An Unfold/Fold Transformation Framework for
Definite Logic Programs

Abhik Roychoudhury

National University of Singapore, Singapore

K. Narayan Kumar

Chennai Mathematical Institute, India

C.R. Ramakrishnan

State University of New York at Stony Brook, USA
and

I.V. Ramakrishnan

State University of New York at Stony Brook, USA

Given a program P, an unfold/fold program transformation system derives a sequence of programs
P = Py, Py, ..., Pp, such that P;4, is derived from P; by application of either an unfolding or
a folding step. Unfolding corresponds to a resolution step, while the folding step corresponds to
replacing an occurrence of the r.h.s. of a clause with its head. In general the application of a
folding step can result in a semantically different program (i.e. P;+1 and P; may not have the same
semantics.) Thus, there is a need to consider restricted varieties of folding. These restrictions
represent sufficient conditions that ensure preservation of semantics under the application of a
folding step. Existing unfold/fold transformation systems for definite logic programs differ from
one another mainly in the restrictions imposed on folding. One of the restrictions is is usually a
condition on the syntax of the clauses that participate in the folding step.

In this paper we develop a parameterized framework for unfold/fold transformations that do
not restrict folding by the syntax of the participating clauses. The framework is parameterized
by a “measure space” and some associated measure functions. Any measure space and measure
function immediately yields a semantics preserving unfold/fold transformation system. The power
of the system is determined by the choice of the measure space and functions, and the correctness
of the transformations follows from the correctness of the framework. The unfold/fold transfor-
mation framework is extended with a goal replacement rule which allows semantically equivalent
conjunctions of atoms to be interchanged. We show that various existing transformation sys-
tems can be obtained by instantiating the parameters of our framework. More importantly, we
use our framework to construct a new unfold/fold transformation system. This transformation
system is provably more powerful (in terms of transformation sequences allowed) than existing
transformation systems.

Our transformation framework is useful for reasoning about programs. In particular, we have
used the transformation rules developed in this paper to inductively prove temporal properties
of transition systems (whose transition relation is encoded as a logic program). In this paper,
we show the issues in automating each application of the transformation rules (including goal
replacement). We also provide an illustrative example to demonstrate how the additional power
of our folding rule is used in constructing induction proofs.

Categories and Subject Descriptors: D.3.2 [Language Classifications]: Constraint and Logic
Languges; F.3.2 [Logics and Meanings of Programs]|: Semantics of Programming Languages;
1.2.2 [Automatic Programming]: Program transformation

General Terms: Logic Programming, Program Transformation

Additional Key Words and Phrases: Unfolding, Folding

Contact Author’s Address: Abhik Roychoudhury, School of Computing, National University of
Singapore, S16 Level 5, 3 Science Drive 2, Singapore 117543. E-mail: abhik@comp.nus.edu.sg

2 . Roychoudhury, Kumar, Ramakrishnan, Ramakrishnan

1. INTRODUCTION

Some of the most extensively studied transformation systems for definite logic pro-
grams are the so called unfold/fold transformation systems. At a high level unfold
and fold transformations can be viewed as follows. Definite logic programs consist
of definitions of the form A:— ¢ where A is an atom and ¢ is a positive boolean for-
mula over atoms. Unfolding replaces an occurrence of A in a program with ¢ while
folding replaces an occurrence of ¢ with A. Folding is called reversible if its effects
can be undone by an unfolding, and irreversible otherwise. An unfold/fold trans-
formation system for definite logic programs was first described in a seminal paper
by Tamaki and Sato [1984]. In the flurry of research activity that followed, a num-
ber of unfold/fold transformation systems were developed. Kanamori and Fujita
[1987] proposed a transformation system that was based on maintaining counters
to guide folding. Maher [Maher 1987; 1993] described a transformation system that
permits only reversible folding. The basic Tamaki-Sato system itself was extended
in several directions (e.g., to handle folding with multiple clauses [Gergatsoulis and
Katzouraki 1994], negation [Aravindan and Dung 1995; Seki 1991; 1993]) and ap-
plied to program optimization problems (e.g., [Bossi et al. 1990; Boulanger and
Bruynooghe 1993; Pettorossi et al. 1997]). (See Pettorossi and Proietti [1998] for
an excellent survey of research on this topic over the past decade).

Correctness of Unfold/Fold Transformations. Correctness proofs for unfold/fold
transformations consider transformation sequences of the form Py, Pi,..., where
Py is an initial program and P;;; is obtained from P; by applying an unfolding or
folding transformation. The proofs usually show that all programs in the trans-
formation sequence have the same least Herbrand model. It is easy to verify that
transforming P; to P;y; using unfolding or folding is partially correct, i.e., the least
model of P;;1 is a subset of that of P;. It is also easy to show, by induction on the
structure of the proof trees, that unfolding transformation is totally correct, i.e.,
it preserves the least model. However, as illustrated below, indiscriminate folding
may introduce circularity in definitions, thereby replacing finite proof paths with
infinite ones.

Consider the sequence of programs in Figure 1. In the figure, P; is derived by
unfolding the occurrence of q(X) in the first clause of Py. P, is derived from P; by
folding the literal q(X) in the body of the second clause of predicate p into p(X)

using the clause p(X) :- q(X) in Py. Alternatively, consider the transformation
. p(a). p(a).
P(X):-q(B). p(£(X)):i-q(X). p(£(X):-p(X).
qE:)({o)-— X a(a). aa).
4 AR q(£(X)):-q(X). q(£(X)):-q(X).
Program Py Program P; Program P,

Fig. 1. An example of correct unfold/fold transformation sequence

Unfold/fold Transformations for Definite Logic Programs : 3

sequence in figure 2. By folding q(X) in the second clause of p in P; (using the
second clause defining q in P;), we obtain program Pj. Now folding q(X) in the
second clause of q in P; (using second clause of p in P;), we get program P4, whose
least model differs from that of P;.

Transformation Systems with Irreversible Folding. If the folding transformation
is reversible, then since its effect can be undone by an unfolding, any partially
correct unfold/fold transformation sequence is also totally correct. However, for
reversibility, folding at step ¢ of the transformation can only use the clauses in P;.
Therefore reversibility is a restrictive condition that seriously limits the power of
unfold/fold systems by disallowing many correct folding transformations, such as
the one used to derive P, from P;. Hence almost all research on unfold/fold trans-
formations have focused on constructing systems that permit irreversible folding.
In such systems, folding at step 4 can use clauses that are not in F;. For example,
in the original and extended Tamaki-Sato systems [1984; 1986a] folding always uses
clauses in Py whereas in the Kanamori-Fujita system [1987] the clauses can come
from any P; (j < i). But ensuring total correctness of irreversible transformation
sequences is difficult. In order to ensure that folding is still totally correct, these
systems permit folding using only clauses with certain (syntactic) properties. For
instance, the original Tamaki-Sato system permits folding using a single clause only
(conjunctive folding) and this clause is required to be non-recursive. In [Gergat-
soulis and Katzouraki 1994] the above system was extended to allow folding with
multiple clauses (disjunctive folding) but all the clauses are required to be be non-
recursive. Kanamori and Fujita [1987] as well Tamaki and Sato in a later paper
[1986a] gave two different approaches for conjunctive folding using recursive clauses.
But the design of a transformation system that allows folding in the presence of
both disjunction and recursion has remained open so far. We will describe such a
system in this paper.

