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ipating 
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an be obtained by instantiating the parameters of our framework. More importantly, weuse our framework to 
onstru
t a new unfold/fold transformation system. This transformationsystem is provably more powerful (in terms of transformation sequen
es allowed) than existingtransformation systems.Our transformation framework is useful for reasoning about programs. In parti
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1. INTRODUCTIONSome of the most extensively studied transformation systems for de�nite logi
 pro-grams are the so 
alled unfold/fold transformation systems. At a high level unfoldand fold transformations 
an be viewed as follows. De�nite logi
 programs 
onsistof de�nitions of the form A:� � where A is an atom and � is a positive boolean for-mula over atoms. Unfolding repla
es an o

urren
e of A in a program with � whilefolding repla
es an o

urren
e of � with A. Folding is 
alled reversible if its e�e
ts
an be undone by an unfolding, and irreversible otherwise. An unfold/fold trans-formation system for de�nite logi
 programs was �rst des
ribed in a seminal paperby Tamaki and Sato [1984℄. In the 
urry of resear
h a
tivity that followed, a num-ber of unfold/fold transformation systems were developed. Kanamori and Fujita[1987℄ proposed a transformation system that was based on maintaining 
ountersto guide folding. Maher [Maher 1987; 1993℄ des
ribed a transformation system thatpermits only reversible folding. The basi
 Tamaki-Sato system itself was extendedin several dire
tions (e.g., to handle folding with multiple 
lauses [Gergatsoulis andKatzouraki 1994℄, negation [Aravindan and Dung 1995; Seki 1991; 1993℄) and ap-plied to program optimization problems (e.g., [Bossi et al. 1990; Boulanger andBruynooghe 1993; Pettorossi et al. 1997℄). (See Pettorossi and Proietti [1998℄ foran ex
ellent survey of resear
h on this topi
 over the past de
ade).Corre
tness of Unfold/Fold Transformations. Corre
tness proofs for unfold/foldtransformations 
onsider transformation sequen
es of the form P0; P1; : : : ; whereP0 is an initial program and Pi+1 is obtained from Pi by applying an unfolding orfolding transformation. The proofs usually show that all programs in the trans-formation sequen
e have the same least Herbrand model. It is easy to verify thattransforming Pi to Pi+1 using unfolding or folding is partially 
orre
t, i.e., the leastmodel of Pi+1 is a subset of that of Pi. It is also easy to show, by indu
tion on thestru
ture of the proof trees, that unfolding transformation is totally 
orre
t, i.e.,it preserves the least model. However, as illustrated below, indis
riminate foldingmay introdu
e 
ir
ularity in de�nitions, thereby repla
ing �nite proof paths within�nite ones.Consider the sequen
e of programs in Figure 1. In the �gure, P1 is derived byunfolding the o

urren
e of q(X) in the �rst 
lause of P0. P2 is derived from P1 byfolding the literal q(X) in the body of the se
ond 
lause of predi
ate p into p(X)using the 
lause p(X) :- q(X) in P0. Alternatively, 
onsider the transformationp(X):-q(X).q(a).q(f(X)):-q(X). p(a).p(f(X)):-q(X).q(a).q(f(X)):-q(X). p(a).p(f(X)):-p(X).q(a).q(f(X)):-q(X).Program P0 Program P1 Program P2Fig. 1. An example of 
orre
t unfold/fold transformation sequen
e
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e in �gure 2. By folding q(X) in the se
ond 
lause of p in P1 (using these
ond 
lause de�ning q in P1), we obtain program P 02. Now folding q(X) in these
ond 
lause of q in P 02 (using se
ond 
lause of p in P1), we get program P 03, whoseleast model di�ers from that of P0.Transformation Systems with Irreversible Folding. If the folding transformationis reversible, then sin
e its e�e
t 
an be undone by an unfolding, any partially
orre
t unfold/fold transformation sequen
e is also totally 
orre
t. However, forreversibility, folding at step i of the transformation 
an only use the 
lauses in Pi.Therefore reversibility is a restri
tive 
ondition that seriously limits the power ofunfold/fold systems by disallowing many 
orre
t folding transformations, su
h asthe one used to derive P2 from P1. Hen
e almost all resear
h on unfold/fold trans-formations have fo
used on 
onstru
ting systems that permit irreversible folding.In su
h systems, folding at step i 
an use 
lauses that are not in Pi. For example,in the original and extended Tamaki-Sato systems [1984; 1986a℄ folding always uses
lauses in P0 whereas in the Kanamori-Fujita system [1987℄ the 
lauses 
an 
omefrom any Pj (j � i). But ensuring total 
orre
tness of irreversible transformationsequen
es is diÆ
ult. In order to ensure that folding is still totally 
orre
t, thesesystems permit folding using only 
lauses with 
ertain (synta
ti
) properties. Forinstan
e, the original Tamaki-Sato system permits folding using a single 
lause only(
onjun
tive folding) and this 
lause is required to be non-re
ursive. In [Gergat-soulis and Katzouraki 1994℄ the above system was extended to allow folding withmultiple 
lauses (disjun
tive folding) but all the 
lauses are required to be be non-re
ursive. Kanamori and Fujita [1987℄ as well Tamaki and Sato in a later paper[1986a℄ gave two di�erent approa
hes for 
onjun
tive folding using re
ursive 
lauses.But the design of a transformation system that allows folding in the presen
e ofboth disjun
tion and re
ursion has remained open so far. We will des
ribe su
h asystem in this paper.To generalize in this dire
tion one needs to �rst understand the strengths andlimitations of the above systems. The key observation is that, although the book-keeping needed to determine permissible foldings appear radi
ally di�erent in thedi�erent systems, there is a striking similarity in how the transformations are proved
orre
t. Essentially, these systems asso
iate some measure with di�erent programelements, namely, atoms and 
lauses to determine whether folding is permissiblein that step (e.g., \foldable" 
ag in [Tamaki and Sato 1984℄, des
ent levels/stratanumbers in [Tamaki and Sato 1986a℄, and 
ounters in [Kanamori and Fujita 1987℄).Moreover, they ensure that ea
h transformation step maintains an invariant re-lating proofs in the derived program to the various measures (e.g., the notions ofp(X):-q(X).q(a).q(f(X)):-q(X). p(a).p(f(X)):-q(X).q(a).q(f(X)):-q(X). p(a).p(f(X)):-q(f(X)).q(a).q(f(X)):-q(X). p(a).p(f(X)):-q(f(X)).q(a).q(f(X)):-p(f(X)).Program P0 Program P1 Program P 02 Program P 03Fig. 2. An example of in
orre
t unfold/fold transformation sequen
e
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onsisten
y in [Kanamori and Fujita 1987; Tamaki and Sato 1984℄, weight-
onsisten
y in [Gergatsoulis and Katzouraki 1994℄ and �-
ompleteness in [Tamakiand Sato 1986a℄). This raises another interesting question: 
an we exploit the sim-ilarities in the 
orre
tness proofs of irreversible unfold/fold systems to develop anabstra
t framework. Su
h a framework will spe
ify the obligations that must be sat-is�ed to ensure total 
orre
tness and hen
e 
an simplify 
onstru
tion of unfold/foldsystems to the extent that one is relieved of the burden of giving 
orre
tness proofs.We propose su
h a framework in this paper.Summary of Results. In this paper, we develop a general transformationframework for de�nite logi
 programs parameterized by 
ertain abstra
t measures.These abstra
t measures are obtained by suitably abstra
ting and extending themeasures used in [Gergatsoulis and Katzouraki 1994; Kanamori and Fujita 1987;Tamaki and Sato 1984; 1986a℄ (see Se
tion 2). We relax the invariants needed in theproofs to permit approximation of measure values. This is the key idea that enablesus to fold using multiple re
ursive 
lauses. We prove the 
orre
tness of transfor-mations in the framework based only on the properties of the abstra
t measures.We show that various existing unfold/fold transformation systems 
an be derivedfrom the framework by instantiating these abstra
t measures (see Se
tion 4). Wealso show how the framework 
an be extended to in
lude the Goal Repla
ementtransformation (see Se
tion 3).The parameterized framework presented in this paper is useful for understandingthe strengths and limitations of existing transformation systems. It also enables the
onstru
tion of new unfold/fold systems. As eviden
e we obtain SCOUT (Strataand COunter based Unfold/fold Transformations), a transformation system thatpermits disjun
tive folding using re
ursive 
lauses. The development of SCOUTwas based on two 
ru
ial observations made possible by the framework. First, wheninstantiating the framework to obtain the Kanamori-Fujita system, it is easy to seethat the 
ounters (the measure used in their system) may 
ome from any linearlyordered set; this permits us to in
orporate strati�
ation into the 
ounters to obtaina system that generalizes the extended Tamaki-Sato system [1986a℄ as well as theKanamori-Fujita system. Se
ondly, the framework enables us to maintain approx-imate 
ounters; we 
an hen
e generalize the 
ombination of the Kanamori-Fujitaand the extended Tamaki-Sato systems to fold using multiple re
ursive 
lauses.The motivation behind the development of our parameterized transformationframework is its appli
ability in indu
tive reasoning. Unfold/fold transformationshave traditionally been used for program eÆ
ien
y improvement. However, therehas been a parallel line of work in using unfold/fold transformations for 
onstru
tingproofs [Hsiang and Srivas 1987; Kanamori and Fujita 1986; Pettorossi and Proietti1999; Roy
houdhury and Ramakrishnan 2001℄. Roughly speaking, these worksprove predi
ate equivalen
es of the form p � q by transforming p and q su
h thattheir equivalen
e 
an be inferrred from syntax. Our generalized folding rule is usefulfor 
onstru
ting su
h proofs. In parti
ular, when p , q are de�ned using predi
ateswith multiple 
lauses (some of whi
h may be re
ursive) we may need a more generalfolding rule to transform p, q. An interesting appli
ation where su
h a situation
rops up is in the veri�
ation of temporal properties (predi
ates des
ribing temporalproperties are en
oded using multiple re
ursive 
lauses). We show the appli
ation



Unfold/fold Transformations for De�nite Logi
 Programs � 5of our more general transformations with a detailed example in Se
tion 5.2. A PARAMETERIZED TRANSFORMATION FRAMEWORKWe now des
ribe our parameterized unfold/fold transformation framework and il-lustrate the abstra
tions by drawing analogies to the Kanamori-Fujita system.We assume familiarity with the standard notions of terms, models, substitutions,uni�
ation, most general uni�er (mgu), de�nite 
lauses, SLD resolution, and prooftrees. For a ba
kground on these materials, the reader is referred to [Das 1992;Lloyd 1993℄. We will use the following symbols (possibly with primes and sub-s
ripts): P to denote a de�nite logi
 program; M(P ) its least Herbrand model; Cand D for 
lauses; A;B to denote atoms and literals and � for most general uni�er(mgu).2.1 Unfolding and FoldingThe unfolding and folding rules are de�ned as follows:Rule 1. Unfolding Let C be a 
lause in Pi and A an atom in the body of C.Let C1; : : : ; Cm be the 
lauses in Pi whose heads are uni�able with A with mostgeneral uni�er �1; : : : ; �m. Let C 0j be the 
lause that is obtained by repla
ing A�jby the body of Cj�j in C�j (1 � j � m). Assign (Pi � fCg) [ fC 01; : : : ; C 0mg toPi+1. 2Rule 2. Folding Let fC1; : : : ; Cmg � Pi where Cl denotes the 
lauseA:� Al;1; : : : ; Al;nl ; A01; : : : ; A0nand fD1; : : : ; Dmg � Pj (j � i) whereDl is the 
lause Bl:� Bl;1; : : : ; Bl;nl . Further,let:(1) 81 � l � m 9�l 81 � k � nl Al;k = Bl;k�l(2) B1�1 = B2�2 = � � � = Bm�m = B(3) D1; : : : ; Dm are the only 
lauses in Pj whose heads are uni�able with B(4) 81 � l � m, �l substitutes the internal variables1 of Dl to distin
t variableswhi
h do not appear in fA;B;A01; : : : A0ng.Then Pi+1 := (Pi � fC1; : : : ; Cmg) [ fC 0g where C 0 � A:� B;A01; : : : ; A0n: 2D1; : : : ; Dm are the folder 
lauses, C1; : : : ; Cm are the folded 
lauses, and B isthe folder atom. A folding step is 
onjun
tive whenever both the folder and folded
lauses are singleton sets and is disjun
tive otherwise. Note that in the latter 
asea set of folded 
lauses is simultaneously repla
ed by a single 
lause using a set offolder 
lauses.We say that P0; P1; : : : ; Pn is an unfold/fold transformation sequen
e if the pro-gram Pi+1 is obtained from Pi (i � 0) by appli
ation of an unfold or a fold rule.Partial 
orre
tness of an unfold/fold transformation sequen
e (Theorem 1) nowfollows easily.1Variables appearing in the body of a 
lause, but not its head
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tness Let P0; P1; : : : ; Pi be a program transforma-tion sequen
e where M(Pj) =M(P0) for all 0 � j � i. If Pi+1 is obtained from Piby applying either unfolding or folding, then M(Pi+1) �M(Pi).Proof. This is established by showing that a proof T of any ground atom A 2M(Pi+1), has a 
orresponding proof T 0 of A in Pi. This 
an be proved by indu
tionon the stru
ture of T . Let C = (A:� A1; : : : ; An) be the 
lause applied at the rootof T . There are three 
ases:Case 1: C 2 Pi.Then, the result follows by indu
tion hypothesis.Case 2: C is obtained by unfolding.Let C 2 Pi+1 be obtained by unfolding 
lause C 0 2 Pi using 
lause D 2 Pi.Without loss of generality, there exist ground instan
es of C 0 and D, in Pi, of theform A:� B;Ak+1; : : : ; An and B:� A1; : : : ; Ak. The proof T 0 of A 
an be then
onstru
ted by applying 
lause C 0 at the root, and then 
lause D. The existen
eof ground proofs of A1; : : : ; An in Pi follows by indu
tion hypothesis.Case 3: C is obtained by folding.Let C 2 Pi+1 be obtained by folding C 0 2 Pi using D 2 Pj(j � i) as folder.Let A1 be the folder atom in 
lause C, i.e. the atom introdu
ed by folding.Sin
e M(Pj) = M(Pi) and A1 2 M(Pi) (by indu
tion hypothesis) therefore A1 2M(Pj). Thus, A1 has a ground proof T1 in Pj . By 
ondition 3 of the foldingtransformation, the 
lause applied at the root of T1 must be one of the folder
lauses. Let this folder 
lause be D and let the 
orresponding folded 
lause beC 0 2 Pi. Then, without loss of generality, C 0 and D have ground instan
es ofthe form A:� A1;1; : : : ; A1;l; A2; : : : ; An and A1:� A1;1; : : : ; A1;l respe
tively. Sin
eA1;1; : : : ; A1;l 2 M(Pj) therefore A1;1; : : : ; A1;l 2 M(Pi). Thus, A1;1; : : : ; A1;l haveground proofs in Pi. Also, A2; : : : ; An have ground proofs in Pi by indu
tion hy-pothesis. Thus, we 
an 
onstru
t a ground proof of A in Pi by applying 
lause C 0at the root. This 
ompletes the proof.2.2 Measures, Measure-Consistent Proofs and Total Corre
tnessTotal 
orre
tness of an unfold/fold transformation sequen
e is established by in-du
tion over some well-founded order to 
onstru
t a proof in Pi+1 for any atomA in M(Pi). To see the subtleties involved in proving total 
orre
tness, 
onsidertransforming Pi to Pi+1 using a 
onjun
tive folding step. To 
onstru
t a proof of A(the head of the folded 
lause) in Pi+1, we need a proof of B (the folder atom) inPi+1. But the existen
e of su
h a proof 
an be established (by indu
tion hypothesis)only if B is less than A in the well-founded order on whi
h the indu
tive argumentis presented. Note that if the folder 
lause is pi
ked from Pj , j < i, we 
annot usesimple well-founded orders like size of proof trees in Pi, as the proof of B in Pi 
anbe larger in size than the proof of A in Pi.It is worth noting that we do not attempt to translate every proof of A in Pi to aproof of A in Pi+1. Instead, following [Kanamori and Fujita 1987; Tamaki and Sato1984; 1986a℄ we 
onsider a \spe
ial proof" 
alled strongly measure 
onsistent proof(see De�nition 6) of A in Pi and 
onstru
t a proof of A in Pi+1. The indu
tionproof for establishing total 
orre
tness is 
ompleted by showing that the proof ofA in Pi+1 thus 
onstru
ted is itself strongly measure 
onsistent.
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all that irreversible folding steps need to be 
onstrained in order to preservethe semanti
s. In order to enfor
e these 
onstraints, we maintain some book-keepinginformation as we perform the transformations, formalized using the following no-tions of Measure stru
ture, Atom measure, and Clause measure.Definition 1. Measure Stru
ture A Measure Stru
ture is a 4-tuple � =hM;�;�;Wi where hM;�i is a 
ommutative group with 000 2 M as its identityelement, � is a linear order on M, � is monotone w.r.t. �, and W is a subset offx 2M j 000 � xg, over whi
h � is well-founded.We will refer to M, the �rst 
omponent of the measure stru
ture, as the measurespa
e. We let � denote � or =. Moreover, we use 	 to denote the inverse operationof the group hM;�i. We also use 	 as a binary operator, a	 b meaning a� (	b)(where (	b) is the inverse of b). The Kanamori-Fujita system [1987℄ keeps tra
kof integer 
ounters. Thus the measure stru
ture is hZ;+;<;Ni, where Z and N arethe set of integers and natural numbers respe
tively, + denotes integer addition,and < is the arithmeti
 
