a, Q)} meaning that process \texttt{P} performs an \texttt{Act_a} transition to become process \texttt{Q}. The axiom for input says that \texttt{a?Y} can execute an \texttt{a?Y} transition and then terminate; similarly for the output axiom. The axiom for internal computation forces the evaluation of \texttt{X} and then terminates (without exercising any transition). The rule for generalized prefix states that \texttt{P1 o P2} behaves like \texttt{P1} until \texttt{P1} terminates; at that point it behaves as \texttt{P2}. The conditional process \texttt{if X then P1 else P2} behaves like \texttt{P1} if evaluation of \texttt{X} succeeds, and like \texttt{P2} otherwise. Finally, the rules for parallel composition state that \texttt{P || Q} can perform an autonomous \texttt{Act_a} transition if either \texttt{P} or \texttt{Q} can (the first two rules), and \texttt{P || Q} can perform a synchronizing \texttt{tau} transition if \texttt{P} and \texttt{Q} can perform “complementary” actions (the last rule); i.e., actions of the form \texttt{a?Y} and \texttt{a!Y}.

To illustrate the syntax and semantics of our value-passing language, consider the following specification of a channel \texttt{chan} (with input port \texttt{in} and output port \texttt{out}) implemented as a bounded buffer of size \texttt{N}.

\texttt{chan(N, Buf) := length(Buf, Len) o}
 \hspace{1em} if (Len = 0) then receive_only(N, Buf) else
 \hspace{2em} if (Len = N) then send_only(N, Buf)
 \hspace{3em} else receive_only(N, Buf) # send_only(N, Buf)
\texttt{receive_only(N, Buf) := in?Msg o chan(N, [Msg|Buf])}
\texttt{send_only(N, Buf) := strip_from_end(Buf, Msg, RBuf) o out!Msg o chan(N, RBuf)}

Our encoding of the modal mu-calculus uses the following syntax for formulas:

\[F ::= Z | tt | ff | F \lor F | F \land F | \text{diam}(\text{Act}_a,F) | \text{box}(\text{Act}_a,F) \]

In the above, \texttt{Z}, which is a Prolog atom, is a mu-calculus logical variable; \texttt{tt} and \texttt{ff} are propositional constants; \texttt{\lor} and \texttt{\land} are standard logical connectives; and \texttt{diam}(\text{Act}_a,F) (possibly after action \texttt{Act}_a formula \texttt{F} holds) and \texttt{box}(\text{Act}_a,F) (necessarily after action \texttt{Act}_a formula \texttt{F} holds) are dual modal operators. Additionally, logical variables can be given defining equations of the form \texttt{X ::= mu(F)} (least fixed point) or \texttt{X ::= nu(F)} (greatest fixed point). For example, a basic property, the absence of deadlock, is expressed in this logic by the formula \texttt{Z ::= nu(box(-,Z) \land diam(-,tt))},
where `-' stands for any action. The formula states, essentially, that from every reachable state (box(−,Z)) a transition is possible (diam(−,tt)).

As in the case of our value-passing language, the semantics of the modal μ-calculus is specified declaratively in XSB by providing a set of rules for each of the operators of the logic. For example, the semantics of ∨, diam, and μ are encoded as follows:

% Or, left
State_s |= F_1 ∨ _ :- State_s |= F_1.

% Or, right
State_s |= _ ∨ F_2 :- State_s |= F_2.

% Diamond
State_s |= diam(Act_a, F) :- trans(State_s, Act_a, State_t), State_t |= F.

% μ (lfp recursion)
State_s |= Z :- Z := μ(F), State_s |= F.

Consider the rule for diam. It states that a state State_s (of a process) satisfies a formula of the form diam(Act_a,F) if State_s has a Act_a transition to some state State_t and State_t satisfies F. As for μ, the semantics of logic programs are based on minimal models, and accordingly XSB directly computes least fixed points. Thus, the encoding of μ is straightforward as shown above.

To compute greatest fixed points in XSB, we exploit its capability to handle normal logic programs: programs with rules whose right-hand side literals may be negated using XSB’s “tabled not” (tnot). In particular, we make use of the duality μ(F) = ¬ μ(¬F). The “not models” predicate |= performs this negation, and appears below for the same sampling of operators as given above.

% Or -- not models
State_s |= F_1 ∨ F_2 :- State_s |= F_1, State_s |= F_2.