To generalize in this direction one needs to first understand the strengths and
limitations of the above systems. The key observation is that, although the book-
keeping needed to determine permissible foldings appear radically different in the
different systems, there is a striking similarity in how the transformations are proved
correct. Essentially, these systems associate some measure with different program
elements, namely, atoms and clauses to determine whether folding is permissible
in that step (e.g., “foldable” flag in [Tamaki and Sato 1984], descent levels/strata
numbers in [Tamaki and Sato 1986a], and counters in [Kanamori and Fujita 1987]).
Moreover, they ensure that each transformation step maintains an invariant re-
lating proofs in the derived program to the various measures (e.g., the notions of

. p(a). p(a). p(a).
28). P(£(X))i-q(X). p(£(X)):-q(£(X)). p(£(X)) :-q(£(X)).
Ny q(a). q(a). q(a).
AEED=a) i), q(E(R)) i—q(X). Q(£(X)) 1-p(£(X)) .
Program P, Program P; Program P, Program Pi

Fig. 2. An example of incorrect unfold/fold transformation sequence

4 . Roychoudhury, Kumar, Ramakrishnan, Ramakrishnan

rank-consistency in [Kanamori and Fujita 1987; Tamaki and Sato 1984], weight-
consistency in [Gergatsoulis and Katzouraki 1994] and p-completeness in [Tamaki
and Sato 1986a]). This raises another interesting question: can we exploit the sim-
ilarities in the correctness proofs of irreversible unfold/fold systems to develop an
abstract framework. Such a framework will specify the obligations that must be sat-
isfied to ensure total correctness and hence can simplify construction of unfold/fold
systems to the extent that one is relieved of the burden of giving correctness proofs.
We propose such a framework in this paper.

Summary of Results. In this paper, we develop a general transformation
framework for definite logic programs parameterized by certain abstract measures.
These abstract measures are obtained by suitably abstracting and extending the
measures used in [Gergatsoulis and Katzouraki 1994; Kanamori and Fujita 1987;
Tamaki and Sato 1984; 1986a] (see Section 2). We relax the invariants needed in the
proofs to permit approzimation of measure values. This is the key idea that enables
us to fold using multiple recursive clauses. We prove the correctness of transfor-
mations in the framework based only on the properties of the abstract measures.
We show that various existing unfold/fold transformation systems can be derived
from the framework by instantiating these abstract measures (see Section 4). We
also show how the framework can be extended to include the Goal Replacement
transformation (see Section 3).

The parameterized framework presented in this paper is useful for understanding
the strengths and limitations of existing transformation systems. It also enables the
construction of new unfold/fold systems. As evidence we obtain SCOUT (Strata
and COunter based Unfold/fold Transformations), a transformation system that
permits disjunctive folding using recursive clauses. The development of SCOUT
was based on two crucial observations made possible by the framework. First, when
instantiating the framework to obtain the Kanamori-Fujita system, it is easy to see
that the counters (the measure used in their system) may come from any linearly
ordered set; this permits us to incorporate stratification into the counters to obtain
a system that generalizes the extended Tamaki-Sato system [1986a] as well as the
Kanamori-Fujita system. Secondly, the framework enables us to maintain approx-
imate counters; we can hence generalize the combination of the Kanamori-Fujita
and the extended Tamaki-Sato systems to fold using multiple recursive clauses.

The motivation behind the development of our parameterized transformation
framework is its applicability in inductive reasoning. Unfold/fold transformations
have traditionally been used for program efficiency improvement. However, there
has been a parallel line of work in using unfold /fold transformations for constructing
proofs [Hsiang and Srivas 1987; Kanamori and Fujita 1986; Pettorossi and Proietti
1999; Roychoudhury and Ramakrishnan 2001]. Roughly speaking, these works
prove predicate equivalences of the form p = q by transforming p and q such that
their equivalence can be inferrred from syntax. Our generalized folding rule is useful
for constructing such proofs. In particular, when p , q are defined using predicates
with multiple clauses (some of which may be recursive) we may need a more general
folding rule to transform p, q. An interesting application where such a situation
crops up is in the verification of temporal properties (predicates describing temporal
properties are encoded using multiple recursive clauses). We show the application

Unfold/fold Transformations for Definite Logic Programs : 5
of our more general transformations with a detailed example in Section 5.

2. A PARAMETERIZED TRANSFORMATION FRAMEWORK

We now describe our parameterized unfold/fold transformation framework and il-
lustrate the abstractions by drawing analogies to the Kanamori-Fujita system.

We assume familiarity with the standard notions of terms, models, substitutions,
unification, most general unifier (mgu), definite clauses, SLD resolution, and proof
trees. For a background on these materials, the reader is referred to [Das 1992;
Lloyd 1993]. We will use the following symbols (possibly with primes and sub-
scripts): P to denote a definite logic program; M (P) its least Herbrand model; C
and D for clauses; A, B to denote atoms and literals and o for most general unifier

(mgu).

2.1 Unfolding and Folding

The unfolding and folding rules are defined as follows:

RULE 1. Unfolding Let C be a clause in P; and A an atom in the body of C.
Let Cq,...,C,, be the clauses in P; whose heads are unifiable with A with most
general unifier oy, ...,0,,. Let C; be the clause that is obtained by replacing Ao;
by the body of Cjo; in Co; (1 < j < m). Assign (P; — {C})U{C],...,C),} to
Py, |

RULE 2. Folding Let {C1,...,C,,} C P; where C; denotes the clause

and {D1,...,Dp} C P; (j < i) where D, is the clause B;:— By 1,. .., By n,. Further,
let:

(D) VI<I<m3Ioy V1<k<n A= Biro

(2) Byoy = Byos = -+ = Bppo,, = B

(3) Dn,...,Dy, are the only clauses in P; whose heads are unifiable with B

(4) V1 <1 < m, o substitutes the internal variables' of D; to distinct variables

which do not appear in {4, B, A},... Al }.
Then Pty := (P — {Ch,..., Cn})U{C'} where C' = A:— B, A},... Al 0

3 3

Dy, ..., D,, are the folder clauses, Cy,...,C,, are the folded clauses, and B is
the folder atom. A folding step is conjunctive whenever both the folder and folded
clauses are singleton sets and is disjunctive otherwise. Note that in the latter case
a set of folded clauses is simultaneously replaced by a single clause using a set of
folder clauses.

We say that Py, P, ..., P, is an unfold/fold transformation sequence if the pro-
gram P;14 is obtained from P; (i > 0) by application of an unfold or a fold rule.
Partial correctness of an unfold/fold transformation sequence (Theorem 1) now
follows easily.

!Variables appearing in the body of a clause, but not its head

6 . Roychoudhury, Kumar, Ramakrishnan, Ramakrishnan

THEOREM 1. Partial Correctness Let Py, Py, ..., P; be a program transforma-
tion sequence where M(P;) = M (Fy) for all 0 < j <. If Piy1 is obtained from P;
by applying either unfolding or folding, then M (Pjy1) C M(F;).

PRroOOF. This is established by showing that a proof T' of any ground atom A €
M (Pit1), has a corresponding proof 7" of A in P;. This can be proved by induction
on the structure of T'. Let C = (A:— Ay,..., A,) be the clause applied at the root
of T. There are three cases:

Case 1: C € P;.

Then, the result follows by induction hypothesis.
Case 2: C is obtained by unfolding.

Let C € P;11 be obtained by unfolding clause C' € P; using clause D € P;.
Without loss of generality, there exist ground instances of C' and D, in P;, of the
form A:— B, Agy1,...,A, and B:— Ay,..., Ax. The proof T' of A can be then
constructed by applying clause C' at the root, and then clause D. The existence
of ground proofs of Ay,..., A, in P; follows by induction hypothesis.

Case 3: C is obtained by folding.