omparison operator.Definition 2. Atom Measure An atom measure � of a program P w.r.t. ameasure stru
ture � is a partial fun
tion from the Herbrand base of P to W su
hthat it is total on the least Herbrand model of P . For our purposes, it suÆ
es touse the same atom measure for ea
h program in a transformation sequen
e.In the Kanamori-Fujita system, the atom measure of any Pi in the transformationsequen
e is the number of nodes in the shortest proof tree of A in the initial programP0. The proof of total 
orre
tness for folding will indu
t on the atom measure,relating the atom measure of A (the head of the folded 
lauses) with the atommeasure of B (the folder atom).Definition 3. Clause Measure A 
lause measure (
lo; 
hi) of a program Pw.r.t. a measure stru
ture � is a pair of total fun
tions from 
lauses of P to Msu
h that 8C 2 P 
lo(C) � 
hi(C).In the Kanamori-Fujita system, 
lo and 
hi are the same and map ea
h 
lause toits 
orresponding 
ounter value. However, as we will see later, to allow disjun
tivefolding we will need the two distin
t fun
tions 
lo and 
hi. Hen
eforth, we denotethe 
lause measure of a program Pi by (
ilo; 
ihi). We will now develop the idea of\spe
ial proofs" mentioned earlier. For that purpose, we need the de�nition:Definition 4. Ground Proof of an Atom Let T be a tree, ea
h of whosenodes is labeled with a ground atom. Then T is a ground proof in program P , ifevery node A in T satis�es the 
ondition : A:� A1; :::; An is a ground instan
e ofa 
lause in P , where A1; :::; An (n � 0) are the 
hildren of A in T .Consider transforming Pi to Pi+1 by a folding step (see �gure below). C and D arethe folded and folder 
lauses respe
tively and j < i......D : q:� q1; :::; qk..... .....C : p:� q1; :::; qk; qk+1; :::; qn..... .....C 0 : p:� q; qk+1; :::; qn.....Program Pj Program Pi Program Pi+1
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tion on �, we would liketo show that �(q) � �(p). The atoms p and q are related by what is shared betweenthe bodies of the 
lauses C and D. Hen
e we attempt to relate their measures viathe measures of bodies of C and D. Suppose D satis�es�(q) � X1�i�k�(qi) (i)then we 
an relate �(q) to the sum of the measures of the body atoms of the folded
lause C (sin
e k � n). Further if C satis�es�(p) � X1�i�n�(qi) (ii)then we 
an establish that �(q) � �(p). If either (i) or (ii) is a stri
t relationshipthen we 
an establish that �(q) � �(p). Relations (i) and (ii) form the basis forthe notions of weak and strong measure 
onsisten
y .Definition 5. Weakly Measure Consistent Proof A ground proof T inprogram Pi is weakly measure 
onsistent w.r.t. atom measure � and 
lause measure(
ilo; 
ihi) if every ground instan
e A:� A1; :::; An of a 
lause C 2 Pi used in Tsatis�es �(A) � 
ihi(C) �P1�l�n �(Al).Definition 6. Strongly Measure Consistent Proof A ground proof T inprogram Pi is strongly measure 
onsistent w.r.t. atom measure � and 
lause mea-sure (
ilo; 
ihi) if every ground instan
e A:� A1; :::; An of a 
lause C 2 Pi used in Tsatis�es 81 � l � n �(Al) � �(A) and �(A) � 
ilo(C)�P1�l�n �(Al)Definition 7. Measure Consistent Proof A ground proof T in program Pi issaid to be measure 
onsistent w.r.t. atom measure � and 
lause measure (
ilo; 
ihi),if it is strongly and weakly measure 
onsistent w.r.t. � and (
ilo; 
ihi).We point out that our abstra
t notion of measure 
onsisten
y relaxes the 
on
retenotion of rank 
onsisten
y of [Kanamori and Fujita 1987℄. While rank 
onsisten
yof [Kanamori and Fujita 1987℄ imposes a stri
t equality 
onstraint on �(A), mea-sure 
onsisten
y only bounds it from above and below. As we will show later, thisfa
ilitates maintenan
e of approximate information. This is the 
entral idea thatpermits us to do disjun
tive folding using re
ursive 
lauses. For proving total
orre
tness, we need :Definition 8. Measure 
onsistent Program A program P is measure 
on-sistent w.r.t. atom measure � and 
lause measure (
lo; 
hi), if for all A 2 M(P ),we have(1 ) All ground proofs of A in P are weakly measure 
onsistent w.r.t. � and (
lo; 
hi)(2 ) A has a ground proof in P whi
h is strongly measure 
onsistent w.r.t. � and(
lo; 
hi)We are now ready to de�ne the abstra
t 
onditions on folding and 
onstraints onhow the 
lause measures are to be updated after an unfold/fold step. For ea
h
lause C obtained by applying an unfold/fold transformation on program Pi, wederive a lower bound on 
i+1hi (C) and an upper bound on 
i+1lo (C), denoted by
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 Programs � 9GLB i+1(C) and LUB i+1(C) respe
tively. We will see later that the 
onditions onwhen the rules be
ome appli
able, as well as these bounds are designed to ensurethe 
orre
tness of the folding step.We assume that for any atomA (not ne
essarily ground), �min(A) denotes a lowerbound on the measure of any provable ground instantiation of A i.e. 8� �min(A) ��(A�). We use �min in the folding 
ondition of rule 4 below.Rule 3. Measure Preserving Unfolding Let Pi+1 be obtained from Pi byan unfolding transformation as des
ribed in Rule 1. We say that the unfoldingstep is measure preserving if the asso
iated 
lause measures satisfy the followinginequalities: 81 � j � m
i+1lo (C 0j) � 
ilo(C)� 
ilo(Cj) ( def= GLB i+1(C 0j) ) (1)
i+1hi (C 0j) � 
ihi(C) � 
ihi(Cj) ( def= LUB i+1(C 0j) ) (2)and the 
lause measure of all other 
lauses in Pi+1 are inherited from Pi. 2Rule 4. Measure Preserving Folding Let Pi+1 be obtained from Pi by afolding transformation as des
ribed in Rule 2. We say that this folding step ismeasure preserving, if the asso
iated 
lause measures satisfy the following: 281 � l � m: 
jhi(Dl) � 
ilo(Cl)� X1�k�n�min(A0k)and moreover,
i+1lo (C 0) � min1�l�m(
ilo(Cl)	 
jhi(Dl)) ( def= GLB i+1(C 0) ) (3)
i+1hi (C 0) � max1�l�m(
ihi(Cl)	 
jlo(Dl)) ( def= LUB i+1(C 0) ) (4)and the 
lause measure of all other 
lauses in Pi+1 are inherited from Pi. 2It should be noted that the above rules do not pres
ribe unique values for upper andlower 
lause measures for the 
lauses generated by the transformations. Instead,they only spe
ify bounds of these values; the values themselves are 
hosen onlywhen instantiating the framework to a 
on
rete system.Observe from the de�nition of atom measures that we 
an always assign 0 to�min. However, by setting a more a

urate estimate of �min, we 
an allow morefolding steps. As an example, 
onsider any 
onjun
tive folding step where thefolded 
lause C 2 Pi has more body atoms than the folder 
lause D 2 Pj , and
ilo(C) = 
jhi(D). Su
h a folding step will not be allowed if 8A �min(A) = 0.The Need for Approximate Clause Measures. In the Kanamori-Fujita system,a 
ounter (
orresponding to our 
lause measure) is asso
iated with every 
lause.Roughly, the 
ounter asso
iated with a 
lause C 2 Pi where C � A:� A1; : : : ; Anindi
ates the number of interior nodes in the smallest proof tree in P0 that derivesA1; : : : ; An from A. Thus, it is the amount saved (in terms of proof tree size,
ompared to the smallest proof in P0) whenever C is used in a proof in Pi. Thefolding rule is appli
able provided the savings a