% Diamond -- not models
State_s |= diam(Act_a, F) :- tfindall(State_t, trans(State_s, Act_a, State_t), State_ts),
notModels([State_t], F).
notModels([State, State], F) :- State |= F, notModels(State, F).

% μ -- not models
State_s |= Z :- Z := μ(F), tnot(State_s |= F).

where tfindall finds all solutions of a predicate in a tabled environment. The semantics of μ is then defined by:

% μ -- models
State_s |= Z :- Z := μ(F), tnot(State_s |= F).

% μ -- not models
State_s |= Z :- Z := μ(F), State_s |= F.

Observe that this encoding suffices to deal with any modal μ-calculus formula that is alternation free[EL86], with the fixed points being computed inside out: an inner fixed point is computed before an outer fixed point in whose scope it lies. The alternation-freeness of the formulas ensures
that there are no cyclic dependencies between any two fixed-point operators of different types. We are thus ensured that the fixed-point engine of XSB is able to correctly evaluate these formulas.

4 Logic-Based Optimization Techniques

One of the goals of tabled logic programming in general and XSB in particular is to combine the high-level declarativity of deductive databases with the lower-level flexibility of a programming language. Accordingly, XMC benefits from optimization techniques developed for both paradigms. In particular XMC benefits from literal reordering and clause resolution factoring developed for deductive database style applications, as well from source-code representational changes of process terms.

Literal Reordering Literal reordering (see, for example, [UL88]) is a common technique for optimizing computation by changing the order in which literals on the right hand sides of clauses are selected for resolution. The selection strategy controls the search space needed to evaluate the rule regardless of whether the rule is evaluated top-down or bottom-up. Consider the computation of \texttt{tau} transitions using \texttt{trans}:

\[
\text{trans(par(P, Q), tau, par(P1, Q1)) :- trans(P, Act_a, P1),} \\
\quad \text{trans(Q, Act_b, Q1),} \\
\quad \text{compAct(Act_a, Act_b).}
\]

In general, the number of solutions to the predicate \texttt{compAct(Act_a, Act_b)} is much smaller than the number of solutions to \texttt{trans(Q, Act_b, Q1)}, and hence it pays to rewrite the rule as:

\[
\text{trans(par(P, Q), tau, par(P1, Q1)) :- trans(P, Act_a, P1),} \\
\quad \text{compAct(Act_a, Act_b),} \\
\quad \text{trans(Q, Act_b, Q1).}
\]

Clause Resolution Factoring Clause resolution factoring, introduced in [DRRS95], is a newer optimization that is geared specifically to deductive databases having a tightly linked top-down and bottom-up evaluation strategy. Clause resolution factoring shares elementary match and unification operations across program and answer clause resolution steps. An important aspect of this optimization is that it enables individual clauses (instead of whole predicates) to be tabled, improving the space and time efficiency of programs.

Consider the following fragment of the \texttt{trans} relation:

\[
:- \text{table} \texttt{trans/3}. \\
\text{trans(C, Act_a, Q) :- C :: P, trans(P, Act_a, Q).} \\
\text{trans(Act_a o P, Act_a, P).} \\
\text{trans(P1 # P2, Act_a, Q) :- trans(P1, Act_a, Q) ; trans(P2, Act_a, Q).}
\]

Observe that the rules for \texttt{trans} have structural recursion, and to ensure termination, only the recursive case (i.e., the first rule) needs to be tabled. Applying clause resolution factoring with this information results in the following fragment:

\[
:- \text{table} \texttt{trans-rec/3}. \\
\text{trans-rec(P, Act_a, Q) :- trans(P, Act_a, Q).}
\]
trans(C, Act_a, Q) :- C := P, trans_rec(P, Act_a, Q).
trans(Act_a o P, Act_a, P).
trans(P1 # P2, Act_a, Q) :- trans(P1, Act_a, Q) ; trans(P2, Act_a, Q).

In the above fragment, only trans_rec is tabbed; this results in considerable savings in table space as well as computation time because terms which do not need to be tabled do not incur the overhead of tabling. The model checking predicate models, which also has structural recursion, is also subject to this optimization.