Let C € P11 be obtained by folding C' € P; using D € P;(j < i) as folder.
Let A; be the folder atom in clause C, i.e. the atom introduced by folding.
Since M (P;) = M(F;) and A; € M(P;) (by induction hypothesis) therefore 4; €
M(P;). Thus, A; has a ground proof Ty in P;. By condition 3 of the folding
transformation, the clause applied at the root of 77 must be one of the folder
clauses. Let this folder clause be D and let the corresponding folded clause be
C'" € P;. Then, without loss of generality, C' and D have ground instances of
the form A:— Ay 4,..., Arg,As, .o Ay and Aji— Ay, ..., Ay Tespectively. Since

Al,l; . ;Al,l € M(Pj) therefore Al,l; ey Al,l € M(P1) ThllS, Al,l; ceey Al,l have
ground proofs in P;. Also, As,..., A, have ground proofs in P; by induction hy-
pothesis. Thus, we can construct a ground proof of A in P; by applying clause C’

at the root. This completes the proof. [

2.2 Measures, Measure-Consistent Proofs and Total Correctness

Total correctness of an unfold/fold transformation sequence is established by in-
duction over some well-founded order to construct a proof in P;y; for any atom
A in M(P;). To see the subtleties involved in proving total correctness, consider
transforming P; to P;1 using a conjunctive folding step. To construct a proof of A
(the head of the folded clause) in P;11, we need a proof of B (the folder atom) in
P; ;1. But the existence of such a proof can be established (by induction hypothesis)
only if B is less than A in the well-founded order on which the inductive argument
is presented. Note that if the folder clause is picked from P;, j < i, we cannot use
simple well-founded orders like size of proof trees in P;, as the proof of B in P; can
be larger in size than the proof of A in P;.

It is worth noting that we do not attempt to translate every proof of A in P; to a
proof of A in P;;. Instead, following [Kanamori and Fujita 1987; Tamaki and Sato
1984; 1986a] we consider a “special proof” called strongly measure consistent proof
(see Definition 6) of A in P; and construct a proof of A in P;y;. The induction
proof for establishing total correctness is completed by showing that the proof of
A in Py, thus constructed is itself strongly measure consistent.

Unfold/fold Transformations for Definite Logic Programs : 7

Recall that irreversible folding steps need to be constrained in order to preserve
the semantics. In order to enforce these constraints, we maintain some book-keeping
information as we perform the transformations, formalized using the following no-
tions of Measure structure, Atom measure, and Clause measure.

DEFINITION 1. Measure Structure A Measure Structure is a 4-tuple u =
(M, ®, <, W) where (M, ®) is a commutative group with 0 € M as its identity
element, < is a linear order on M, @ is monotone w.r.t. <, and W is a subset of
{z € M | 0=z}, over which < is well-founded.

We will refer to M, the first component of the measure structure, as the measure
space. We let < denote < or =. Moreover, we use & to denote the inverse operation
of the group (M, ®). We also use & as a binary operator, a © b meaning a @ (Sb)
(where (6b) is the inverse of b). The Kanamori-Fujita system [1987] keeps track
of integer counters. Thus the measure structure is (Z, +, <,N), where Z and N are
the set of integers and natural numbers respectively, + denotes integer addition,
and < is the arithmetic comparison operator.

DEFINITION 2. Atom Measure An atom measure o of a program P w.r.t. a
measure structure u is a partial function from the Herbrand base of P to W such
that it is total on the least Herbrand model of P. For our purposes, it suffices to
use the same atom measure for each program in a transformation sequence.

In the Kanamori-Fujita system, the atom measure of any P; in the transformation
sequence is the number of nodes in the shortest proof tree of A in the initial program
Py. The proof of total correctness for folding will induct on the atom measure,
relating the atom measure of A (the head of the folded clauses) with the atom
measure of B (the folder atom).

DEFINITION 3. Clause Measure A clause measure (Yo, vni) of a program P
w.r.t. a measure structure p is a pair of total functions from clauses of P to M
such that YC € P 7,,(C) 2 yri(C).

In the Kanamori-Fujita system, 7, and y; are the same and map each clause to
its corresponding counter value. However, as we will see later, to allow disjunctive
folding we will need the two distinct functions ;, and 7p,;. Henceforth, we denote
the clause measure of a program P; by (7}0, 7,2”) We will now develop the idea of
“special proofs” mentioned earlier. For that purpose, we need the definition:

DEFINITION 4. Ground Proof of an Atom Let T be a tree, each of whose
nodes is labeled with a ground atom. Then T is a ground proof in program P, if
every node A in T satisfies the condition : A:— Aq,..., A, is a ground instance of
a clause in P, where Ay, ..., A, (n > 0) are the children of A in T.

Consider transforming P; to P;y1 by a folding step (see figure below). C and D are
the folded and folder clauses respectively and j < i.

D: Q= qt, -5 9k C: P:— Qi -+, 9k, Qx+1, --+; 9n C’ P 94, 9k+1,--450n

Program P; Program P; Program P;4q

8 . Roychoudhury, Kumar, Ramakrishnan, Ramakrishnan

In order to show that p € M(P;) = p € M (P;41) by induction on <, we would like
to show that a(q) < a(p). The atoms p and q are related by what is shared between
the bodies of the clauses C' and D. Hence we attempt to relate their measures via
the measures of bodies of C and D. Suppose D satisfies

a(@ = Y ala) (i)

1<i<k

then we can relate a(q) to the sum of the measures of the body atoms of the folded
clause C (since k < n). Further if C satisfies

alp) = > ala) (ii)

1<i<n

then we can establish that a(q) < a(p). If either (i) or (ii) is a strict relationship
then we can establish that a(q) < a(p). Relations (i) and (ii) form the basis for
the notions of weak and strong measure consistency.

DEFINITION 5. Weakly Measure Consistent Proof A ground proof T in
program. P; is weakly measure consistent w.r.t. atom measure « and clause measure
(Y., vh:) if every ground instance A:— Ay, ..., An of a clause C € P; used in T

satisfies a(A) < 4i.(C) & > 1<i<n @(Ar).

DEFINITION 6. Strongly Measure Consistent Proof A ground proof T in
program P; is strongly measure consistent w.r.t. atom measure a and clause mea-
sure () ,vi,) if every ground instance A:— Au, ..., A,, of a clause C € P; used in T
satisfies V1 <1 <n a(4;) < a(A) and a(A) =~ (C) &>, <1, a(Ar)

DEFINITION 7. Measure Consistent Proof A ground proof T in program P; is
said to be measure consistent w.r.t. atom measure o and clause measure (v}, V),
if it is strongly and weakly measure consistent w.r.t. a and (},,7},;)-

We point out that our abstract notion of measure consistency relaxes the concrete
notion of rank consistency of [Kanamori and Fujita 1987]. While rank consistency
of [Kanamori and Fujita 1987] imposes a strict equality constraint on a(A), mea-
sure consistency only bounds it from above and below. As we will show later, this
facilitates maintenance of approximate information. This is the central idea that
permits us to do disjunctive folding using recursive clauses. For proving total
correctness, we need :

DEFINITION 8. Measure consistent Program A program P is measure con-
sistent w.r.t. atom measure o and clause measure (Yo, vni), if for all A € M(P),
we have

(1) All ground proofs of A in P are weakly measure consistent w.r.t. « and (Vio, Yni)
(2) A has a ground proof in P which is strongly measure consistent w.r.t. « and
(Vios Vhi)

We are now ready to define the abstract conditions on folding and constraints on
how the clause measures are to be updated after an unfold/fold step. For each

clause C' obtained by applying an unfold/fold transformation on program P;, we
derive a lower bound on 7;t'(C) and an upper bound on v,;"' (C), denoted by

lo

Unfold/fold Transformations for Definite Logic Programs : 9

GLB™(C) and LUB™"'(C) respectively. We will see later that the conditions on
when the rules become applicable, as well as these bounds are designed to ensure
the correctness of the folding step.