rued in the folded 
lause is morethan that in the folder 
lause.
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ounter is inadequate for disjun
tive folding, 
onsider thefollowing example:C1: p :- r, t. (x1)C2: p :- s, t. (x2)C3: q :- r. (x3)C4: q :- s. (x4) C 0: p :- q, t. (?)C3: q :- r. (x3)C4: q :- s. (x4)Program Pi Program Pi+1Pi+1 is obtained from Pi by folding fC3; C4g into fC1; C2g. Now, the savingsdue to C 0 in a proof of Pi+1 depends on whether C3 or C4 is used to resolve qin that proof. Sin
e this information is unknown at transformation time, we 
anonly keep approximate information about savings. In our framework we 
hoose toapproximate the savings by the 
losed interval [
lo; 
hi℄.We now have the ne
essary ma
hinery for establishing total 
orre
tness of asequen
e of unfold/fold transformations.Lemma 1. Preserving Weak Measure Consisten
y Consider a transforma-tion sequen
e of measure 
onsistent programs P0; : : : ; Pi su
h that M(P0) =M(Pj)for all 0 � j � i. Let Pi+1 be obtained from Pi by applying measure-preserving un-folding or measure-preserving folding. Then, all ground proofs of Pi+1 are weaklymeasure 
onsistent.Proof. We will useM(Pi+1) �M(Pi), a result whi
h was independently provedin theorem 1. The proof pro
eeds by indu
tion on size of ground proofs in Pi+1. LetT be a ground proof of some ground atom A in Pi+1, and let A:� A1; : : : ; An (wheren � 0) be the ground instan
e of a 
lause C 2 Pi+1 that is used at the root of theproof T . Then the proofs ofA1; : : : ; An in T are weakly measure 
onsistent by indu
-tion hypothesis. Hen
e, it suÆ
es to show that, �(A) � 
i+1hi (C)�P1�l�n �(Al).Case 1: C was inherited from PiSin
e M(Pi+1) � M(Pi), hen
e A1; : : : ; An are provable in Pi. Therefore, theground 
lause A:� A1; : : : ; An is used at the root of a ground proof in Pi. Sin
e Piis measure 
onsistent, the result follows.Case 2: C was obtained by unfoldingLet A1; : : : ; Ak be the instan
es of the body atoms of C whi
h were introdu
edthrough unfolding. By the de�nition of the unfolding transformation, then theremust be 
lauses C 0 and C 00 in Pi with ground instan
es A:� B;Ak+1; : : : ; An andB:� A1; : : : ; Ak respe
tively with 
i+1hi (C) � 
ihi(C 0)� 
ihi(C 00).Again, A1; : : : ; Ak; Ak+1; : : : ; An are provable in Pi (as M(Pi+1) � M(Pi)).Hen
e, the above mentioned ground instan
es of C 0 and C 00 are ground 
lausesused at the root of some proof in Pi. As Pi is a measure 
onsistent program, wehave : �(A) � 
ihi(C 0)� �(B) � Xk+1�l�n�(Al)�(B) � 
ihi(C 00)� X1�l�k�(Al)The result now follows by 
ombining these two inequations.
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e of the folder atom (i.e. the atom 
orresponding to the head ofthe folder 
lauses) in C, and let Pj(j � i) be the program from whi
h folder 
lauseswere pi
ked. We have M(Pi) = M(Pj) = M(P0), and hen
e M(Pi+1) � M(Pj).Thus, A1 2 M(Pj). Sin
e Pj is a measure 
onsistent program, A1 must have astrongly measure 
onsistent proof T 0A1 in Pj . Let the 
lause used at the root ofthis proof be D0 and let the ground instan
e of D0 used at the root of T 0A1 beA1:� A1;1; : : : ; A1;k. Then, by the strong measure 
onsisten
y of T 0A1�(A1) � 
jlo(D0)� X1�l�k�(A1;l)But, D0 must be a folder 
lause by de�nition of folding. Hen
e, there must be a
lause C 0 in Pi with a ground instan
e A:� A1;1; : : : ; A1;k; A2; : : : ; An (this is thefolded 
lause 
orresponding to D0). Now, A2; : : : ; An are provable in Pi (sin
eM(Pi+1) � M(Pi)), and also A1;1; : : : ; A1;k are provable in Pi (sin
e M(Pj) =M(Pi)). Therefore, the above mentioned ground instan
e of C 0 is used at theroot of a weakly measure 
onsistent proof of A in Pi (sin
e program Pi is measure
onsistent). Hen
e�(A) � 
ihi(C 0)� X1�l�k �(A1;l)� X2�l�n�(Al)� 
ihi(C 0)	 
jlo(D0)� �(A1)� X2�l�n�(Al)� 
ihi(C 0)	 
jlo(D0)� X1�l�n�(Al)Sin
e D0 and C 0 are folder and folded 
lauses and C is the 
lause obtained byfolding therefore 
i+1hi (C) � 
ihi(C 0)	 
jlo(D0), and hen
e�(A) � 
i+1hi (C) � X1�l�n�(Al)Thus, we have established that any arbitrary ground proof T in Pi+1 is weaklymeasure 
onsistent.We now formally state and prove the total 
orre
tness of any unfold/fold trans-formation sequen
e.Theorem 2. Total Corre
tness Let P0; P1; : : : ; Pi be a transformation se-quen
e of measure 
onsistent programs su
h that M(P0) = M(Pj) for all 0 �j � i. Let Pi+1 be obtained from Pi by applying measure-preserving unfolding ormeasure-preserving folding. Then, (i) M(Pi+1) =M(Pi) and (ii) Pi+1 is a measure-
onsistent program.Proof. By theorem 1, we have M(Pi+1) � M(Pi), and by lemma 1 we knowthat all ground proofs of Pi+1 are weakly measure 
onsistent. Hen
e it is suÆ
ientto prove that (1) M(Pi) � M(Pi+1) and (2) 8A 2 M(Pi+1), A has a stronglymeasure 
onsistent proof in Pi+1.Consider any ground atom A 2 M(Pi). Sin
e Pi is measure 
onsistent, A has astrongly measure 
onsistent proof T in Pi. We now 
onstru
t a strongly measure
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onsistent proof T 0 of A in Pi+1. Constru
tion of T 0 pro
eeds by indu
tion on atommeasures. Let C be a 
lause used at the root of T . Let A:� A1; :::; An (where n � 0)be the ground instantiation of C at the root of T . Sin
e T is strongly measure
onsistent �(Ai) � �(A), for all 1 � i � n. Hen
e, we have strongly measure
onsistent proofs T 01; :::; T 0n of A1; :::; An in Pi+1. We 
onstru
t T 0 by 
onsideringthe following 
ases:Case 1: C is inherited from Pi into Pi+1T 0 is 
onstru
ted with A:� A1; :::; An at its root and T 01; :::; T 0n as its 
hildren. Thisproof T 0 is strongly measure 
onsistent.Case 2: C is unfolded.Let A1 be the atom in the body of C whi
h is unfolded. Let the 
lause used toresolve A1 in T be C1 and the ground instan
e of C1 used be A1:� A1;1; :::; A1;l1 .By de�nition of unfolding, A:� A1;1; :::; A1;l1 ; A2; :::; An is a ground instan
e of a
lause C 01 in Pi+1 with 
i+1lo (C 01) � 
ilo(C) � 
ilo(C1). Also, �(A1;j) � �(A1) and�(A1) � �(A), for all 1 � j � l1. Thus, we have strongly measure 
onsistent proofsT 01;1; :::; T 01;l1 of A1;1; :::; A1;l1 in Pi+1. The proof T 0 is now 
onstru
ted by applyingA:� A1;1; :::; A1;l1 ; A2; :::; An at the root, and putting T 01;1; :::; T 01;l1 ; T 02; :::; T 0n as the
hildren. Sin
e T is strongly measure 
onsistent,�(A) � 
ilo(C)�P1�j�n �(Aj) and �(A1) � 
ilo(C1)�P1�j�l1 �(A1;j)=) (�(A) � �(A1)) � 
ilo(C) � 
ilo(C1)�P1�j�n �(Aj)�P1�j�l1 �(A1;j)=) �(A) � 
i+1lo (C 01)�P2�j�n �(Aj)�P1�j�l1 �(A1;j)Hen
e, T 0 is a strongly measure 
onsistent proof in Pi+1.Case 3: C is folded.Let C (potentially with other 
lauses) be folded, using folder 
lauses from Pj ,j � i, to 
lause C 0 in Pi+1. Assume that A1; :::; Ak are the instan
es of the foldedatoms in C. Then, C 0 has a ground instan
e of the form A:� B;Ak+1; :::; An whereB:� A1; :::; Ak is a ground instan
e of a folder 
lause D 2 Pj .3 Sin
e M(Pi) =M(Pj) and A1; :::; Ak are provable in Pi they must also be provable in Pj . Moreover,sin
e D 2 Pj , B 2M(Pj) =M(Pi). Sin
e Pj is measure 
onsistent,�(B) � 
jhi(D)� X1�l�k �(Al):Now, by the strong measure 
onsisten
y of T ,�(A) � 
ilo(C) � X1�l�k�(Al)� Xk+1�l�n�(Al)� 
ilo(C) � (�(B)	 
jhi(D))� Xk+1�l�n�(Al) (5)� (
ilo(C)	 
jhi(D)) � �(B)� Xk+1�l�n�min(Al)� �(B) (by 
ondition of measure preserving folding)3Re
all that in the folding transformation, all 
lauses in Pj whose head is uni�able with B arefolder 
lauses.
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tion hypothesis, B has a strongly measure 
onsistent proof T 0B inPi+1. We 
onstru
t T 0, the proof of A in Pi+1, with A:� B;Ak+1; :::; An at itsroot, and T 0B; T 0k+1; :::; T 0n as its 
hildren. To show that T 0 is strongly measure
onsistent, note that 
i+1lo (C 0) � (
ilo(C) 	 
jhi(D)) a

ording to the de�nition ofmeasure preserving folding, as C and D are folded and folder 
lauses. Combiningthis with inequation (5) we get,�(A) � 
i+1lo (C 0)� �(B) �Pk+1�l�n �(Al)This 
ompletes the proof.Assigning tighter 
lause measures. The measure preserving unfolding and fold-ing transformations of Rules 3, 4 provide 
onstraints on the 
lause measures inPi+1. Note that by applying measure preserving unfolding/folding to program Piwe 
an generate a 
lause C whi
h is already in Pi, but with new 
lause measures.Instead of assigning the 
lause measures as pres
ribed by Rules 3 and 4 (
omputedvia addition/subtra
tion), we 
an assign tighter measures as follows. Formally,let unfold(C 0) be the set of 
lauses generated by measure preserving unfolding ofC 0 2 Pi and let there exist a 
lause C s.t. C 2 unfold(C 0)^C 2 Pi�fC 0g. Clearly,then C 2 Pi+1. However, the question is how do we assign (
i+1lo (C); 
i+1hi (C)),the 
lause measures of C in Pi+1. Similarly, by measure preserving folding offC1; : : : ; Cmg � Pi, we 
an generate a 
lauseC 2 Pi�fC1; : : : ; Cmg. Again, we needto assign (
i+1lo (C); 
i+1hi (C)). Let the 
lause measures of C 
omputed by the un-fold/fold transformation be (
0lo; 
0hi). We 
an then set 
i+1lo (C) = min(
0lo; 
ilo(C))and 
i+1hi (C) = min(
0hi; 
ihi(C)) without a�e
ting the measure 
onsisten
y of Pi+1.For the purposes of measure 
onsisten
y, note that we 
ould have 
hosen 
i+1hi (C) =max(
0hi; 
ihi(C)). Taking the minimum, whi
h also preserves measure 
onsisten
y,gives us a tighter bound. This also ensures that when we restri
t ourselves to
onjun
tive folding, the lower and higher measures of any 
lause in program Pi(appearing in some transformation sequen
e of measure 
onsistent programs) areidenti
al.3. GOAL REPLACEMENTAugmenting an unfold/fold transformation system with the goal repla
ement rulemakes it more powerful. In this se
tion we in
orporate goal repla
ement to ourparameterized framework. Goal repla
ement allows semanti
ally equivalent 
on-jun
tions of atoms to be freely inter
hanged. We formally de�ne it below. For a
onjun
tion of atoms A1; :::; An, we use the notation vars(A1; :::; An) to denote theset of variables in A1; :::; An.Rule 5. Goal Repla
ement Let C be a 
lause A:� A1; : : : ; Ak; G in Pi, andG0 be an atom su
h that vars(G) = vars(G0) � vars(A;A1; :::; Ak). Suppose forall ground instantiation � of G;G0 we have Pi ` G� , Pi ` G0�. Then Pi+1 :=(Pi � fCg) [ fC 0g where C 0 � A:� A1; : : : ; Ak; G0. 2Note that although we repla
e a single atom G by another atom G0 (where G andG0 do not 
ontain any internal variables), we 
an repla
e 
onjun
tions of atomsusing a sequen
e of folding, goal repla
ement and unfolding transformations.The above transformation is partially 
orre
t. A formal proof of its partial 
or-re
tness appears below.