Optimizing Representation of Process States As mentioned in Section 3, processes are represented in XMC using a CCS-like value passing language. For instance in the 7-agent sieve benchmark, a generator process and 7 tester processes communicate along a linear chain. As an XSB term, the sieve process would be represented as:

sieve := (gen || chan0
 || test1 || chan1
 || test2 || chan2 || test3 || chan3
 || test4 || chan4 || test5 || chan5
 || test6 || chan6 || test7 || chan7 || cons) \
{gen_out(X), in1(X), in2(X), in3(X), in4(X), in5(X), in6(X), in7(X),
 con_in(X), out1(X), out2(X), out3(X), out4(X), out5(X), out6(X), out7(X)}.

As stored in the XMC table at runtime, states of the sieve process directly reflect this representation. For instance, a state in the might have the form:

 generator1(4,31) @ 1 || chan_1([]) @ 10
 || tester2(2,4) @ 2 || chan_1([3]) @ 11
 || test2 || chan2 || test3 || chan3 || test4 || chan4
 || test5 || chan5 || test6 || chan6 || test7 || chan7 || cons) \ 1

Taken as Prolog terms, the states of the sieve process are relatively large. This situation is inefficient not only in terms of memory, but also in terms of time, since each state encountered must be checked against the table and inserted if it is not there. To reduce the size of sieve states the representation of the sieve process can be "folded" as below:

sieve := (gen || chan0 || sieve1) \
{gen_out(X), in1(X), in2(X), in3(X), in4(X), in5(X), in6(X), in7(X),
 con_in(X), out1(X), out2(X), out3(X), out4(X), out5(X), out6(X), out7(X)}.

sieve1 := (test1 || sieve2). ... sieve7 := (test7 || chan7).

This representation leads to smaller terms represented in the table, such as

 generator1(4,31) @ 1 || chan_1([]) @ 10 || tester2(2,4) @ 2 || chan_1([3]) @ 11 || sieve2) \ 1

In actual application to a benchmark that traverses all states of the sieve process, the transformation leads to a 50% reduction in memory required to represent states (see Section 5 for a description of the benchmark).
Figure 1: Performance comparison with the Concurrency Factory on Milner’s scheduler of cyclers.

Automation of Optimization Techniques The database-style optimization techniques, literal reordering and clause resolution factoring, are amenable to optimization, although they are not implemented as optimizations in the present XSB compiler. However, it is worthwhile noting that the actual programs executed are not much larger than the fragments presented in this paper. For instance, code for evaluating CCS-like expressions is about 60 lines, that for evaluating mu-calculus formulas is about 100 lines, and that to represent the 7-agent sieve process is also about 100 lines, so that the total code is less than 300 lines, in both optimized and unoptimized versions.

5 Experimental Results

In this section, we compare the performance of XMC with that of the Concurrency Factory and SPIN in terms of time and memory. Figure 1 shows the space and time used by XMC and the Factory on Milner’s scheduler for the formula $Z := nu(box(-,Z) \land diam(-,tt))$, for a scheduler of n cyclers, $4 \leq n \leq 10$. The formula, which asserts the absence of deadlock, forces exploration of the entire state-space of the system, thus allowing us to assess the scalability of the two implementations. As is clear from the figure, XMC performs better than the Factory in terms of speed, and is quite competitive in terms of space.

The example of Milner’s scheduler does not involve value-passing. For examples involving value-passing, we compared the performance of XMC with SPIN, rather than with the Factory, since the latter does not yet have efficient support for value-passing processes. (This problem is expected to be remedied in the next release of the Factory, slated for Spring ’97.)

To assess XMC’s ability to model check in a value-passing language, and to assess the effects of the optimizations described in the previous section, we used the leader election example from the SPIN benchmark suite. As in the case of the scheduler, we benchmarked the system for several different ring sizes. The “leader5” system corresponds to the system used in the SPIN suite. Table 1 gives the space and time figures for two different formulas, $F1$ being a least fixed point formula stating that in every run of the system a leader is eventually elected, and $F2$ being a nested fixed point formula stating that in every run of the system at most one leader is elected. In this table, for a system of given size, the first line indicates the space and time figures with the naive encoding
<table>
<thead>
<tr>
<th>Program</th>
<th>F1</th>
<th>F2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time (sec)</td>
<td>Space (MB)</td>
</tr>
<tr>
<td>leader2 (unopt) (opt)</td>
<td>0.23</td>
<td>0.817</td>
</tr>
<tr>
<td>leader2 (unopt) (opt)</td>
<td>0.10</td>
<td>0.209</td>
</tr>
<tr>
<td>leader3 (unopt) (opt)</td>
<td>1.21</td>
<td>4.593</td>
</tr>
<tr>
<td>leader3 (unopt) (opt)</td>
<td>0.46</td>
<td>0.581</td>
</tr>
<tr>
<td>leader4 (unopt) (opt)</td>
<td>8.51</td>
<td>37.366</td>
</tr>
<tr>
<td>leader4 (unopt) (opt)</td>
<td>2.93</td>
<td>3.079</td>
</tr>
<tr>
<td>leader5 (unopt) (opt)</td>
<td>39.09</td>
<td>170.608</td>
</tr>
<tr>
<td>leader5 (unopt) (opt)</td>
<td>11.87</td>
<td>11.396</td>
</tr>
</tbody>
</table>