We assume that for any atom A (not necessarily ground), au,i»(A) denotes a lower
bound on the measure of any provable ground instantiation of A i.e. V8 apmin(A4) <
a(Af). We use amin in the folding condition of rule 4 below.

RULE 3. Measure Preserving Unfolding Let P;;; be obtained from P; by
an unfolding transformation as described in Rule 1. We say that the unfolding
step is measure preserving if the associated clause measures satisfy the following
inequalities: V1 < j<m

;)) def)
Ng H(CF) 2 71,(C) B, (Cy) (= GLB™Y(C))) (1)
i i i def i
M (CF) = 74:(C) ®7,(C) (= LUB™HCY)) (2)
and the clause measure of all other clauses in P;y; are inherited from F;. O

RULE 4. Measure Preserving Folding Let P;;; be obtained from P; by a
folding transformation as described in Rule 2. We say that this folding step is
measure preserving, if the associated clause measures satisfy the following: 2

V1<I<m y,(D) 2 9,(C) & > amin(A})

1<k<n
and moreover,
2 H(C) 2 min (,(C) ©7,(D)) (F GLBTHCY)) (3)
i (C) = max (04,(C) €77, (D) (F LUBH(C)) (4)
and the clause measure of all other clauses in P;y; are inherited from F;. O

It should be noted that the above rules do not prescribe unique values for upper and
lower clause measures for the clauses generated by the transformations. Instead,
they only specify bounds of these values; the values themselves are chosen only
when instantiating the framework to a concrete system.

Observe from the definition of atom measures that we can always assign 0 to
Qmin- However, by setting a more accurate estimate of au,i,, we can allow more
folding steps. As an example, consider any conjunctive folding step where the
folded clause C' € P; has more body atoms than the folder clause D € P;, and
Y (C) = 7,11(D) Such a folding step will not be allowed if VA ap,in(A) = 0.

The Need for Approzimate Clause Measures. In the Kanamori-Fujita system,
a counter (corresponding to our clause measure) is associated with every clause.
Roughly, the counter associated with a clause C € P; where C = A:— Aq,..., A,
indicates the number of interior nodes in the smallest proof tree in Py that derives
Ay,..., A, from A. Thus, it is the amount saved (in terms of proof tree size,
compared to the smallest proof in Fy) whenever C is used in a proof in P;. The
folding rule is applicable provided the savings accrued in the folded clause is more
than that in the folder clause.

10 . Roychoudhury, Kumar, Ramakrishnan, Ramakrishnan

To see why a single counter is inadequate for disjunctive folding, consider the
following example:

Ci: p -1, t. (1)

Cy: p - s, t. (£2) C':p:-q, t. (7)

Cs: q :- r. (z3) C3: q :- r. (z3)

Cs: q :— s. (x4) Cy: q 1= s. (z4)
Program P; Program P; 4

P;;q is obtained from P; by folding {C3,C4} into {Cy,Cs2}. Now, the savings
due to C' in a proof of P;;; depends on whether C3 or Cy is used to resolve q
in that proof. Since this information is unknown at transformation time, we can
only keep approximate information about savings. In our framework we choose to
approximate the savings by the closed interval [;,, Vpi]-

We now have the necessary machinery for establishing total correctness of a
sequence of unfold/fold transformations.

LEMMA 1. Preserving Weak Measure Consistency Consider a transforma-
tion sequence of measure consistent programs Py, ..., P; such that M(Py) = M (P;)
for all 0 < j <i. Let P;y1 be obtained from P; by applying measure-preserving un-
folding or measure-preserving folding. Then, all ground proofs of P11 are weakly
measure consistent.

PrROOF. We will use M (P;11) C M(F;), a result which was independently proved
in theorem 1. The proof proceeds by induction on size of ground proofs in P;; ;. Let
T be a ground proof of some ground atom A in P;yq, and let A:— Ay,..., A, (where
n > 0) be the ground instance of a clause C € P;;; that is used at the root of the
proof T'. Then the proofs of Ay, ..., A, in T are weakly measure consistent by induc-
tion hypothesis. Hence, it suffices to show that, a(A) < viT'(C) & 3, ¢,<,, @(A).

Case 1: C was inherited from P;

Since M (P;y1) € M(P;), hence A;,..., A, are provable in P;. Therefore, the
ground clause A:— Aq,..., A, is used at the root of a ground proof in P;. Since P;
is measure consistent, the result follows.

Case 2: C was obtained by unfolding

Let Aq,...,Ag be the instances of the body atoms of C' which were introduced
through unfolding. By the definition of the unfolding transformation, then there
must be clauses C' and C" in P; with ground instances A:— B, Agy1, ..., A, and
B:— Ay,..., Ay respectively with v, 7' (C) = 7} ,(C") @ ~i,(C").

Again, Ay,..., Ak, Ags1,..., Ay are provable in P; (as M(Pi11) C M(F)).
Hence, the above mentioned ground instances of C' and C" are ground clauses
used at the root of some proof in P;. As P; is a measure consistent program, we
have :

a(4) < (CheaB)e Y ald)

k4+1<i<n

a(B) 27 (C") & Y a(A)

1<I<k

The result now follows by combining these two inequations.

Unfold/fold Transformations for Definite Logic Programs : 11

Case 3: C was obtained by folding

Let Ay be the instance of the folder atom (i.e. the atom corresponding to the head of
the folder clauses) in C, and let P;(j < i) be the program from which folder clauses
were picked. We have M (P;) = M(P;) = M(Fy), and hence M (P;41) C M(FP;).
Thus, A; € M(P;). Since P; is a measure consistent program, A; must have a
strongly measure consistent proof 7% in P;. Let the clause used at the root of
this proof be D' and let the ground instance of D' used at the root of T be
A= Aiq, ... A1x. Then, by the strong measure consistency of T1’41

a(Ar) = 7, (D)@ Y alAu)

1<i<k

But, D’ must be a folder clause by definition of folding. Hence, there must be a
clause C' in P; with a ground instance A:— Ay 1,..., A1k, As,..., Ay (this is the
folded clause corresponding to D'). Now, A,,..., A, are provable in P; (since
M(Pit1) € M(P;)), and also Aj1,..., A1, are provable in P; (since M(P;) =
M(P;)). Therefore, the above mentioned ground instance of C' is used at the
root of a weakly measure consistent proof of A in P; (since program P; is measure

consistent). Hence

a(A) 27,0 @ Y alAi)e Y ald)

1<i<k 2<1<n

< (O e (D) @ald)e D ald)

2<I<n

< a(C) e, (D) e Y a(d)
1<i<n
Since D' and C' are folder and folded clauses and C' is the clause obtained by
folding therefore vt (C) = ~i,(C") €~/ (D'), and hence

a(d) 2y @)@ Y a4

1<i<n

Thus, we have established that any arbitrary ground proof T in P;;q is weakly
measure consistent. [

We now formally state and prove the total correctness of any unfold/fold trans-
formation sequence.

THEOREM 2. Total Correctness Let Py, Py,...,P; be a transformation se-
quence of measure consistent programs such that M(Py) = M(P;) for all 0 <
j < i. Let Pjy1 be obtained from P; by applying measure-preserving unfolding or
measure-preserving folding. Then, (i) M (Pjy1) = M(P;) and (ii) P41 is a measure-
consistent program.

ProOF. By theorem 1, we have M(P;11) C M(P;), and by lemma 1 we know
that all ground proofs of P;y; are weakly measure consistent. Hence it is sufficient
to prove that (1) M(F;) C M(Pj;1) and (2) VA € M(P;11), A has a strongly
measure consistent proof in P;;.