14 � Roy
houdhury, Kumar, Ramakrishnan, RamakrishnanTheorem 3. Let program Pi+1 be obtained from program Pi by applying goalrepla
ement as des
ribed in rule 5. Then, M(Pi+1) �M(Pi).Proof. We take any ground proof T of some B 2 M(Pi+1) and 
onstru
t aground proof T 0 of B in Pi, thereby provingM(Pi+1) �M(Pi). This proof pro
eedsby indu
tion on size of ground proofs in Pi+1. The base 
ase is obvious be
auseunit 
lauses are not manipulated by goal repla
ement. For the indu
tion step, ifthe 
lause used at the root of T is not the repla
ing 
lause C 0, then the prooffollows from indu
tion hypothesis. Let the 
lause used at the root of T be a groundinstan
e of C 0 and let the ground instan
e used be A�:� A1�; : : : Ak�;G0�. Then,A1�,: : :,Ak�;G0� have ground proofs T 01; : : : ; T 0k; T 0G0� in Pi by indu
tion hypothesis.Then, by rule 5, there exists a ground proof T 0G� of G� in Pi. Now T 0, the groundproof of A� in Pi, is 
onstru
ted with the ground 
lause A�:� A1�; : : : ; Ak�;G� atthe root and T 01; : : : ; T 0k; T 0G� as its 
hildren.However, if goal repla
ement is applied to a measure 
onsistent program Pi it istotally 
orre
t. But then we also need to ensure that the resulting program Pi+1 ismeasure 
onsistent. If this is ensured, then even if goal repla
ement is interleavedwith irreversible folding total 
orre
tness will be preserved. Formally,Rule 6. Measure Preserving Goal Repla
ement Let program Pi+1 is ob-tained from program Pi by applying the goal repla
ement transformation as de-s
ribed in Rule 5. We say that su
h a goal repla
ement is measure preserving ifthere exists Æ; Æ0 2M (where measure stru
ture is � = hM;�;�;Wi) su
h that forall ground instantiation � of G;G0:(i) Æ � �(G�) 	 �(G0�) � Æ0(ii) 
ilo(C)� Æ �P1�p�k �min(Ap) � 000.and further the asso
iated 
lause measures satisfy,
i+1lo (C 0) � 
ilo(C)� Æ (6)
i+1hi (C 0) � 
ihi(C)� Æ0 (7)The 
lause measures of the other 
lauses of Pi+1 are inherited from Pi. 2We now present a formal proof of total 
orre
tness and preservation of measure
onsisten
y of the above rule.Theorem 4. Let Pi+1 be derived from Pi by applying measure preserving goalrepla
ement as des
ribed in rule 6. If Pi is measure 
onsistent, then M(Pi) =M(Pi+1) and Pi+1 is also measure 
onsistent.Proof. Sin
e measure preserving goal repla
ement is a spe
ial 
ase of the goalrepla
ement transformation in rule 5, we have M(Pi+1) � M(Pi) by partial 
or-re
tness of rule 5. Therefore it is suÆ
ient to prove that:(1) All ground proofs of Pi+1 are weakly measure 
onsistent(2) M(Pi) �M(Pi+1)(3) 8B 2M(Pi+1) there exists a strongly measure 
onsistent proof of B in Pi+1.
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 Programs � 15We prove the obligation (1) separately. Proof obligations (2) and (3) are provedby showing that: 8B 2 M(Pi) there exists a strongly measure 
onsistent proof ofB in Pi+1. This is suÆ
ient sin
e we know M(Pi+1) �M(Pi).First, we prove that all ground proofs of Pi+1 are weakly measure 
onsistent.The proof pro
eeds by indu
tion on the size of ground proofs in Pi+1. Let T be aground proof of a ground atom B in Pi+1. If the 
lause used at the root of T is notthe new 
lause C 0, then the proof follows by indu
tion hypothesis and the measure
onsisten
y of Pi. If the 
lause used at the root of T is C 0, then let the groundinstan
e of C 0 used at the root of T be A�:� A1�; : : : ; Ak�;G0�. By indu
tionhypothesis, the proofs of A1�; : : : ; Ak�;G0� in T are weakly measure 
onsistent. ItsuÆ
es to show that�(A) � 
i+1hi (C 0)� X1�l�k �(Al�)� �(G0�)Now, G0� 2M(Pi+1)) G0� 2M(Pi). Hen
e by rule 5 we have G� 2M(Pi). Also,81 � l � k: Al� 2 M(Pi) (as M(Pi+1 � M(Pi)). Then, A�:� A1�; : : : Ak�;G� is aground instantiation of C whi
h appears at the root of some ground proof in Pi.Sin
e Pi is measure 
onsistent we have�(A) � 
ihi(C) �P1�l�k �(Al�)� �(G�)� 
ihi(C) �P1�l�k �(Al�)� ( �(G0�)� Æ0 )� 
i+1hi (C 0)�P1�l�k �(Al�)� �(G0�)Now, we prove that 8B 2 M(Pi) there is a strongly measure 
onsistent proofof B in Pi+1. Sin
e Pi is measure 
onsistent, it suÆ
es to translate a stronglymeasure 
onsistent proof T of B in Pi to a strongly measure 
onsistent proof T 0of B in Pi+1 for all B 2 M(Pi). We do this translation by indu
tion on the atommeasures. If the 
lause used at the root of T is not C (where C is the 
lause inPi that is repla
ed) then the proof follows from the de�nition of strong measure
onsisten
y and indu
tion hypothesis. Let C be the 
lause used at the root of T(a strongly measure 
onsistent proof of A in Pi) and let A�:� A1�; : : : ; Ak�;G�be the ground instan
e of C used. Then, by strong measure 
onsisten
y of T ,�(Al�) � �(A�) for all 1 � l � k. By indu
tion hypothesis, we then have stronglymeasure 
onsistent ground proofs T 01; : : : ; T 0k of A1�; : : : ; Ak� in Pi+1. Also, bystrong measure 
onsisten
y of T�(A) � 
ilo(C) � X1�l�k�(Al�)� �(G�)� 
ilo(C) � X1�l�k�(Al�)� ( �(G0�)� Æ ) (8)� ( 
ilo(C) � X1�l�k�min(Al�)� Æ )� �(G0�)� �(G0�) (By 
ondition (ii) of rule 6)Then, by indu
tion hypothesis, G0� has a proof T 0G0� in Pi+1. The ground proof T 0is 
onstru
ted with A�:� A1�; : : : ; Ak�;G0� at the root (this is a ground instan
e ofC 0, the new 
lause in Pi+1) and T 01; : : : ; T 0k; T 0G0� as its 
hildren. To show that thisproof T 0 is measure 
onsistent, note that 
i+1lo (C 0) � 
ilo(C) � Æ. Combining this
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i+1lo (C 0)� X1�l�k �(Al�)� �(G0�)This 
ompletes the proof.Observe that, similar to the goal repla
ement transformation in [Kanamori andFujita 1987; Tamaki and Sato 1984; 1986a℄ the 
onditions under whi
h rule 6 maybe applied are not testable at transformation time. For testability we need to (1)determine whether G and G0 are semanti
ally equivalent, and (2) estimate Æ andÆ0 su
h that the 
lause measures of Pi+1 
an be 
omputed. We have developed atestable goal repla
ement rule 
alled Synta
ti
 Goal Repla
ement. A des
ription ofthis rule will appear in Se
tion 5.4. CONSTRUCTING CONCRETE UNFOLD/FOLD SYSTEMS BY INSTANTIATINGTHE FRAMEWORKTo 
onstru
t a 
on
rete unfold/fold transformation system from our abstra
t frame-work, the following parameters need to be instantiated :(1) a measure stru
ture �;(2) atom measure � and �min;(3) 
lause measure (
lo; 
hi) for 
lauses in the initial program P0 su
h that P0 ismeasure 
onsistent; and(4) fun
tions to 
ompute the 
lause measure of new 
lauses obtained by the trans-formations su
h that they satisfy the 
onstraints imposed by equations (1)through (4) (refer Rules 3 and 4).There are no further proof obligations. On
e the above four elements are de�ned,total 
orre
tness of the transformation system is guaranteed by the framework. Wenow instantiate our farmework to obtain some existing transformation systems.Note that the instantiations given below 
onsider all three rules (unfolding, foldingand goal repla
ement) of these existing transformation systems.4.1 Existing Unfold/fold SystemsWe now show how our framework 
an be instantiated to obtain the Kanamori-Fujitaand the extended Tamaki-Sato systems. To the best of our knowledge, these arethe only two existing systems that allow folding using re
ursive 
lauses. Howeverin both of these systems folding is 
onjun
tive.The Kanamori-Fujita System [1987℄. This system 
an be obtained as an instan
eof our framework as follows:(1) � = hZ;+; <;Ni. This measure stru
ture 
orresponds to the use of integer
ounters in [Kanamori and Fujita 1987℄.(2) �(A) = number of nodes in the smallest proof of A in P0, and for any atom A,�min(A) = 1. Thus, �(A) denotes the rank of A des
ribed in [Kanamori andFujita 1987℄.
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0lo(C) = 
0hi(C) = 1. Sin
e all 
lause measures are 1, it followsimmediately from the de�nition of atom measures that the smallest proofs ofany ground goal G are strongly measure 
onsistent, and all proofs in P0 areweakly measure 
onsistent. Hen
e P0 is measure 
onsistent.(4) 8C 2 Pi+1 � Pi we have 
i+1lo (C) = GLB i+1(C) and 
i+1hi (C) = LUB i+1(C).Under the given measure stru
ture, it is immediate that the above de�nition isidenti
al to the 
omputation on 
ounters in [Kanamori and Fujita 1987℄.Furthermore, the measure preserving folding rule (Rule 4) is applied only whenboth folder and folded 
lauses are singleton sets. It is easy to see a one-to-one
orresponden
e between the 
onditions on unfold/fold transformations of the aboveinstantiation and the Kanamori-Fujita system.The Extended Tamaki-Sato System [1986a℄. In this system, all the predi
atesymbols are partitioned into n strata. In the initial program a predi
ate fromstratum j is de�ned using only predi
ates from strata � j. We 
an obtain thissystem as an instan
e of our framework as follows:(1) � = hZn;�;�;Nn i where� denotes 
oordinate-wise integer addition of n-tuplesof integers, and � denotes the lexi
ographi
 < order over n-tuples of integers.The n-tuples in the measure stru
ture will 
orrespond to the n strata of theoriginal program.(2) �(A) = min(fw(T ) j T is a proof of A in P0g), where w(T ) is the weight ofthe proof T de�ned as an n-tuple hw1; : : : ; wni su
h that 81 � j � n, wj is thenumber of nodes of predi
ates from stratum j in T . �(A) 
orresponds to thenotion of weight-tuple measure of A de�ned in [Tamaki and Sato 1986a℄.For any atom A, �min(A) = 0 = h0; : : : ; 0i.(3) 8C 2 P0, 
0lo(C) = 
0hi(C) = hw1; : : : ; wni, where C � A:� A1; : : : ; An andfor 1 � j � n, wj = 1 if the predi
ate symbol of A is from stratum j, and 0otherwise.For any A 2 M(P0), the proof T that de�nes �(A) (item 2 above) is stronglymeasure 
onsistent. Weak measure 
onsisten
y of ground proofs in P0 is estab-lished by indu
tion on their size.(4) 8C 2 Pi+1 � Pi, 
i+1hi (C) = LUB i+1(C) and 
i+1lo (C) = approx (GLB i+1(C)).The fun
tion approx redu
es a measure as follows. Let u = hu1; : : : ; uni andkmin be the smallest index k su
h that uk > 0. Then approx (u) = hu01; : : : ; u0niwhere u0kmin = 1 and is 0 elsewhere.As in the Kanamori-Fujita system, here also the measure preserving folding ruleis applied only when both folder and folded 
lauses are singleton sets.To establish the 
orresponden
e between the above instantiation and the ex-tended Tamaki-Sato system, re
all that the latter asso
iates a des
ent level withea
h 
lause of every program in a transformation sequen
e. If a 
lause C in Pi hasthe des
ent level k, then with the above instantiation, 
ilo(C) = hl1; : : : ; lni wherelk = 1 and 0 elsewhere; i.e. the only non-zero entry in its lower 
lause measureappears in the kth position. Thus our lower 
lause measure pre
isely 
aptures theinformation that is kept tra
k of by the extended Tamaki-Sato system.
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tures and Clause Measures. Observe that our frameworkdoes not pres
ribe exa
t values to the 
lause measures. Instead it bounds the
lause measures from above and below. So an important aspe
t of our instantiationinvolves assigning values to the 
lause measures that satisfy these 
onstraints. Froman abstra
t point of view, the Kanamori-Fujita system uses a relatively 
oarsemeasure spa
e (Z) but within this spa
e it maintains a

urate 
lause measures(integer 
ounters). Our instantiation re
e
ts this by not relaxing the bounds whileupdating the 
lause measures (see step 4 of the instantiation). On the other hand,the extended Tamaki-Sato system uses a more �ne-grained measure spa
e (Zn).But this measure spa
e is not 
ompletely utilized sin
e 
lause measures are thedes
ent level of 
lauses, whi
h 
an be simply represented by an integer. Thereforein step 4 of our instantiation we a

ordingly loosened the bound.As far as the Gergatsoulis-Katzouraki [1994℄ and original Tamaki-Sato systems[1984℄ are 
on
erned, �rst note that they do not permit folding using re
ursive
lauses. The main di�eren
e between these two systems is that [1994℄ allows dis-jun
tive folding (folding where multiple 
lauses are repla
ed by one 
lause) whereas[1984℄ does not. However the book-keeping performed (
lause measures) in thesetwo systems is not di�erent. These systems use 
oarse measure spa
es. More-over they do not even fully utilize these measure spa
es as is evident from thelesser amount of book keeping performed by them. By 
hoosing a 
oarse measurestru
ture and relaxing the bounds along lines similar to the extended Tamaki-Satosystem we 
an instantiate these two systems as well. Both these systems partitionthe program predi
ates into two strata, the so-
alled \old" and \new" predi
ates.Therefore, we set the measure stru
ture to be � = hZ2;�2;�2;N2 i where �2 de-notes 
oordinate-wise integer addition of 2-tuples of integers, and �2 denotes thelexi
ographi
 < order over 2-tuples of integers. Sin
e these systems partition thepredi
ate symbols into \old" and \new" predi
ates, the 
hoi
e of a measure stru
-ture with two strata is obvious.4.2 SCOUT| A New Unfold/fold SystemWe now 
onstru
t SCOUT, an unfold/fold transformation system for de�nite logi
programs that allows disjun
tive folding using re
ursive 
lauses. It in
orporatesthe notion of strata from the extended Tamaki-Sato system into the 
ounters of theKanamori-Fujita system. Thus with every 
lause it maintains a pair of strati�ed
ounters as the 
lause measure. The instantiation is as follows. We assume thatthe predi
ate symbols appearing in the initial program P0 are partitioned into nstrata, as in the extended Tamaki-Sato system.(1) � = hZn;�;�;Nn i where� denotes 
oordinate-wise integer addition of n-tuplesof integers, and � denotes the lexi
ographi
 < order over n-tuples of integers.(2) �(A) is de�ned exa
tly as in the instantiation of the extended Tamaki-Satosystem above. For any atom A we set �min(A) = hw1; : : : ; wni where wj = 1 ifA is from stratum j and 0 elsewhere.(3) Clause measure of 
lauses in P0 is de�ned exa
tly as in the instantiation of theextended Tamaki-Sato system above. Therefore the proofs of measure 
onsis-ten
y are also identi
al.(4) 8C 2 Pi+1 � Pi, 
i+1lo (C) = GLB i+1(C) and 
i+1hi (C) = LUB i+1(C).
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 Programs � 19SCOUT provides a solution to two important (and orthogonal) problems thathave thus far remained open. First, it allows folding using 
lauses that have dis-jun
tions as well as re
ursion. Se
ondly, SCOUT 
ombines the strati�
ation-based(extended) Tamaki-Sato system with the 
ounter-based Kanamori-Fujita systemthereby obtaining a single system that stri
tly subsumes either of them even whenrestri
ted to 
onjun
tive folding. A formal proof of this 
laim appears in the ap-pendix. Note that we prove that any transformation sequen
e made out of un-fold/fold/goal repla
ement rules whi
h is allowed by the existing transformationsystems is also allowed by SCOUT.It is interesting to note that by simple inspe
tion of the instantiations, one 
ansee that when the number of strata is 1 and only 
onjun
tive folding is permitted,SCOUT 
ollapses to the Kanamori-Fujita system. Collapsing SCOUT to otherexisting unfold/fold systems by varying the number of strata and extending theparameters (e.g. measure stru
ture) remains an interesting open problem.5. EMPLOYING TRANSFORMATIONS TO CONSTRUCT PROOFSOur motivation in developing the transformation framework presented in this paperlies in its appli
ation to dedu
tion i.e. 
onstru
ting proofs. Thus, we ensure thatour transformations preserve 
orre
tness w.r.t the model theoreti
 semanti
s ofde�nite logi
 programs: the least Herbrand model semanti
s. Our transformationframework does not 
onsider other operational aspe
ts of the program, su
h aspreserving termination properties (studied in [Amtoft 1992; Bossi and Co

o 1994℄)and preserving 
omputed answer substitutions ([Kawamura and Kanamori 1990℄ isan early referen
e on this subje
t).Unfold/fold transformations have been used for indu
tive reasoning in the past[Hsiang and Srivas 1987; Kanamori and Fujita 1986; Pettorossi and Proietti 1999℄.Sin
e unfolding represents a resolution step, it 
an be used to prove the base 
aseand �nite part of the indu
tion step. Folding 
an be used to remember the indu
tionhypothesis and re
ognize its o