Table 1: Illustrating the effect of logic-based optimizations.

<table>
<thead>
<tr>
<th>Program</th>
<th>System</th>
<th>Time (sec)</th>
<th>Space (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>leader5</td>
<td>SPIN</td>
<td>8.1</td>
<td>9.60</td>
</tr>
<tr>
<td></td>
<td>XMC</td>
<td>5.5</td>
<td>0.78</td>
</tr>
<tr>
<td>sieve7</td>
<td>SPIN</td>
<td>1.8</td>
<td>2.31</td>
</tr>
<tr>
<td></td>
<td>XMC</td>
<td>41.6</td>
<td>5.00</td>
</tr>
</tbody>
</table>

Table 2: Performance comparison with SPIN on value-passing examples.

without any of the optimizations of the previous section, and the second line gives the corresponding figures with all the optimizations in place.

To compare XMC to SPIN we also implemented in XMC, a simple transitive closure algorithm to search and store all the reachable states of leader5 as well as sieve7, also from the SPIN benchmark suite. The results in Table 2 indicate that XMC has good memory usage as compared to SPIN, but that the speed of XMC appears uneven. Two features account for the good memory usage of XMC. First, tabled terms in the underlying XSB engine are stored using a trie-like data structure that provides good structure sharing for variant subterms. Second, the scheduling strategy of XSB allows left-linear transitive closure to be performed using a minimum of runtime stack space. The disparity of the relative times for the leader and sieve examples is not presently understood. However, it is conceivable that more detailed hand-tuning of the model checker or of the sieve specification could lead to faster performance for XMC.

An important feature of SPIN is that it combines on-the-fly model checking with partial order reduction, a technique for combating the combinatorial explosion that results from interleaving concurrent independent transitions in all possible orders. Roughly speaking, partial order reduction partitions the state space into equivalent search paths; (dis)proving a given property then requires exploring only one path in each equivalence class. The results quoted above for SPIN (and for XMC) were obtained without the use of partial order reduction, and the numbers go down appreciably (especially for sieve) with the use of this technique. The programmability of XSB should, however,

2The sieve benchmark of Table 2 was run on an SGI challenge for both XMC and SPIN; SPIN results are from [GKPP97]. All other figures for XMC and the Concurrency Factory were performed on a sparcl0 with about 500 MB available main memory; the leader benchmark for SPIN was also run on a sparcl0 with 128 MB main memory [HP95].
allow the implementation of partial order reduction techniques within XMC, a topic currently under investigation.

6 Conclusions and Future Work

We have provided experimental evidence that writing efficient algorithmic model checkers in a tabled logic programming system is a viable idea. Our work on XMC reveals a number of directions for future work. For example, we have not considered alternating fixed points [EL86] in this paper. The logic-programming-based approach to model checking, however, suggests a promising technique in which inner fixed points are computed symbolically, thereby avoiding their repeated computation.

Traditionally, model checking has been viewed as an algorithmic technique, although there is initial activity on combining model checking with deductive methods (see our discussion of related work in Section 1). Observe that (optimized) XSB meta-interpreters can be used to execute arbitrary deductive systems. Hence, the XSB-based approach offers a unique opportunity to fully and flexibly integrate algorithmic and deductive model checking. Demonstrating the feasibility of this idea is another direction for future work.

The high level at which model checking is specified in XMC correspondingly elevates the level at which erroneous system specifications can be potentially diagnosed and debugged. We plan to incorporate techniques from declarative debugging [Llo87, PDA93] in XMC for these purposes.

Acknowledgements We thank Gerard Holzmann and Doron Peled for providing us with the Promela sources of the SPIN benchmarks.

References