Consider any ground atom A € M(P;). Since P; is measure consistent, A has a
strongly measure consistent proof 7' in P;. We now construct a strongly measure

12 . Roychoudhury, Kumar, Ramakrishnan, Ramakrishnan

consistent proof 7" of A in P;y;. Construction of T" proceeds by induction on atom
measures. Let C be a clause used at the root of T'. Let A:— Aq,..., A, (wheren > 0)
be the ground instantiation of C at the root of T'. Since T is strongly measure
consistent a(4;) < a(A4), for all 1 < i < n. Hence, we have strongly measure
consistent proofs T7,...,T) of Ay,..., A, in Piy1. We construct T' by considering
the following cases:

Case 1: C is inherited from P; into P;14

T' is constructed with A:— Ay, ..., A, at its root and T}, ..., T, as its children. This
proof T' is strongly measure consistent.

Case 2: C is unfolded.

Let A; be the atom in the body of C' which is unfolded. Let the clause used to
resolve A; in T' be C; and the ground instance of C; used be Ay:— Ay 1,..., A1,
By definition of unfolding, A:— Ai1,..., 41,,, A4, ..., A, is a ground instance of a
clause C} in Py with 7.7 (C]) < 7}, (C) @ 7}, (C1). Also, a(4 ;) < a(A;) and
a(Ar) < a(A), for all 1 < j < 1;. Thus, we have strongly measure consistent proofs
TV, 17, of A1 1,...; A1y, in Piyq. The proof 7" is now constructed by applying
A= A,y Avgy s Asy oy Ay at the Toot, and putting T4 4, ...7T]’7l17T2’7 ..., T} as the
children. Since T is strongly measure consistent,

a(4) = 7,(0) @ Z;gjgn O‘(AJ) and a(41) = 7, (Ch) @ 2133'311 a(Ay;)
= (a(A) @ Q(Al)) = %10(C) @76 (C1) 8 Xoi<jcn (AG) © Xoi<jcy, (A)
= a(4) =i e Do<jcn W(A)) B 21 <j<p, @A)

Hence, T" is a strongly measure consistent proof in P;;1.

Case 3: C is folded.

Let C (potentially with other clauses) be folded, using folder clauses from P;,
j <1, to clause C" in P;y;. Assume that Aq,..., Ay are the instances of the folded
atoms in C. Then, C' has a ground instance of the form A:— B, Ag41, ..., A, where
B:— A, ..., Ay is a ground instance of a folder clause D € P;.* Since M(P;) =
M(P;) and Ay, ..., Ay are provable in P; they must also be provable in P;. Moreover,
since D € Pj, B € M(P;) = M(P;). Since P; is measure consistent,

a(B) 271,(D)® Y a(A).
1<I<k
Now, by the strong measure consistency of T,
N(C) e Y alA)e Y alA)
1<I<k k+1<i<n

1,(0) & (aB) (D) & Y alA) (5)

E+1<I<n

k+1<i<n

a(A)

Y

Y

> «(B) (by condition of measure preserving folding)

3Recall that in the folding transformation, all clauses in P; whose head is unifiable with B are
folder clauses.

Unfold/fold Transformations for Definite Logic Programs : 13

Now, by induction hypothesis, B has a strongly measure consistent proof T in
P;y1. We construct T', the proof of A in Py, with A:i— B, Agyq,..., A, at its
root, and Ty, T}, ..., T}, as its children. To show that 7" is strongly measure

consistent, note that ' (C") < (7}, (C) © 7,3”(D)) according to the definition of
measure preserving folding, as C' and D are folded and folder clauses. Combining

this with inequation (5) we get,

a(A) =y (CY @ a(B) @ Dkri<i<n (A1)

lo

This completes the proof. O

Assigning tighter clause measures. The measure preserving unfolding and fold-
ing transformations of Rules 3, 4 provide constraints on the clause measures in
P;11. Note that by applying measure preserving unfolding/folding to program P;
we can generate a clause C' which is already in P;, but with new clause measures.
Instead of assigning the clause measures as prescribed by Rules 3 and 4 (computed
via addition/subtraction), we can assign tighter measures as follows. Formally,
let unfold(C') be the set of clauses generated by measure preserving unfolding of
C' € P; and let there exist a clause C s.t. C € unfold(C')AC € P,—{C'}. Clearly,
then C € P;. However, the question is how do we assign (v, (C), v (C)),
the clause measures of C' in P;;;. Similarly, by measure preserving folding of
{C4,...,C,} C P;, we can generate a clause C € P;—{C1,...,C,,}. Again, we need
to assign (7, (C), 7t (C)). Let the clause measures of C computed by the un-
fold/fold transformation be (v7,,7},). We can then set Y5 (C) = min(v],, 7, (C))
and v, (C) = min(v},;,7};(C)) without affecting the measure consistency of P 1.
For the purposes of measure consistency, note that we could have chosen 7,’747'1 (C) =
max(v};,7E,;(C)). Taking the minimum, which also preserves measure consistency,
gives us a tighter bound. This also ensures that when we restrict ourselves to
conjunctive folding, the lower and higher measures of any clause in program P;
(appearing in some transformation sequence of measure consistent programs) are
identical.

3. GOAL REPLACEMENT

Augmenting an unfold/fold transformation system with the goal replacement rule
makes it more powerful. In this section we incorporate goal replacement to our
parameterized framework. Goal replacement allows semantically equivalent con-
junctions of atoms to be freely interchanged. We formally define it below. For a
conjunction of atoms Ay, ..., A,, we use the notation vars(4s, ..., A,) to denote the
set of variables in A4, ..., A,.

RULE 5. Goal Replacement Let C be a clause A:— Ay,..., Ay, G in P;, and
G' be an atom such that vars(G) = vars(G') C vars(A, Ay, ..., Ag). Suppose for
all ground instantiation 6 of G,G’ we have P; - G8 < P; + G'6. Then Py, :=

(P, —{C}H U{C'} where C' = A:— A4,..., A, G O

3 3

Note that although we replace a single atom G by another atom G' (where G and
G' do not contain any internal variables), we can replace conjunctions of atoms
using a sequence of folding, goal replacement and unfolding transformations.

The above transformation is partially correct. A formal proof of its partial cor-

rectness appears below.

14 . Roychoudhury, Kumar, Ramakrishnan, Ramakrishnan

THEOREM 3. Let program P;y1 be obtained from program P; by applying goal
replacement as described in rule 5. Then, M (P, 1) C M(P;).

Proor. We take any ground proof T' of some B € M(P;11) and construct a
ground proof T" of B in P;, thereby proving M (P;41) € M (F;). This proof proceeds
by induction on size of ground proofs in P;y;. The base case is obvious because
unit clauses are not manipulated by goal replacement. For the induction step, if
the clause used at the root of T is not the replacing clause C', then the proof
follows from induction hypothesis. Let the clause used at the root of 7" be a ground
instance of C" and let the ground instance used be Af:— A:0,... Axf,G'6. Then,
A6,...,A0, G'0 have ground proofs Ty, ..., T}, T, in P; by induction hypothesis.
Then, by rule 5, there exists a ground proof T(,, of G6 in P;. Now T', the ground
proof of A8 in P;, is constructed with the ground clause A6:— A10, ..., Axf, GO at
the root and T7,. .., Ty, T, as its children. [

3 3

However, if goal replacement is applied to a measure consistent program P; it is
totally correct. But then we also need to ensure that the resulting program P, is
measure consistent. If this is ensured, then even if goal replacement is interleaved
with irreversible folding total correctness will be preserved. Formally,

RULE 6. Measure Preserving Goal Replacement Let program P;,; is ob-
tained from program P; by applying the goal replacement transformation as de-
scribed in Rule 5. We say that such a goal replacement is measure preserving if
there exists d,d" € M (where measure structure is u = (M, &, <, W)) such that for
all ground instantiation 8 of G, G':

(i) 6 < a(G) & a(G'f) <&

(ii) %,(C)®d® Z1Sp§k min(Ap) = 0.

and further the associated clause measures satisfy,

%O 2 (C) @8 ©)
T (C) = (C) @ 8)
The clause measures of the other clauses of P,y are inherited from P;. |

We now present a formal proof of total correctness and preservation of measure
consistency of the above rule.