urren
e. We have used the SCOUT transformationsystem (developed in the last se
tion) to 
onstru
t indu
tive proofs of temporalproperties of 
on
urrent systems [Roy
houdhury et al. 2000; Roy
houdhury andRamakrishnan 2001℄. In this se
tion, we present the key issues in using the SCOUTtransformation system for dedu
tion. We also present an example to show howadditional power of our transformations (su
h as our more general folding rule)
an be exploited for 
onstru
ting proofs. A full-
edged dis
ussion on the use ofour transformations for 
on
urrent system veri�
ation appears in [Roy
houdhury2000℄.5.1 Automation of the Goal Repla
ement ruleIn order to use SCOUT for automated dedu
tion, a se
ond look at the goal repla
e-ment transformation is ne
essary. Goal repla
ement, where semanti
ally equivalentgoals are inter
hanged, 
reates more opportunities for folding. There are two im-mediate problems with integrating goal repla
ement in an automated proof sys-tem. First, the identi�
ation of equivalent goals must be based on some synta
ti
(or analysis-based) 
riteria, sin
e semanti
 equivalen
e is, in general, unde
idable.Se
ondly, the 
onditions under whi
h goal repla
ement is permitted by the trans-formation system are usually spe
i�ed in terms of un
omputable measures su
h as
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all that in the SCOUT system the atom measure �(A) isrelated to the \shortest" ground proof of atom A.Thus, we need a nontrivial 
omputational me
hanism to 
he
k the semanti
equivalen
e of two given atoms purely based on syntax. We must also identifytestable 
onditions that imply the untestable restri
tions on weights of atoms re-quired by the general goal repla
ement rule. The notion of synta
ti
 equivalen
edes
ribed below addresses the �rst issue, while the de�nition of the synta
ti
 goalrepla
ement rule resolves the se
ond issue.Synta
ti
 Equivalen
e. Consider the following example program Pp(X) :- r(X).p(X) :- e(X,Y), p(Y).r(X) :- b(X). q(X) :- s(X).q(X) :- e(X,Y), q(Y).s(X) :- b(X).Fig. 3. A program fragment to illustrate synta
ti
 equivalen
er(X) and s(X) are equivalent sin
e the 
lauses de�ning them have identi
al righthand sides. We 
an now use this to infer that q(X) and p(X) are equivalent. Notethat even though the 
lauses of p(X) and q(X) are not synta
ti
ally identi
al, the\re
ursive stru
ture" of these 
lauses is the same. We formalize this notion in thede�nition given below.Definition 9. Synta
ti
 Equivalen
e of Atoms Let �=P be an equivalen
erelation on the set of predi
ates of a program P and let A = p(t1; : : : ; tk) andB = q(t01; : : : ; t0k) be two atoms. Then atoms A and B are said to be synta
ti
allyequivalent w.r.t. to the relation �=P , denoted A �=Patom B, if we have p �=P q and(t1; : : : ; tk) is a variant of (t01; : : : ; t0k)Definition 10. Synta
ti
 Equivalen
e of Predi
ates An equivalen
e rela-tion �=P on the set of predi
ates of P is said to be a synta
ti
 equivalen
e relationif whenever p �=P q we have:1. The predi
ates p and q belong to the same stratum.2. Let the 
lauses of p and q in program P be fC1; : : : ; Cmg and fD1; : : : ; Dmgrespe
tively. Then, for all 1 � i � m we have :(i) Ci is a variant of Di when all predi
ate symbols in Ci and Di are repla
ed withthe same predi
ate.(ii) Let Ci and Di be of the form H :� B1; :::; Bk and H 0:� B01; :::; B0k respe
tively.Then for all 1 � l � k Bl �=Patom B0l.It is easy to see that the family of synta
ti
 equivalen
e relations is 
losed underunion. Thus there is a largest synta
ti
 equivalen
e relation �P . The relation �P
an be 
omputed by starting with all predi
ates in the same 
lass, and repeatedlysplitting the 
lasses that violate properties (1) and (2) until a �xed point is rea
hed.In the example program fragment P given in Figure 3, the largest synta
ti
 equiva-len
e relation �P is f(p; q); (r; s)g[Id, where Id is the identity relation. Therefore,p(X) �Patom q(X) where for two atoms A and B we say A �Patom B if and only ifA �=Patom B for some synta
ti
 equivalen
e relation �=P .We show that all synta
ti
ally equivalent atoms are semanti
ally equivalent.
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ti
 equivalen
e relation of the predi
ates of a pro-gram P . For all predi
ates p; q, if p �=P q, then p and q are semanti
ally equivalentin program P.Proof : Let p �=P q. We show that for any ground proof T of a ground atom p(X)�in program P there is a ground proof T 0 of q(X)� in program P and vi
e-versa.For any ground proof T of p(X)� we 
an show the existen
e of a ground proof T 0of q(X)� by indu
tion on the size (number of nodes) of T . Let the 
lause used atthe root of T be C = (p(: : :):� B1; : : : ; Bk). Sin
e p �=P q therefore q has a 
lauseC 0 = (q(: : :):� B01; : : : ; B0k) and pl �=P p0l where pl (p0l) is the predi
ate symbol inBl (B0l) for all 1 � l � k. Let pl(Y )� be the ground instantiation of Bl appearingin T . Now, the size of the subproof of pl(Y )� in T is 
learly less than the size ofT . By indu
tion hypothesis there exists a ground proof of p0l(Y )�. Also p0l(Y )� isan instan
e of B0l� sin
e 
lause C is an instan
e of 
lause C 0 when all predi
atesare repla
ed by their labels. By applying 
lause C 0 at the root we 
an 
onstru
t aground proof T 0 of q(X)�.For any ground proof T 0 of q(X)� we 
an show the existen
e of a ground proofT of p(X)� in a similar fashion. 2Note that we 
an straightforwardly generalize our de�nition of synta
ti
 equiva-len
e to de�ne synta
ti
 equivalen
e of subgoals. Thus, we 
an then make inferen
eslike p(f(X)) � q(X) based on the syntax4. We now introdu
e the notion of relevant
lause set of an atom. Intuitively, it is a 
onservative estimate (i.e. a superset) ofthe set of 
lauses whi
h are used in the proof of some ground instan
e of the atom.Definition Relevant Clause Set. Let A be an atom and P a program. Letrea
h(A;P ) denote the set of predi
ates whi
h are rea
hable from the predi
ate ofA in the predi
ate dependen
y graph5 of P . Then, the relevant 
lause set of A inP ( denoted rel(A;P ) ) is the set of 
lauses of the predi
ates in rea
h(A;P ).We now de�ne the Synta
ti
 Goal Repla
ement rule. For any 
lause C, hd(C) de-notes the head atom of C. Our de�nition is adapted to the SCOUT transformationsystem des
ribed in Se
tion 4.2. Re
all that the SCOUT system is an instan
e ofour transformation framework where the predi
ate symbols appearing in the ini-tial program P0 are partitioned into n strata. Furthermore, for any atom A, theSCOUT system de�nes �min(A) = hw1; : : : ; wni where wj = 1 if A is from stratumj and 0 elsewhere.Rule 7. Synta
ti
 Goal Repla
ement Let C be a 
lause in Pi of the form:C � A:� A1; :::; Ak; Gand 
onsider another 
lause C 0 (not in Pi) of the form :C 0 � A:� A1; :::; Ak; G0su
h that1. G and G0 are synta
ti
ally equivalent i.e. G �Piatom G0, and vars(G) =4With de�nitions 9, 10 we 
an only infer p(f(X)) � q(f(X)) if p � q.5The predi
ate dependen
y graph of a program P has the predi
ate symbols of P as its verti
es,and there is an edge from predi
ate p to predi
ate q if q o

urs in the body of a 
lause of p inprogram P .
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lauses in rel(G0; P0) are never modi�ed in the transformation sequen
eP0; P1; : : : ; Pi i.e. rel(G0; P0) = rel(G0; Pi).3. For ea
h 
lause D 2 rel(G;Pi) 
ilo(D) � �min(hd(D)).4. Let Cli(G) be the 
lauses in Pi whose heads unify with the atom G. We de�ne:Æ = minD2Cli(G) (
ilo(D)� �min(hd(D)))We must have: 
ilo(C) + Æ +P1�j�k �min(Aj) > 0 = h0; : : : ; 0iThen, assign Pi+1 := (Pi � fCg) [ fC 0g where C 0 is A:� A1; :::; Ak; G0. Also, set
i+1lo (C 0) = 
ilo(C) + Æ and 
i+1hi (C 0) = 
ihi(C) + Æ0 where Æ0 = h1; 0; : : : ; 0i. 6 2Synta
ti
 Goal Repla
ement 
an be proved to be a spe
ial 
ase of the GoalRepla
ement transformation of the SCOUT system. First we de�ne the notionof \weight of a ground proof" and use it to prove a property about synta
ti
allyequivalent atoms.Definition Weight of a Ground Proof. Let T be a ground proof of a groundatom A 2M(P ) for a program P . We assume that the predi
ate symbols of P area-priori partitioned in n strata. Then the weight of T (denoted w(T )) is the then-tuple hw1; : : : ; wni where for all 1 � i � n, wi is the number of nodes of T whosepredi
ate symbol is assigned to strata i.The following holds for synta
ti
ally equivalent atoms. Note that this is astronger 
laim than Lemma 2.Lemma 3. Let P be a program and G;G0 be atoms su
h that G �Patom G0 i.e.G and G0 are synta
ti
ally equivalent in P . For any ground proof T of a groundinstantiation G� there exists a ground proof T 0 of G0� su
h that w(T ) = w(T 0), andvi
e-versa.Proof. The proof pro
eeds by indu
tion on the size of T , as in Lemma 2.We will now use the above lemma to prove that Synta
ti
 Goal Repla
ement isa spe
ial 
ase of the Measure preserving Goal Repla
ement rule.Lemma 4. Spe
ial Case of Goal Repla
ement Let P0 ! : : : ! Pi be asequen
e of measure 
onsistent programs. Then, any synta
ti
 goal repla
ementtransformation appli
able in Pi is also a Measure preserving goal repla
ement trans-formation (transformation 6) appli
able in Pi.Proof. For any ground instantiation � of G and G0 (re
all vars(G) = vars(G0)),by using lemma 2, we have Pi ` G� , Pi ` G0�. To prove that the other 
ondi-tions of Measure preserving goal repla
ement transformation are also true when-ever synta
ti
 goal repla
ement is appli
able, we now just need to show that theinequalities in 
onditions (i) and (ii) of rule 6) are satis�ed whenever synta
ti
 goalrepla
ement is appli
able. We have 
 + Æ +P1�j�k �min(Aj) > 0 = h0; : : : ; 0i.We also need to show that whenever Synta
ti
 Goal Repla
ement is applied to6Note that 1 is only a notational 
onvenien
e. It represents a value that ex
eeds the weightsof all atoms. Formally, this 
an be a
hieved by extending the 
lause annotations by one extrastratum.



Unfold/fold Transformations for De�nite Logi
 Programs � 23
lause C to repla
e G by G0 we have 8� Æ � �(G�) � �(G0�) � Æ0. Sin
e Æ0 =h1; 0; : : : ; 0i, therefore Æ0 is lexi
ographi
ally greater than the weight of any groundatom; hen
e �(G�) � �(G0�) � Æ0. We now prove that Æ � �(G�) � �(G0�) whereÆ = minD2Cli(G) (
ilo(D) � �min(hd(D))) and Cli(G) are the 
lause in Pi whoseheads unify with G.Sin
e Pi is measure 
onsistent, therefore if G� 2 M(Pi), then G� has a stronglymeasure 
onsistent proof T in Pi. Hen
e, by lemma 3, G0� has a proof T 0 in Pisu
h that w(T ) = w(T 0). Let Croot be the 
lause used the root of T . ClearlyCroot 2 Cli(G). Let the ground instan
e of Croot used at the root of ground proofT be G� : �B1; : : : ; Bm. Then :�(G�) � �min(G�) + (
ilo(Croot)� �min(G�)) + X1�j�m�(Bj)Sin
e ea
h of the body atoms Bj also have strongly measure 
onsistent proofs assubproofs of T , we 
an again use this 
ondition to expand out the �(Bj) in theabove inequality. Continuing in this way until we rea
h the leaves of T , we get thefollowing inequality (where hd(C) denotes the head of 
lause C).�(G�) � XC used in T �min(hd(C)) + XC used in T(
ilo(C)� �min(hd(C)))A

ording to the de�nition of �min in the SCOUT systemXC used in T �min(hd(C)) = w(T )The above inequality follows from that fa
t that ea
h of the nodes of T are thehead of some 
lause C used in T . Thus, we have:�(G�) � w(T ) + XC used in T(
ilo(C)� �min(hd(C)))Now, sin
e 8C 2 rel(G;Pi), we have (
ilo(C)��min(hd(C))) to be non-negative:XC used in T(
ilo(C)� �min(hd(C))) � (
ilo(Croot)� �min(hd(Croot))) � ÆNote that 
ilo(Croot)� �min(hd(Croot)) � Æ sin
e Croot 2 Cli(G). Thus,�(G�) � w(T ) + Æ� w(T 0) + Æ (by Lemma 3)� Measure of lexi
ographi
ally shortest proof of G0� in Pi= �(G0�) (sin
e rel(G0; P0) = rel(G0; Pi))Hen
e, �(G�) � �(G0�) + Æ for any ground substitution � of G and G0. This
ompletes the proof.Appli
ability of the Synta
ti
 Goal Repla
ement rule is testable and the 
lauseannotations of the new 
lause C 0 
an be e�e
tively 
omputed sin
e we have 
onser-vatively estimated the value of Æ; Æ0. Note that in the Synta
ti
 Goal Repla
ementrule, we have set Æ0 to h1; 0; : : : ; 0i. This will prevent the new 
lause C 0 from beingused as a folder later in the transformation sequen
e. However, our 
hoi
e of Æ
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i+1lo (C 0) � 
ilo(C). Thus,C 0 
an parti
ipate in future folding transformations as one of the folded 
lauses.Also, note that a tighter value of Æ0 is hard to obtain. This is be
ause we need tosatisfy �(G�) � �(G0�) � Æ0 for any ground substitution �. The proof sizes of G�and G0� 
ould be monotoni
 on the instantiation of some variable of G;G0 and �
ould be 
onstru
ted to instantiate that variable to larger and larger ground terms,thereby ruling out a tighter value of Æ0.Other standard transformations. In addition to unfolding/folding/goal repla
e-ment, a number of other standard transformations, su
h as deletion of subsumed
lauses, deletion of dupli
ate goals [Pettorossi and Proietti 1998℄ 
an be readilyadapted to the SCOUT system. These transformations 
an also be useful for 
on-stru
ting proofs.Also, note that we do not expli
itly 
onsider a De�nition Introdu
tion transfor-mation whi
h allows us to de�ne new predi
ates in terms of old predi
ates. This isbe
ause new predi
ates introdu
ed in the 
ourse of 
onstru
ting a transformationsequen
e P0; : : : ; Pn 
an be assumed to be present in the initial program [Tamakiand Sato 1984℄.5.2 On the utility of Strati�
ationThe SCOUT transformation system allows the predi
ate symbols of the initial pro-gram P0 to be a-priori partitioned into n � 1 strata. This may give us additional
exibility in 
onstru
ting a totally 
orre
t transformation sequen
e without exa
tly
omputing the 
lause annotations. To illustrate this point, 
onsider the followinggoal repla
ement step Pi ! Pi+1. The predi
ates are partitioned into 2 strata : pis pla
ed in the upper strata, and q,r are pla
ed in the lower strata.p :� q. (h1; 0i; h1; 0i)q. (h0; 1i; h0; 1i)r. (h0; 1i; h0; 1i) p :� r. (h1; i; h1; i)q. (h0; 1i; h0; 1i)r. (h0; 1i; h0; 1i)Program Pi Program Pi+1Re
all that the strati�
ation of predi
ates is su
h that a predi
ate of stratum jis de�ned using predi
ates of stratum � j in P0. Therefore, in the above examplesin
e q,r are pla
ed in the lower stratum we 
an 
on
lude that �(q) = h0; i and�(r) = h0; i. Thus, the annotations of the repla
ed 
lause p :� r are guaranteedto be of the form h1; i irrespe
tive of the exa
t value of �(q)� �(r).The above observation 
ould be su