THEOREM 4. Let P11 be derived from P; by applying measure preserving goal
replacement as described in rule 6. If P; is measure consistent, then M (P;) =
M(Pit1) and Piyq is also measure consistent.

PROOF. Since measure preserving goal replacement is a special case of the goal
replacement transformation in rule 5, we have M (P;;1) C M(P;) by partial cor-
rectness of rule 5. Therefore it is sufficient to prove that:

(1) All ground proofs of P;;; are weakly measure consistent
(2) M(P;) € M(Piy1)
(3) VB € M(P;41) there exists a strongly measure consistent proof of B in P;;1.

Unfold/fold Transformations for Definite Logic Programs : 15

We prove the obligation (1) separately. Proof obligations (2) and (3) are proved
by showing that: VB € M (P;) there exists a strongly measure consistent proof of
B in P;y;. This is sufficient since we know M (P;11) C M (F;).

First, we prove that all ground proofs of P;;; are weakly measure consistent.
The proof proceeds by induction on the size of ground proofs in P;y;. Let T be a
ground proof of a ground atom B in P;; 1. If the clause used at the root of 7" is not
the new clause C', then the proof follows by induction hypothesis and the measure
consistency of P;. If the clause used at the root of T' is C’, then let the ground
instance of C’ used at the root of T be Af:— A.0,...,A;0,G'6. By induction
hypothesis, the proofs of A16,..., Axf,G'6 in T are weakly measure consistent. It
suffices to show that

a(A) 2yHC) e Y a(A46) @ a(G'6)
1<I<k

Now, G'8 € M(P;11) = G'8 € M(PF;). Hence by rule 5 we have GA € M (F;). Also,
V1<I<k AfeM(P) (as M(P;y1 C M(F;)). Then, Af:— Aq0,... A0,G6 is a
ground instantiation of C' which appears at the root of some ground proof in P;.
Since P; is measure consistent we have

a(4) 273,(C) & Xy a(Aif) & a(GO)
= 73i(C) & 2o <i<p (Ai) & ((G'0) 6")
< (C) @ Yi<i<k a(4i0) & a(G'0)

Now, we prove that VB € M (P;) there is a strongly measure consistent proof
of B in P;;1. Since P; is measure consistent, it suffices to translate a strongly
measure consistent proof 7' of B in P; to a strongly measure consistent proof 7"
of B in Py for all B € M(P;). We do this translation by induction on the atom
measures. If the clause used at the root of T is not C' (where C' is the clause in
P; that is replaced) then the proof follows from the definition of strong measure
consistency and induction hypothesis. Let C' be the clause used at the root of T
(a strongly measure consistent proof of A in P;) and let Af:— A,6,..., Axf,GO
be the ground instance of C' used. Then, by strong measure consistency of T,
a(A;0) < a(Af) for all 1 <1 < k. By induction hypothesis, we then have strongly
measure consistent ground proofs T7,...,T} of Ai6,...,Azf in Piiq. Also, by
strong measure consistency of T

a(4) = 7,(CO)® Y a(Ah) ® a(GH)
1<I<k
1,0 @ Y alAf) @ (a(G') @) (8)
1<I<k
1<I<k
= «a(G'6) (By condition (ii) of rule 6)
Then, by induction hypothesis, G'6 has a proof T¢,., in Pi+1. The ground proof T"
is constructed with Af:— A6, ..., Axf, G'6 at the root (this is a ground instance of

C', the new clause in Piy1) and Ty, ..., T}, Tf., as its children. To show that this
proof 7" is measure consistent, note that /' (C') < ~/,(C) @ 6. Combining this

16 . Roychoudhury, Kumar, Ramakrishnan, Ramakrishnan

with inequation (8), we get

a(4) =i Y e Y a(4h) @ al@'6)

lo
1<I<k
This completes the proof. O

Observe that, similar to the goal replacement transformation in [Kanamori and
Fujita 1987; Tamaki and Sato 1984; 1986a] the conditions under which rule 6 may
be applied are not testable at transformation time. For testability we need to (1)
determine whether G and G’ are semantically equivalent, and (2) estimate § and
0" such that the clause measures of P, can be computed. We have developed a
testable goal replacement rule called Syntactic Goal Replacement. A description of
this rule will appear in Section 5.

4. CONSTRUCTING CONCRETE UNFOLD/FOLD SYSTEMS BY INSTANTIATING
THE FRAMEWORK

To construct a concrete unfold/fold transformation system from our abstract frame-
work, the following parameters need to be instantiated :

(1) a measure structure y;
(2) atom measure a and Qpin;

(3) clause measure (7, vn;) for clauses in the initial program Py such that P, is
measure consistent; and

(4) functions to compute the clause measure of new clauses obtained by the trans-
formations such that they satisfy the constraints imposed by equations (1)
through (4) (refer Rules 3 and 4).

There are no further proof obligations. Once the above four elements are defined,
total correctness of the transformation system is guaranteed by the framework. We
now instantiate our farmework to obtain some existing transformation systems.
Note that the instantiations given below consider all three rules (unfolding, folding
and goal replacement) of these existing transformation systems.

4.1 Existing Unfold/fold Systems

We now show how our framework can be instantiated to obtain the Kanamori-Fujita
and the extended Tamaki-Sato systems. To the best of our knowledge, these are
the only two existing systems that allow folding using recursive clauses. However
in both of these systems folding is conjunctive.

The Kanamori-Fujita System [1987]. This system can be obtained as an instance
of our framework as follows:

(1) u = (Z,+,<,N). This measure structure corresponds to the use of integer
counters in [Kanamori and Fujita 1987].

(2) a(A) = number of nodes in the smallest proof of A in Py, and for any atom A,
min(A) = 1. Thus, a(A) denotes the rank of A described in [Kanamori and
Fujita 1987].

Unfold/fold Transformations for Definite Logic Programs : 17

(3) VC € Py v (C) = ~2.(C) = 1. Since all clause measures are 1, it follows
immediately from the definition of atom measures that the smallest proofs of
any ground goal GG are strongly measure consistent, and all proofs in P, are
weakly measure consistent. Hence P, is measure consistent.

(4) YVC € P41 — P; we have 4.7'(C) = GLB'T'(C) and ;' (C) = LUB™'(0).
Under the given measure structure, it is immediate that the above definition is

identical to the computation on counters in [Kanamori and Fujita 1987].

Furthermore, the measure preserving folding rule (Rule 4) is applied only when
both folder and folded clauses are singleton sets. It is easy to see a one-to-one
correspondence between the conditions on unfold/fold transformations of the above
instantiation and the Kanamori-Fujita system.

The Extended Tamaki-Sato System [1986a]. In this system, all the predicate
symbols are partitioned into n strata. In the initial program a predicate from
stratum j is defined using only predicates from strata < j. We can obtain this
system as an instance of our framework as follows:

(1) p=(Z",®,<,N") where @ denotes coordinate-wise integer addition of n-tuples
of integers, and < denotes the lexicographic < order over n-tuples of integers.
The n-tuples in the measure structure will correspond to the n strata of the
original program.

(2) a(A) = min({w(T) | T is a proof of A in Py}), where w(T') is the weight of
the proof T defined as an n-tuple (w, ..., w,) such that V1 < j <mn, w; is the
number of nodes of predicates from stratum j in T. «(A) corresponds to the
notion of weight-tuple measure of A defined in [Tamaki and Sato 1986a].

For any atom A, a,in(A) =0 =(0,...,0).

(3) VC € Py, v)(C) = ~},(C) = (w1,...,w,), where C = A:— A;,..., A, and
for 1 < j < n, w; = 1 if the predicate symbol of A is from stratum j, and 0
otherwise.

For any A € M(P,), the proof T that defines a(A4) (item 2 above) is strongly
measure consistent. Weak measure consistency of ground proofs in P is estab-
lished by induction on their size.

(4) YC € Piyy — Pi, 1 (C) = LUB™(C) and ~,;"' (C) = approz(GLB'(C)).
The function approx reduces a measure as follows. Let u = (u1,...,u,) and
kmin be the smallest index & such that uy > 0. Then approz(u) = (uf,...,u,)

n
where u}gmn =1 and is 0 elsewhere.

As in the Kanamori-Fujita system, here also the measure preserving folding rule
is applied only when both folder and folded clauses are singleton sets.

To establish the correspondence between the above instantiation and the ex-
tended Tamaki-Sato system, recall that the latter associates a descent level with
each clause of every program in a transformation sequence. If a clause C in P; has
the descent level k, then with the above instantiation, v/, (C) = (I1,...,l,) where
lr, = 1 and 0 elsewhere; i.e. the only non-zero entry in its lower clause measure
appears in the k" position. Thus our lower clause measure precisely captures the
information that is kept track of by the extended Tamaki-Sato system.

18 . Roychoudhury, Kumar, Ramakrishnan, Ramakrishnan

Assigning Measure Structures and Clause Measures. Observe that our framework
does not prescribe exact values to the clause measures. Instead it bounds the
clause measures from above and below. So an important aspect of our instantiation
involves assigning values to the clause measures that satisfy these constraints. From
an abstract point of view, the Kanamori-Fujita system uses a relatively coarse
measure space (Z) but within this space it maintains accurate clause measures
(integer counters). Our instantiation reflects this by not relaxing the bounds while
updating the clause measures (see step 4 of the instantiation). On the other hand,
the extended Tamaki-Sato system uses a more fine-grained measure space (Z").
But this measure space is not completely utilized since clause measures are the
descent level of clauses, which can be simply represented by an integer. Therefore
in step 4 of our instantiation we accordingly loosened the bound.

As far as the Gergatsoulis-Katzouraki [1994] and original Tamaki-Sato systems
[1984] are concerned, first note that they do not permit folding using recursive
clauses. The main difference between these two systems is that [1994] allows dis-
junctive folding (folding where multiple clauses are replaced by one clause) whereas
[1984] does not. However the book-keeping performed (clause measures) in these
two systems is not different. These systems use coarse measure spaces. More-
over they do not even fully utilize these measure spaces as is evident from the
lesser amount of book keeping performed by them. By choosing a coarse measure
structure and relaxing the bounds along lines similar to the extended Tamaki-Sato
system we can instantiate these two systems as well. Both these systems partition
the program predicates into two strata, the so-called “old” and “new” predicates.
Therefore, we set the measure structure to be p = (72, @y, <2, N?) where @, de-
notes coordinate-wise integer addition of 2-tuples of integers, and < denotes the
lexicographic < order over 2-tuples of integers. Since these systems partition the
predicate symbols into “old” and “new” predicates, the choice of a measure struc-
ture with two strata is obvious.

4.2 SCOUT— A New Unfold/fold System

We now construct SCOUT, an unfold/fold transformation system for definite logic
programs that allows disjunctive folding using recursive clauses. It incorporates
the notion of strata from the extended Tamaki-Sato system into the counters of the
Kanamori-Fujita system. Thus with every clause it maintains a pair of stratified
counters as the clause measure. The instantiation is as follows. We assume that
the predicate symbols appearing in the initial program F, are partitioned into n
strata, as in the extended Tamaki-Sato system.

(1) uw=(Z",¢,<,N*) where & denotes coordinate-wise integer addition of n-tuples
of integers, and < denotes the lexicographic < order over n-tuples of integers.

(2) a(A) is defined exactly as in the instantiation of the extended Tamaki-Sato
system above. For any atom A we set amin(A) = (w1,...,w,) where w; =1 if
A is from stratum j and 0 elsewhere.

(3) Clause measure of clauses in Py is defined exactly as in the instantiation of the
extended Tamaki-Sato system above. Therefore the proofs of measure consis-
tency are also identical.

4) VC € Pipy — P, %/ (C) = GLB™'(C) and ~,T'(C) = LUB"™'(C).
lo hi

Unfold/fold Transformations for Definite Logic Programs : 19

SCOUT provides a solution to two important (and orthogonal) problems that
have thus far remained open. First, it allows folding using clauses that have dis-
junctions as well as recursion. Secondly, SCOUT combines the stratification-based
(extended) Tamaki-Sato system with the counter-based Kanamori-Fujita system
thereby obtaining a single system that strictly subsumes either of them even when
restricted to conjunctive folding. A formal proof of this claim appears in the ap-
pendix. Note that we prove that any transformation sequence made out of un-
fold/fold/goal replacement rules which is allowed by the ezxisting transformation
systems is also allowed by SCOUT.

It is interesting to note that by simple inspection of the instantiations, one can
see that when the number of strata is 1 and only conjunctive folding is permitted,
SCOUT collapses to the Kanamori-Fujita system. Collapsing SCOUT to other
existing unfold/fold systems by varying the number of strata and extending the
parameters (e.g. measure structure) remains an interesting open problem.

5. EMPLOYING TRANSFORMATIONS TO CONSTRUCT PROOFS

Our motivation in developing the transformation framework presented in this paper
lies in its application to deduction i.e. constructing proofs. Thus, we ensure that
our transformations preserve correctness w.r.t the model theoretic semantics of
definite logic programs: the least Herbrand model semantics. Our transformation
framework does not consider other operational aspects of the program, such as
preserving termination properties (studied in [Amtoft 1992; Bossi and Cocco 1994])
and preserving computed answer substitutions ([Kawamura and Kanamori 1990] is
an early reference on this subject).

Unfold/fold transformations have been used for inductive reasoning in the past
[Hsiang and Srivas 1987; Kanamori and Fujita 1986; Pettorossi and Proietti 1999].
Since unfolding represents a resolution step, it can be used to prove the base case
and finite part of the induction step. Folding can be used to remember the induction
hypothesis and recognize its occurrence. We have used the SCOUT transformation
system (developed in the last section) to construct inductive proofs of temporal
properties of concurrent systems [Roychoudhury et al. 2000; Roychoudhury and
Ramakrishnan 2001]. In this section, we present the key issues in using the SCOUT
transformation system for deduction. We also present an example to show how
additional power of our transformations (such as our more general folding rule)
can be exploited for constructing proofs. A full-fledged discussion on the use of
our transformations for concurrent system verification appears in [Roychoudhury
2000].

5.1 Automation of the Goal Replacement rule

In order to use SCOUT for automated deduction, a second look at the goal replace-
ment transformation is necessary. Goal replacement, where semantically equivalent
goals are interchanged, creates more opportunities for folding. There are two im-
mediate problems with integrating goal replacement in an automated proof sys-
tem. First, the identification of equivalent goals must be based on some syntactic
(or analysis-based) criteria, since semantic equivalence is, in general, undecidable.
Secondly, the conditions under which goal replacement is permitted by the trans-
formation system are usually specified in terms of uncomputable measures such as

20 . Roychoudhury, Kumar, Ramakrishnan, Ramakrishnan

the atom measure a. Recall that in the SCOUT system the atom measure a(A) is
related to the “shortest” ground proof of atom A.