essfully exploited while 
onstru
ting a trans-formation sequen
e as follows. Re
all that the Goal Repla
ement rule does notpres
ribe exa
t values of Æ; Æ0 and hen
e its appli
ation is not automated.7 Con-sider a goal repla
ement step Pi ! Pi+1 in whi
h G is repla
ed by G0 in 
lauseC � A:� A1; : : : ; Ak; G. We 
an avoid 
omputing �(G) � �(G0) and annotatethe new 
lause C 0 � A:� A1; : : : ; Ak; G0 with only approximate annotations if the7This problem is partially remedied in the Synta
ti
 Goal Repla
ement rule whi
h tells us howto 
ompute Æ; Æ0 provided 
ertain extra 
onditions (su
h as 
onditions 2,3 of the Synta
ti
 GoalRepla
ement rule) are satis�ed.
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ates are partitioned into > 1 strata. In the above example, we observed thath0;�1i � �(q)� �(r) � h0;1iWe then used these inequalities to 
ompute the approximate annotations of therepla
ed 
lause p :� r as (h1; i; h1; i) In this example, if all the predi
ates arepla
ed in only one stratum, we must 
ompute �(G) � �(G0). Otherwise, we willannotate the new 
lause C 0 with the 
ounters (�1;1). Clearly this will forbid C 0from parti
ipating in any future folding step.5.3 An Example Indu
tion ProofWe now illustrate by an example how our program transformation rules 
an beused for 
onstru
ting indu
tion proofs. Consider the program P0 given below. Anystring 
onsisting of only 0's is generated by gen while the test predi
ate 
he
kswhether a given list 
an be transformed (through �nite number of appli
ations oftrans ) into a string 
onsisting of only 1's. The trans predi
ate transforms a stringby 
onverting the leftmost o

urren
e of 0 in the string to 1. The property that wewould like to establish is 8 X gen(X) ) test(X). A hand proof of this propertywill pro
eed by indu
tion on the length of the strings generated by gen.In P0, all predi
ate symbols are assumed to be in the same stratum and the lowerand upper 
lause measures are set to 1 for all 
lauses. In the following, the 
lauseannotations (
ilo(C); 
ihi(C)) for any 
lause C 2 Pi are shown in parentheses beside
lause C. thm(X) :- gen(X), test(X) (1,1)gen([℄). (1,1)gen([0|X℄) :- gen(X). (1,1)test(X) :- 
anon(X). (1,1)test(X) :- trans(X,Y), test(Y). (1,1)
anon([℄). (1,1)
anon([1|X℄) :- 
anon(X). (1,1)trans([0|X℄, [1|X℄). (1,1)trans([1|T℄,[1|T1℄) :- trans(T,T1). (1,1)Now, from the de�nition of thm in P0 we see that 8 X thm(X) , gen(X) ^test(X). Thus, if we 
an establish that 8 X thm(X), gen(X) then we 
an 
on
ludethat the formula 8 X gen(X) ) test(X) is true. One te
hnique to establish 8 Xthm(X) , gen(X) is to show that the above program P0 is equivalent to someprogram Pfinal in whi
h the thm(X) and gen(X) are synta
ti
ally equivalent.We now 
onstru
t su
h a transformation sequen
e P0; : : : ; Pfinal. Unfolding theonly 
lause of thm/1 several times we obtain:thm([℄). (4,4)thm([0|X℄) :- gen(X), 
anon(X). (6,6)thm([0|X℄) :- gen(X), trans(X,Y), test([1|Y℄). (6,6)We now introdu
e the de�nition:test1(Y) :- test([1|Y℄). (1,1)and fold the o

urren
e of test([1|Y℄) in the last 
lause of thm/1 to obtain:thm([℄). (4,4)thm([0|X℄) :- gen(X), 
anon(X). (6,6)thm([0|X℄) :- gen(X), trans(X,Y), test1(Y). (5,5)
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lause of test1/1 several times and then folding (usingthe de�nition 
lause of test1/1 as the folder) we get:test1(Y) :- 
anon(Y). (3,3)test1(Y) :- trans(Y,Z), test1(Z). (2,2)Note that test1(Y) and test(Y) are synta
ti
ally equivalent, sin
e the 
lausesof test/1 are : test(X) :- 
anon(X). (1,1)test(X) :- trans(X,Y), test(Y). (1,1)We therefore apply Synta
ti
 Goal Repla
ement in the last 
lause of thm/1 toobtain the following :thm([℄). (4,4)thm([0|X℄) :- gen(X), 
anon(X). (6,6)thm([0|X℄) :- gen(X), trans(X,Y), test(Y). (6;1)We 
an now fold the above 
lauses of thm/1 using the 
lauses of test/1 as thefolder. Note that we are folding using multiple re
ursive 
lauses as the folder. Theadditional power of our folding rule is exploited in this transformation step. Weobtain: thm([℄). (4,4)thm([0|X℄) :- gen(X), test(X). (5;1)Finally, we fold using the 
lause of thm/1 in P0 as folder to obtain the programPfinal thm([℄). (4,4)thm([0|X℄) :- thm(X). (4;1)gen([℄). (1,1)gen([0|X℄) :- gen(X). (1,1)test(X) :- 
anon(X). (1,1)test(X) :- trans(X,Y), test(Y). (1,1)
anon([℄). (1,1)
anon([1|X℄) :- 
anon(X). (1,1)trans([0|T℄,[1|T℄). (1,1)trans([1|T℄, [1|T1℄) :- trans(T,T1). (1,1)The atoms thm(X) and gen(X) are now synta
ti
ally equivalent (refer de�nition 10).Thus, M(Pfinal) j= 8 X thm(X) , gen(X). Sin
e M(Pfinal) = M(P0) thereforeM(P0) j= 8 X thm(X) , gen(X). By de�nition of thm(X) in P0, this means thatM(P0) j= 8 X gen(X)) test(X). Thus, by using our transformation rules, we have
onstru
ted a nontrivial indu
tion proof.5.4 Veri�
ation of Parameterized Con
urrent SystemsThe above proof is illustrative sin
e it is stru
turally similar to the proofs that arisein the veri�
ation of 
on
urrent systems. Using the transformation rules of SCOUTand the Synta
ti
 Goal Repla
ement rule in a similar fashion we veri�ed propertieslike liveness of a m-bit shift register, 
orre
tness of a m-bit 
arry-lookahead adderet
. Thus, in the problem of veri�
ation of liveness of a m-bit shift register : thepredi
ate gen represents the en
oding of the m-bit shift register while the predi
atetest represents the en
oding of the liveness property that we verify. To a

omplish
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ation of the Synta
ti
 Goal Repla
ement rule to repla
ea spe
ialized version of test. This 
orresponds to proving that the liveness propertyholds in a pro
ess Q i� the property holds in a sub-pro
ess of Q.In parti
ular, we have used the transformations developed in this paper to indu
-tively prove temporal properties of parameterized 
on
urrent systems [Roy
houd-hury 2000; Roy
houdhury et al. 2000; Roy
houdhury and Ramakrishnan 2001℄.Veri�
ation of distributed algorithms with arbitrary number of 
onstituent pro-
esses 
an be naturally 
ast as verifying parameterized systems. A parameterized
on
urrent system (su
h as a n-bit shift register for arbitrary n) represents anin�nite family of �nite state 
on
urrent systems, parameterized by a re
ursivelyde�ned type. Therefore, it is natural to prove properties of parameterized 
on-
urrent systems by indu
ting over this type. We have automated the 
onstru
tionof these indu
tion proofs by using the unfold/fold rules developed in this paperalong with domain spe
i�
 
ontrol strategies. In our approa
h, the parameterizedsystem and the temporal property to be veri�ed are en
oded as a logi
 program.The veri�
ation problem is redu
ed to the problem of determining the equivalen
eof predi
ates in this program. The predi
ate equivalen
es are then established byemploying unfold/fold transformations on the predi
ates. Finally the proof of se-manti
 equivalen
e of the predi
ates is a
hieved by showing synta
ti
 equivalen
eof their transformed de�nitions.The additional power of our transformation rules is useful in our transformationbased proofs of temporal properties. Note that temporal properties 
ontain �xedpoint operators. These properties are typi
ally en
oded as a logi
 program pred-i
ate with multiple re
ursive 
lauses e.g. a least �xed point property 
ontainingdisjun
tions is en
oded using multiple re
ursive 
lauses. Therefore, one 
annot as-sume restri
tions that are imposed by existing transformation systems [Tamaki andSato 1984; 1986a; Kanamori and Fujita 1987; Gergatsoulis and Katzouraki 1994℄ onthe syntax of 
lauses en
oding a temporal property. As mentioned before, the ap-pli
ability of our transformation rules is not restri
ted by program syntax. Instead,book-keeping is performed at every transformation step, and this book-keeping isused to restri
t the appli
ability of the transformation rules. This makes these rulessuitable for 
onstru
ting proofs of temporal properties.A full-
edged dis
ussion of the use of our transformations for veri�
ation needsto dis
uss transformation strategies as well. This is outside the s
ope of this paper.The interested reader is referred to [Roy
houdhury 2000℄.6. RELATED WORKIn this se
tion, we survey related work on unfold/fold transformations and theirusage in dedu
tion. In Se
tion 6.1, we dis
uss work on developing totally 
or-re
t irreversible unfold/fold transformation systems. In parti
ular, we dis
uss therestri
tions whi
h need to be pla
ed on the folding rule in order to make any in-terleaving of unfolding/folding preserve semanti
s. In Se
tion 6.2, we dis
uss pastwork on using unfold/fold transformations of logi
 programs for indu
tive reason-ing. Finally, we 
on
lude by brie
y dis
ussing work on other (more traditional)usage of logi
 program transformations su
h as: use of transformations for partial
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tion, and reversible transformations for dedu
tive databases.6.1 Restri
ting Transformations to ensure Total Corre
tnessConditions to ensure total 
orre
tness of unfold/fold transformations have beenextensively studied for logi
 programs. Most of these transformation rules imposetwo kinds of restri
tions: (a) the syntax of the folder 
lauses is restri
ted, and (b)
lauses are annotated with book-keeping (our 
lause measures) whi
h is updated inea
h transformation step; 
onditions are imposed on this book-keeping to restri
tappli
able folding steps. In this paper, we have shown that the �rst kind of restri
-tions (synta
ti
 restri
tions on the folder 
lauses) are redundant. Only the se
ondkind (restri
tion on 
lause measures) is ne
essary to show A � B in any foldingstep, where A is the head of the 
lause produ
ed by folding, B is the folder atom(the atom introdu
ed by folding) and � is a well-founded order. Preservation ofsu
h a well-founded order allows us to prove total 
orre
tness by indu
tion.Synta
ti
 Restri
tions on folder 
lauses. Among the previous works whi
h im-posed synta
ti
 restri
tions on the folder 
lauses:|[Tamaki and Sato 1984; Gergatsoulis and Katzouraki 1994℄ required the folder
lauses to be non-re
ursive.|[Tamaki and Sato 1984; 1986a; Kanamori and Fujita 1987℄ required a single folder
lause (
onjun
tive folding)We have shown that our transformation framework subsumes ea
h of these trans-formation systems. In other words, the synta
ti
 restri
tions imposed in thesesystems are not needed for ensuring total 
orre
tness. There is however, an inter-esting observation to make from the book-keeping/annotations maintained in thesetransformation systems.Various kinds of 
lause annotations. The 
lause annotations maintained in theafore mentioned transformation systems are of roughly two types:|[Tamaki and Sato 1984; 1986a; Gergatsoulis and Katzouraki 1994℄ partition thepredi
ate symbols into n > 1 strata (among these, [Tamaki and Sato 1984℄ and[Gergatsoulis and Katzouraki 1994℄ set n = 2). A total order is assumed amongthe strata i.e. strata 1 � : : : � strata n. Also, for ea
h 
lause C in program Pi a
ag is maintained. The 
ag is set if C was obtained via one or more unfoldingsin the sequen
e P0; : : : ; Pi. In a folding step, 
lauses C, D 
an be used as foldedand folder 
lauses if|strata of predi
ate at head of C � strata of predi
ate at head of D, or|strata of predi
ate at head of C = strata of predi
ate at head of D and the
ag of C is set.The above 
onditions allow the de�nition of a well-founded order among groundatoms on whi
h we 
an indu
t. This idea has also been used to develop totally
orre
t unfold/fold transformations for normal logi
 programs [Seki 1991; 1993℄.|A di�erent approa
h is taken in [Kanamori and Fujita 1987℄. Here all the predi-
ate symbols are pla
ed in one stratum. Ea
h 
lause C in program Pi is annotatedwith an integer 
ounter whi
h is in
remented on unfolding and de
remented onfolding. In a folding step, 
lauses C, D 
an be used as folded and folder 
lauses
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h is similar to the work onfun
tional program transformations by Kott [Kott 1985℄ and the seminal work ofDavid Sands [Sands 1996℄. Intuitively both Kott and Sands allow a folding step ifthe number of unfolds ex
eeds the number of folds (there are however importantdi�eren
es whi
h we will outline in the following).The two di�erent kinds of annotations (strata and 
ounters) have been 
ombinedin our SCOUT transformation system. This gives a transformation system whi
hallows more folding steps even when the synta
ti
 restri
tions on the folder 
lauseshold. Thus, SCOUT 
an be proved to be more powerful than the Tamaki-Sato styletransformation systems.Ensuring Total Corre
tness without imposing Synta
ti
 Restri
tions. One of thekey features of our transformation framework (as well as the SCOUT transforma-tion system) is that the appli
ability of a transformation to program Pi is de
idedbased on the 
lause measures (i.e. annotations) in Pi, and not on program syntax.This obje
tive has previously been a
hieved in the work of Amtoft [Amtoft 1992℄.Similar to Tamaki-Sato style transformations [Tamaki and Sato 1986a℄, Amtoftpartitions the predi
ates into n > 1 strata. This is a
hieved by assigning \weights"to the predi
ates. In the initial program P0, weights are assigned to a 
lause basedon the weight of its head predi
ate. The weights of a 
lause get updated on un-folding/folding. By unfolding an atom of higher weight, more opportunities are
reated for future folding steps. The intuition presented by Amtoft is an impor-tant one and 
on
eptually 
lose to the extended Tamaki-Sato system of [Tamakiand Sato 1986a℄. We believe that this similarity between the two works has notbeen noti
ed due to the s
ar
e availability of the [Tamaki and Sato 1986a℄ te
hni
alreport. Both these works show that by stratifying the predi
ates and annotatingthe 
lauses with strata number during unfolding and folding it is possible to ensuretotal 
orre
tness. There is also an additional restri
tion requiring every folding stepto be 
onjun
tive. However, this restri
tion 
an be showed to be unne
essary forensuring total 
orre
tness.The work of Amtoft gives us one way to ensure total 
orre
tness without re-stri
ting folder 
lause syntax. However, it is 
on
eptually di�erent from the workof Kanamori [Kanamori and Fujita 1987℄ whi
h maintains integer 
ounters withevery 
lause. Like [Tamaki and Sato 1986a℄, Kanamori also restri
ts folding to be
onjun
tive; again this restri
tion is unne
essary. However, as observed in Se
tion4, there is an important di�eren
e between [Tamaki and Sato 1986a℄ and [Kanamoriand Fujita 1987℄. The measure spa
e in [Kanamori and Fujita 1987℄ is 
oarser than[Tamaki and Sato 1986a℄ but [Kanamori and Fujita 1987℄ 
ompletely utilizes itsmeasure spa
e by maintaining a

urate 
lause measures. Thus the book-keeping ismore detailed. Intuitively we 
an argues that maintaining the number of unfold-ings through whi
h a 
lause C in program Pi was derived is more detailed thanmaintaining whether 
lause C 2 Pi was obtained by at least one unfolding. Thus,Kanamori's intuition 
an also be used to yield a transformation system with nosynta
ti
 restri
tions. In fa
t, this system is identi
al to our SCOUT system whereall predi
ates are pla
ed in the same stratum.In fun
tional programming, similar ideas have been used to ensure 
orre
tness ofunfold/fold transformations. Kott [Kott 1985℄ presents a restri
ted transformation
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ursive fun
tions f1; : : : ; fn in a �rst order fun
tionallanguage. In this work, a parti
ular fun
tion fi is transformed as follows: (a)unfold the body of fi (b) apply 
ertain \laws" (
) fold the body of fi. A \law"
orresponds to a rewriting of semanti
ally equivalent expressions (similar to ourgoal repla
ement). Subsequent to the transformation, Kott's method 
he
ks the
orre
tness of the transformation sequen
e. If all the fun
tions are stri
t, then this
he
k 
orresponds to 
he
king that the number of unfolds ex
eeds the number offolds. Thus, Kanamori's method of 
he
king 
ounter values of folder and folded
lauses is similar to Kott's 
he
k. However Kanamori 
he
ks the appli
ability of afolding step at the time of transformation and not post-mortem.One of the most well-understood and 
omprehensive work on fun
tional programtransformations is by David Sands [Sands 1996℄. Sands presents an elegant theory ofimprovement whi
h 
lari�es the \number of unfolds ex
eeds number of folds" 
he
kproposed by Kott. Moreover, [Sands 1996℄ is appli
able to higher order fun
tionallanguages as well. In [Sands 1996℄, a transformation from fx 4= e to gx 4= e0 usingthe equivalen
e e �= e0 is totally 
orre
t if e0 is an improvement over e. In otherwords, for any 
ontext if e terminates with n fun
tion 
alls then e0 must terminatewith at most n fun
tion 
alls. Sands then exploits this notion of improvement forunfold/fold transformations by requiring an unfold/fold transformation sequen
e toshow overall improvement. Super�
ially, this might appear similar to Kanamori's
he
k on 
ounters. There are however, important di�eren
es. Sin
e an unfold stepredu
es a fun
tion 
all, Sands re
ords this by inserting a \ti
k". Similarly a foldstep in
reases a fun
tion 
all, so it must be paid for by removing a ti
k (whi
hwas introdu
ed earlier by an unfold). Thus, the total number of ti
ks in a fun
tionde�nition roughly 
orreponds to Kanmori's 
ounter annotation of a 
lause. How-ever this 
orresponden
e holds only if ti
ks 
an be arbitrarily propagated in anexpression, that is, any ti
k introdu
ed by unfolding 
an be used to pay for a futurefolding. This is in general not true if an unfolding step produ
es a lazy 
ontext.The ti
k introdu
ed by unfolding 
annot be propagated a
ross this lazy 
ontext andthus 
annot be used to pay for a future folding. This issue does not arise in logi
programs. Any unfolding step 
an \in
rease" the 
lause measures and 
an thus beused to pay for any future folding step. This is re
e
ted in our generalized transfor-mation framework, as well as in [Kanamori and Fujita 1987℄. Furthermore, our work
ombines the notion of strati�
ation with 
ounters to maintain more �ne-grainedbook-keeping per 
lause. This is eviden
ed in the SCOUT transformation system.Our generalized transformation framework abstra
tly spe
i�es the 
onditions whi
hthe 
lause annotaions must satisfy in order to maintain total 
orre
tness. Our no-tion of measure 
onsisten
y 
aptures thes 
onditions. This parallels with Sands'theory of improvement for fun
tional programs where he shows that a transforma-tion sequen
e whi
h leads to improvement (in terms of fun
tion 
alls) is guaranteedto preserve 
orre
tness. The ti
k algebra of Sands is a me
hanism for ensuring this\improvement". Similarly the transformation rules in our SCOUT transformationare guaranteed to ensure the abstra
t notion of \measure 
onsisten
y".We 
on
lude this se
tion by dis
ussing the work of Bossi, Co

o and Etalle on
orre
tness of repla
ement operations in normal logi
 programs [Bossi et al. 1992;1996℄. Sin
e unfolding and folding are restri
ted versions of goal repla
ement, their
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tness theorem 
an also be used to derive a safe folding operation [Bossi et al.1992℄. In parti
ular, their 
orre
tness 
ondition depends on two notions:|dependen
y degree: Intuitively, the dependen
y degree of an atomB on 
lause C isthe shortest path from B to C in a proof of B. Thus, if a 
ir
ularity is introdu
edby folding B into 
lause C then the length of the loop is the dependen
y degreeof B on C.|semanti
 delay: The semanti
 delay of a goal G w.r.t. another goal G0 roughlydenotes the minimum di�eren
e in the lengths of their derivations.A typi
al suÆ
ient 
ondition for 
orre
t folding of 
lause C using folder 
lauseB:� B1; : : : ; Bm is: dependen
y degree of B on C � semanti
 delay of B w.r.t.B1; : : : ; Bm. Intuitively, the semanti
 delay of B w.r.t. B1; : : : ; Bm is related to thetransformation history: the unfold/fold steps taken so far from the folder 
lause.However, the idea of dependen
y degree does not only 
orrespond to the transforma-tion history. Instead it is also related to the strati�
ation of the predi
ates used inTamaki-Sato style systems. In parti
ular, if B never uses 
lause C in its proof, thenthe dependen
y degree is the ordinal ! and folding of C using B:� B1; : : : ; Bm isalways allowed. This roughly 
orresponds to the folding of \old" predi
ates w.r.t.\new" predi
ates in [Tamaki and Sato 1984; Gergatsoulis and Katzouraki 1994℄.Thus, the notion of dependen
y degree is related to strati�
ation of predi
ates aswell as transformation history. It seems that our 
orre
tness 
ondition is moreuniform: it simply 
ompares the 
lause measures of the folded and folder 
lauses.These 
lause measures 
an be instantiated to in
orporate the notions of strati�
a-tion and/or 
ounting of past unfold/fold steps (the transformation history).6.2 Logi
 Program Transformations to 
onstru
t proofsUnfold/fold logi
 program transformations have been primarily used for programsynthesis, spe
ialization and optimization (see [Bossi et al. 1990; Boulanger andBruynooghe 1993; S
hreye et al. 1999; Pettorossi et al. 1997℄). These works use re-stri
ted versions of unfold/fold rules and 
on
entrate on a di�erent (and important)issue: automated strategies to guide the rules. For example, partial dedu
tion orpartial evaluation [Jones et al. 1993; Komorowski 1982℄ primarily allows unfolding.Folding is often restri
ted to a single atom, and is often used to repla
e a partiallyinstantiated atom p(t(X)) to an open atom q(X) via the de�nition q(X) : �p(t(X)).This is relaxed in 
onjun
tive partial dedu
tion [S
hreye et al. 1999℄ whi
h allowsspe
ialization w.r.t. 
onjun
tions of atoms (instead of a single atom). Still foldingof multiple 
lauses in one step is not allowed in the interests of automated 
ontrol.Relatively little work has been done on using these transformations for 
onstru
t-ing proofs. As dis
ussed in the previous se
tion, unfold/fold transformations 
anbe used to 
onstru
t indu
tion proofs of program properties. In su
h indu
tionproofs, unfolding a

omplishes the base 
ase and the �nite part of the indu
tionstep, and folding roughly 
orresponds to appli
ation of indu
tion hypothesis. Thisobservation has been exploited in [Hsiang and Srivas 1987; Kanamori and Fujita1986; Pettorossi and Proietti 1999; 2000℄ to 
onstru
t indu
tive proofs of programproperties.Hsiang and Srivas in [Hsiang and Srivas 1987℄ extended Prolog's evaluation with\limited forward 
haining" to perform indu
tive theorem proving. This limited
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haining step is in fa
t a very restri
ted form of folding: only the theoremstatement (whi
h is restri
ted to be 
onjun
tive) 
an be used was a folder 
lause.The work of Kanamori and Fujita [Kanamori and Fujita 1986℄ is 
loser to ours.They proved 
ertain �rst order theorems about the Least Herbrand Model of ade�nite logi
 program via indu
tion. In parti
ular, they observed that the least�xed point semanti
s of logi
 programs 
ould be exploited to employ �xpoint in-du
tion. Our usage of the transformations is similar. Given a program P we intendto prove p � q in the Least Herbrand Model of P . To do this proof by indu
tion,we transform p and q to obtain a program P 0. If the transformed de�nitions of pand q in P 0 are \synta
ti
ally equivalent" (De�nition 10) then our proof is �nished.Note that this equivalen
e 
he
k is in fa
t an appli
ation of �xpoint indu
tion. Itallows us to show p � q in M(P 0) (the least Herbrand model of P 0). Furthermore,sin
e M(P 0) = M(P ) this amounts to showing p � q in program P . Thus, in ourwork predi
ates are transformed to fa
ilitate the 
onstru
t of indu
tion s
hemes (forproving predi
ate equivalen
e). [Kanamori and Fujita 1986℄ also exploits transfor-mations for similar purposes. However, their method performs 
onjun
tive foldingusing only a single non-re
ursive 
lause. Apart from the restri
tion in their foldingrule, they also do not employ goal repla
ement in their indu
tion proofs. Conse-quently, nested indu
tion proofs 
annot be 
onstru
ted (the example worked out inSe
tion 5 is a nested indu
tion proof).The idea of using logi
 program transformations for proving goal equivalen
eswas explored in [Pettorossi and Proietti 1999; 2000℄. These works employ morerestri
ted Tamaki-Sato style unfold/fold transformations, whi
h are not suitable ingeneral for 
onstru
ting indu
tion proofs of temporal properties. This is be
ausetemporal properties employ �xed point operators, and are typi
ally en
oded usingmultiple re
ursive 
lauses. A simple rea
hability property EFp (whi
h spe
i�esthat a state in whi
h proposition p holds is rea
hable) [Clarke et al. 1999℄ will been
oded as a logi
 program as follows:ef(X) :- p(X).ef(X) :- trans(X,Y), ef(Y).where the predi
ate trans 
aptures the transtion relation of the system being ver-i�ed, and p(X) is true if the proposition p holds in state X. This en
oding 
ontainstwo 
lauses one of whi
h is re
ursive. Our work relaxes restri
tions on the appli-
ability of the transformation rules thereby enabling their use in proving temporalproperties.The reader might noti
e similarities between a proof system based on unfold/foldtransformations a proof systems based on tabled resolution [Tamaki and Sato 1986b;Chen and Warren 1996℄. Tabled resolution 
ombines resolution proofs with mem-oing of 
alls and answers. Sin
e folding 
orresponds to remembering the originalde�nition of predi
ates, there is some 
orresponden
e between folding and memo-ing. However, folding 
an remember 
onjun
tions and/or disjun
tions of atoms asthe de�nition of a predi
ate. This is not possible in tabled resolution. Furthermore,in tabled resolution when a tabled 
all C is en
ountered, the answers produ
ed sofar for C are used to produ
e new answers for C. In folding, when the 
lause bodiesin old de�nition of a predi
ate is en
ountered, it is simply repla
ed by the 
lausehead.
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 Programs � 33The unfold/fold transformation based proof te
hnique for 
onstru
ting indu
tionproofs also di�ers substantially from many existing indu
tive theorem proving te
h-niques [Boyer and Moore 1990; Bundy et al. 1990℄. These provers take in an expli
itindu
tion s
hema and try to dispense the proof obligation in ea
h of these 
ases.In 
ontrast, the transformation based proof te
hnique does not input any indu
tions
hema. The s
hema is 
onstru
ted gradually via unfolding of the program predi-
ates. This idea has similarities to the \re
ursion analysis" te
hnique employed inthe Boyer-Moore prover [Boyer and Moore 1975; 1990℄. Given some fun
tions, theseworks exploit the re
ursive stru
ture of these fun
tions to prove theorems aboutthem. Note that, if the ne
essary indu
tion s
hema 
annot be derived via unfold-ing, our transformation based proof te
hnique 
annot �nd a proof. However, thisrestri
tion leads to in
reased automation in the 
onstru
tion of indu
tion proofs,and fewer 
ases in the indu
tion s
hema 
onstru
ted (see [Roy
houdhury 2000℄ fora detailed example).In 
on
lusion, we would like to note that 
onstru
ting indu
tion proofs via un-fold/fold transformations is di�erent from 
onsisten
y based proof te
hnqiues su
has indu
tionless indu
tion [Comon and Nieuwenhuis 2000℄. These te
hniques donot employ any indu
tion s
hema at all. To prove a predi
ate equivalen
e p � qour proof te
hnique uses an indu
tion s
hema obtained from the stru
ture of thetransformed de�nitions of p, q. However, this s
hema is not given a-priori butgradually 
onstru
ted via program transformations.7. DISCUSSIONSThe development of a parameterized framework for unfold/fold transformations hasseveral important impli
ations. It enables us to 
ompare existing transformationsystems and modify them without redoing the 
orre
tness proofs (e.g., extendingmeasures for goal repla
ement in Se
tion 3). It also fa
ilitates the developmentof new transformations systems. For instan
e, we derived SCOUT whi
h permitsfolding using multiple re
ursive 
lauses.Motivation. The development of our transformation framework is motivated byits appli
ation in 
onstru
ting indu
tion proofs. As des
ribed in Se
tion 5, ourtransformation framework 
an be used for indu
tively proving predi
ate equiva-len
es. In these proofs, the unfolding transformation helps prove the base 
aseand the �nite part of the indu
tion step. The folding transformation is useful forun
overing the indu
tion hypothesis. Finally, the goal repla
ement transformationis used for 
onstru
ting nested indu
tion proofs (semanti
 equivalen
e of the goalsinter
hnaged in a goal repla
ement step are also proved by program transforma-tions).Extensions. In [Roy
houdhury et al. 2002℄, we have extended the work reportedin this paper to obtain generalized unfold/fold transformation systems for normallogi
 programs. Aravindan and Dung [1995℄ developed an approa
h to parameterizethe 
orre
tness proofs of the original Tamaki-Sato system with respe
t to varioussemanti
s based on the notion of semanti
 kernels. In
orporating the idea of se-manti
 kernel into our framework yields a framework that is parameterized withrespe
t to the measure stru
tures as well as semanti
s.
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houdhury, Kumar, Ramakrishnan, RamakrishnanFuture Work. In future, it would be interesting to study whether we 
an de-velop similar parameterized unfold/fold transformation frameworks for other pro-gramming paradigms su
h as fun
tional programming [Sands 1996℄, 
onstraint logi
programming [Etalle and Gabbrielli 1996; Maher 1993℄, 
on
urrent 
onstraint pro-gramming [Etalle et al. 2001℄, and pro
ess algebrai
 spe
i�
ation languages (e.g.CCS) [Fran
es
o and Santone 1998℄.In parti
ular, [Sands 1996℄ reports powerful unfold/fold transformation rules forfun
tional languages, where the gains a

rued from unfolding determine the appli-
ability of folding (similar to our framework). A 
omparison of Sands' work withour transformation framework appeared in Se
tion 6. It would be interesting tostudy whether the transformation system of [Sands 1996℄ 
an be parameterizedw.r.t. measure stru
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 Programs � 37APPENDIXIn this appendix, we brie
y outline the transformation systems of [Kanamori andFujita 1987℄ and [Tamaki and Sato 1986a℄ for the 
onvenien
e of the reader. Wethen prove that SCOUT is a more powerful transformation sequen
e (in terms ofallowed transformation sequen
es).A. TRANSFORMATION SYSTEM OF KANAMORI-FUJITAIn this work [Kanamori and Fujita 1987℄, ea
h 
lause of any program Pi in a trans-formation sequen
e P0; P1; : : : is annotated with an integer 
ounter. The 
ounterof ea
h 
lause in the initial program P0 is set to 1. The unfolding and folding rulesare as follows.Rule 8. Unfolding Let C be a de�nite 
lause in program Pi with 
ounter 
and A be an atom in the body of C. Let C1; : : : ; Cm be all the 
lauses in Pi whoseheads are uni�able with A with m.g.u �1; : : : ; �m. Let the 
ounters of C1; : : : ; Cmbe 
1; : : : ; 
m. Let C 0j be the 
lause that is obtained by repla
ing A�j by the body ofCj�j in C�j (1 � j � m). Assign (Pi�fCg)[fC 01; : : : ; C 0mg to Pi+1. The 
ounterof C 0j is 
 + 
j for all 1 � j � m.Rule 9. Folding Let C be a de�nite 
lause in Pi of the form A:� A1; : : : ; Anwith 
ounter 
 and let D be a 
lause in Pj (j � i) of the form B:� B1; : : : ; Bm with
ounter Æ. There is no other 
lause in Pj whose head is uni�able with B. Supposethere is a substitution � and atoms A1; : : : ; Am (m � n) in the body of C s.t.|Aj = Bj� for j = 1; : : : ;m|� substitutes distin
t variables for the internal variables of D and moreover thosevariables do not o

ur in fA;Am+1; : : : ; Ang.|m+ Æ < n+ 
De�ne a 
lause C 0 as A:� B�;Am+1; : : : ; An, and assign Pi �fCg [ fC 0g to Pi+1.The 
ounter of C 0 is 
 � Æ.As an extension, [Kanamori and Fujita 1987℄ mentions that the predi
ate symbolsof the program P0 
an be partitioned into strata. Folding 
an then be allowed evenif m + Æ = n + 
. This extension 
an also be 
aptured by our transformationframework. Furthermore, [Kanamori and Fujita 1987℄ mentions that the 
ountersof the 
lauses produ
ed by unfolding (folding) at Pi are given as above, unless this
lause is already present in Pi with a lower 
ounter.B. EXTENDED TAMAKI-SATO SYSTEMThis work [Tamaki and Sato 1986a℄ starts with a \layered" program P0 where thepredi
ate symbols are partitioned into n strata or des
ent levels. The strati�
ationshould be su
h that every predi
ate symbol in the body of a 
lause C has a levlnot greater than the level of the perdi
ate at the head of C. The level of a 
lausein P0 is the level of its head predi
ate.The transformation rules are given as in [Kanamori and Fujita 1987℄. The onlydi�eren
e is that ea
h 
lause of program Pi in a transformation sequen
e P0; P1; : : :is annotated with a des
ent level (instead of an integer 
ounter). The des
ent levelof a 
lause C is:
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ent level of C is the des
ent level of the predi
ate symbolin its head.|if C 2 Pi+1 is introdu
ed by unfolding C 0 2 Pi at atom A, then the des
entlevel of C is tge minimum of the des
ent level of C 0 and the des
ent level of thepredi
ate symbol in A.|if C 2 Pi+1 is introdu
ed by folding/goal repla
ement of 
lause C 0 2 Pi, then thedes
ent level of C is the des
ent level of C 0.|Finally, a 
lause C 2 Pi 
an be folded using a 
lause D as folder provided thedes
ent level of C is smaller than the des
ent level of D.C. SCOUT IS A MORE POWERFUL TRANSFORMATION SYSTEMIn this se
tion, we prove that SCOUT allows more transformation sequen
es thanthe 
ounter based transformation system of Kanamori Fujita [1987℄ as well as thestrati�
ation based transformation system of Tamaki-Sato [1986a℄.Kanamori-Fujita system [1987℄. This system is spe
ial 
ase of SCOUT wherefolding is 
onjun
tive and all the predi
ate symbols of the initial program are pla
edin a single stratum.Extended Tamaki-Sato system. For proving that SCOUT 
overs any transforma-tion sequen
e P0; P1; P2; : : : whi
h is allowed by the fold/unfold/goal repla
ementsystem of [Tamaki and Sato 1986a℄, we de�ne the invariants given below. Re
allthat in [Tamaki and Sato 1986a℄ ea
h 
lause in any Pi is asso
iated with a stratanumber, also 
alled the des
ent level. Folding of a 
lause C (folded 
lause) using a
lause D (folder 
lause) is allowed if: des
ent level of C < des
ent level of D. Also,sin
e [Tamaki and Sato 1986a℄ handles only 
onjun
tive folding, any fold/unfoldtransformation sequen
e of [Tamaki and Sato 1986a℄, if exe
utable in SCOUT, willalways produ
e 
lauses with 
ounters of the form (
; 
); in other words, the two
ounters of any 
lause will always be equal.We now 
onsider the following invariants :|J1(Pi) � Any fold/unfold/goal repla
ement transformation in Pi whi
h is al-lowed by the extended Tamaki-Sato system [1986a℄ is allowed by SCOUT (withn strata).|J2(Pi) � Let C be any 
lause in program Pi with strata number (i.e. des
entlevel in the terminology of [Tamaki and Sato 1986a℄) j. Then, in SCOUT (withn strata), 
ilo(C) = 
ihi(C) = h
1; : : : ; 
ni where 
j > 0 ^ (81 � k < j 
k = 0)To prove that any unfold/fold/goal repla
ement transformation sequen
e 
overedby [Tamaki and Sato 1986a℄ is also 
overed by SCOUT, it is suÆ
ient to prove thatJ1(Pi) is an invariant.Theorem 5. Let P0; P1; P2; : : : be an unfold/fold/goal repla
ement transforma-tion sequen
e of the extended Tamaki-Sato system [1986a℄. Then, 8i � 0: J1(Pi)^J2(Pi)Proof. The proof follows by indu
tion on i. J1(P0) is trivially true by the de�-nition of the fold/unfold transformations in [Tamaki and Sato 1986a℄ and SCOUT.Also, if a 
lause C in P0 has des
ent level j, then 
olo(C) = 
ohi(C) = h
1; : : : ; 
ni
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j = 1 and 
l = 0 when l 6= j. Clearly then J2(P0) is also true. Thus, wehave established the basis for the indu
tion.Now assume that 8i � m: J1(Pi) ^ J2(Pi). We now show that J1(Pm+1) ^J2(Pm+1) holds.First we prove J2(Pm+1). Let C be any 
lause in Pm+1. We show that theproperty mentioned in J2 is true for C.Case 1: C is inherited from PmThe result holds sin
e J2(Pm) is true by indu
tion hypothesis.Case 2: C is obtained by unfolding C 0 using C 00Sin
e, 8i � m: J1(Pi), the sequen
e P0; P1; : : : ; Pm; Pm+1 
an be 
onstru
ted usingSCOUT. Then, 
m+1lo (C) = 
m+1hi (C) = 
mlo (C 0)�
mlo (C 00) = 
mhi(C 0)�
mhi(C 00). Alsolet the des
ent level of C, C 0 and C 00 be k,k0 and k00 respe
tively. Then, by [Tamakiand Sato 1986a℄, k = min(k0; k00). By the indu
tion hypothesis, the property in J2is true for both C 0 and C 00. Hen
e if 
mlo (C 0) = 
mhi(C 0) = h
01; : : : ; 
0ni and 
mlo (C 00) =
mhi(C 00) = h
001 ; : : : ; 
00ni, then 
01 = � � � = 
0k�1 = 0, 
001 = � � � = 
00k�1 = 0. Also sin
ek is the minimum of k0 and k00, we have either 
0k = 0^ 
00k > 0, or 
0k > 0^ 
00k = 0or 
0k > 0 ^ 
00k > 0. Now, 
m+1lo (C) = 
m+1hi (C) = 
mlo (C 0)� 
mlo (C 00) = h
1; : : : ; 
niwhere 81 � l � n 
l = 
0l + 
00l . Hen
e 
1 = � � � = 
k�1 = 0 and 
k > 0. Thus theproperty in J2 holds for C.Case 3: C is obtained by folding C 0 using D0Sin
e 8i � m: J1(Pi), the transformation sequen
e P0; P1; : : : ; Pm; Pm+1 
an be
onstru
ted using SCOUT. Let C 0 and D0 have des
ent levels k and l respe
tively.Then by [Tamaki and Sato 1986a℄, the des
ent level of C is also k and k < l. ButD0 2 P0, so 
0lo(D0) = 
0hi(D0) = hÆ01; : : : ; Æ0ni where Æ0l = 1 and Æ0j = 0 when j 6= l.Let 
mlo (C 0) = 
mhi(C 0) = h
01; : : : ; 
0ni. As the property in J2 is true for C 0, we have
01 = � � � = 
0k�1 = 0 and 
0k > 0. Now, 
m+1lo (C) = 
m+1hi (C) = 
mlo (C 0)	 
0hi(D0) =h
1; : : : ; 
ni where 81 � j � n 
j = 
0j�Æj . Sin
e k < l, therefore Æ01 = � � � = Æ0k = 0.Thus, 
1 = � � � = 
k�1 = 0 and 
k = 
0k > 0. Hen
e the property in J2 holds for C.Case 4: C is obtained by goal repla
ement from 
lause C 0 2 Pm.Again, sin
e 8i � m: J1(Pi), the transformation sequen
e P0; : : : ; Pm; Pm+1 
an be
onstru
ted using SCOUT. Let C 0 have des
ent level k. then, by [Tamaki and Sato1986a℄, the 
lause C 2 Pm+1 also has des
ent level k. Let 
mlo (C 0) = 
mhi(C 0) =h
01; : : : ; 
0ni and 
m+1lo (C) = 
m+1hi (C) = h
1; : : : ; 
ni Sin
e property J2 is truefor C 0 therefore 
01 = � � � = 
0k�1 = 0 and 
0k > 0. Let C be obtained from C 0by repla
ing goal G with G0. Now, from the de�nition of goal repla
ement in[Tamaki and Sato 1986a℄, for any ground instantiation � we have �(G�)	�(G0�) �Æ = h0; 0; : : : ; 0i The 
lause measure of 
lause C will be 
m+1lo (C) = 
m+1hi (C) =
mlo (C 0) = 
mhi(C 0) Therfore, 
learly property J2 holds for 
lause C as well.Thus, 
mlo (C 0)� Æ�P1�l�k �min(A0l) � 0 where A01; : : : ; A0k are the body atomsother than G in 
lause C 0 (this holds be
ause 
mlo (C 0) � 0, Æ = 0 and �min(A) � 0for any atom A. Furthermore,We now show that J2(Pm+1)) J1(Pm+1). Sin
e the unfolding transformation isindependent of any 
ondition on the strati�ed 
ounter (or des
ent level) in SCOUT
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houdhury, Kumar, Ramakrishnan, Ramakrishnanor [Tamaki and Sato 1986a℄, therefore any unfolding allowed by [Tamaki and Sato1986a℄ in Pm+1 is also allowed by SCOUT.For folding, let C 2 Pm+1 be folded using the folder D 2 P0 in the systemof [Tamaki and Sato 1986a℄. Let the des
ent levels of C and D be be k and lrespe
tively. Then, k < l (by [Tamaki and Sato 1986a℄) and the property of J2is true for both C and D (sin
e J2(Pm+1) holds). So, if 
m+1lo (C) = 
m+1hi (C) =h
1; : : : ; 
ni and 
0lo(D) = 
0hi(D) = hÆ1; : : : ; Æni we have 
1 = ::: = 
k�1 = 0,
k > 0, Æ1 = ::: = Æl�1 = 0. As k < l, this means Æ1 = ::: = Æk = 0. Clearly then
m+1lo (C) is lexi
ographi
ally greater than 
0hi(D). Hen
e C 
an be folded using Das folder in SCOUT.For goal repla
ement, let C 2 Pm+1 be of the form A:� G;A01; : : : ; A0k andlet it be repla
ed in [Tamaki and Sato 1986a℄ system to produ
e 
lause C 0 �A:� G0; A01; : : : ; A0k. Let the des
ent level of C be k. Then, the des
ent level of
lause C 0 is also k. By setting Æ = h0; : : : ; 0 we have �(G�) 	 �(G0�) � Æ =h0; 0; : : : ; 0i. We also require 
m+1lo (C) � Æ �P1�l�k �min(A0l) � 0 for this goalrepla
ement to be appli
able in SCOUT. Sin
e property J2 holds for 
lause Ctherefore 
m+1lo (C) � 0. Furthermore, Æ = 0 and �min(A) � 0 for any atom A.Therefore, 
m+1lo (C) � Æ �P1�l�k �min(A0l) � 0 and the goal repla
ement trans-formation is appli
able in SCOUT. This 
ompletes the proof.Thus, we have proved that SCOUT allows all unfold/fold transformation se-quen
es allowed by [Tamaki and Sato 1986a℄. To prove that it is stri
tly morepowerful, we need to give an example transformation sequen
e whi
h is allowed bySCOUT, but not by [Tamaki and Sato 1986a℄. Any example requiring disjun
-tive folding serves this purpose. Hen
e we 
on
lude that SCOUT is stri
tly morepowerful than [Tamaki and Sato 1986a℄.