Thus, we need a nontrivial computational mechanism to check the semantic
equivalence of two given atoms purely based on syntax. We must also identify
testable conditions that imply the untestable restrictions on weights of atoms re-
quired by the general goal replacement rule. The notion of syntactic equivalence
described below addresses the first issue, while the definition of the syntactic goal
replacement rule resolves the second issue.

Syntactic Equivalence. Consider the following example program P

p(X) :- r(X). q(X) :- s(X).
p(X) - e(X,V), p(V). q(X) :- e(X,Y), q(¥).
r(X) :- b(X). s(X) :- b(X).

Fig. 3. A program fragment to illustrate syntactic equivalence

r (X) and s(X) are equivalent since the clauses defining them have identical right
hand sides. We can now use this to infer that q(X) and p(X) are equivalent. Note
that even though the clauses of p(X) and q(X) are not syntactically identical, the
“recursive structure” of these clauses is the same. We formalize this notion in the
definition given below.

DEFINITION 9. Syntactic Equivalence of Atoms Let =" be an equivalence
relation on the set of predicates of a program P and let A = p(t1,...,t) and
B = q(t},...,t},) be two atoms. Then atoms A and B are said to be syntactically
equivalent w.r.t. to the relation =, denoted A Efmm B, if we have p =V ¢ and
(t1,...,t) is a variant of (t},...,t})

DEFINITION 10. Syntactic Equivalence of Predicates An equivalence rela-
tion =¥ on the set of predicates of P is said to be a syntactic equivalence relation
if whenever p =P q we have:

1. The predicates p and q belong to the same stratum.

2. Let the clauses of p and q in program P be {C4,...,Cy,} and {Dy,...,D,,}
respectively. Then, for all 1 < i < m we have :

(i) C; is a variant of D; when all predicate symbols in C; and D; are replaced with
the same predicate.

(ii) Let C; and D; be of the form H:— By, ..., By and H':— By, ..., B}, respectively.
Then for all 1 <1<k B, =F, B

—atom

It is easy to see that the family of syntactic equivalence relations is closed under
union. Thus there is a largest syntactic equivalence relation =F. The relation =¥
can be computed by starting with all predicates in the same class, and repeatedly
splitting the classes that violate properties (1) and (2) until a fixed point is reached.
In the example program fragment P given in Figure 3, the largest syntactic equiva-
lence relation =% is {(p, q), (r, s) }UId, where Id is the identity relation. Therefore,
p(X) =F._ . q(X) where for two atoms A and B we say A =L, B if and only if
A=F B for some syntactic equivalence relation =% .

—atom
We show that all syntactically equivalent atoms are semantically equivalent.

Unfold/fold Transformations for Definite Logic Programs : 21

LEMMA 2. Let =P be a syntactic equivalence relation of the predicates of a pro-
gram P. For all predicates p, q, if p =" q, then p and q are semantically equivalent
in program P.

Proof : Let p =" q. We show that for any ground proof T of a ground atom p(X)#
in program P there is a ground proof T of ¢(X)# in program P and vice-versa.
For any ground proof T' of p(X)f we can show the existence of a ground proof 7"
of ¢(X)# by induction on the size (number of nodes) of T'. Let the clause used at
the root of T'be C = (p(...):— By,...,B). Since p =P ¢ therefore ¢ has a clause
C' = (q(...):— B},...,By) and p, =" p; where p; (p}) is the predicate symbol in
By (B)) for all 1 <1 < k. Let p;(Y)o be the ground instantiation of B; appearing

in T. Now, the size of the subproof of p;(Y)o in T is clearly less than the size of
T. By induction hypothesis there exists a ground proof of p)(Y)o. Also p)(Y)o is
an instance of Bjf since clause C is an instance of clause C' when all predicates
are replaced by their labels. By applying clause C' at the root we can construct a
ground proof T" of ¢(X)8.

For any ground proof 7" of ¢(X)# we can show the existence of a ground proof

T of p(X)# in a similar fashion. O

Note that we can straightforwardly generalize our definition of syntactic equiva-
lence to define syntactic equivalence of subgoals. Thus, we can then make inferences
like p(£(X)) = q(X) based on the syntax*. We now introduce the notion of relevant
clause set of an atom. Intuitively, it is a conservative estimate (i.e. a superset) of
the set of clauses which are used in the proof of some ground instance of the atom.

DEFINITION RELEVANT CLAUSE SET. Let A be an atom and P a program. Let
reach(A, P) denote the set of predicates which are reachable from the predicate of
A in the predicate dependency graph® of P. Then, the relevant clause set of A in
P (denoted rel(A, P)) is the set of clauses of the predicates in reach(A, P).

We now define the Syntactic Goal Replacement rule. For any clause C, hd(C') de-
notes the head atom of C'. Our definition is adapted to the SCOUT transformation
system described in Section 4.2. Recall that the SCOUT system is an instance of
our transformation framework where the predicate symbols appearing in the ini-
tial program P, are partitioned into n strata. Furthermore, for any atom A, the
SCOUT system defines amin(A) = (w1, ..., wy) where w; = 1if A is from stratum
j and 0 elsewhere.

RULE 7. Syntactic Goal Replacement Let C' be a clause in P; of the form:
C=A—-Ay,.., A, G
and consider another clause C' (not in F;) of the form :
C'=A— Ay, A, G

such that
1. G and G' are syntactically equivalent i.e. G = G’ and vars(G) =

—atom
4With definitions 9, 10 we can only infer p(£(X)) = q(£(X)) if p = q.
5The predicate dependency graph of a program P has the predicate symbols of P as its vertices,
and there is an edge from predicate p to predicate g if ¢ occurs in the body of a clause of p in
program P.

22 . Roychoudhury, Kumar, Ramakrishnan, Ramakrishnan

vars(G') Cwvars(A, Aq,..., Ag)
2. The clauses in rel(G', Py) are never modified in the transformation sequence
Py, Py,...,P;ie rel(G' Py) =rel(G,F).

3. For each clause D € rel(G, P;) 7 (D) > amin(hd(D)).
4. Let C1;(G) be the clauses in P; whose heads unify with the atom G. We define:

§ = minpeciya) (Vio(D) = amin(hd(D)))
We must have: v/,(C) + 6+ Y, ¢ <, @min(A4;) >0 =(0,...,0)

Then, assign P = (P; — {C’}) U {C'} where C' is A:— Ay, ..., Ax,G'. Also, set
YO = 4 (C) + 6 and v, T (C") = 4} ,(C) + &' where §' = (00,0,...,0). ¢ O

Syntactic Goal Replacement can be proved to be a special case of the Goal
Replacement transformation of the SCOUT system. First we define the notion
of “weight of a ground proof” and use it to prove a property about syntactically
equivalent atoms.

DEFINITION WEIGHT OF A GROUND PROOF. LetT be a ground proof of a ground
atom A € M(P) for a program P. We assume that the predicate symbols of P are
a-priori partitioned in n strata. Then the weight of T (denoted w(T)) is the the
n-tuple (w1, ..., w,) where for all 1 < i < n, w; is the number of nodes of T whose
predicate symbol is assigned to strata i.

The following holds for syntactically equivalent atoms. Note that this is a
stronger claim than Lemma 2.

LEMMA 3. Let P be a program and G,G' be atoms such that G =5, G' ie.
G and G' are syntactically equivalent in P. For any ground proof T of a ground
instantiation GO there exists a ground proof T' of G'6 such that w(T) = w(T"), and
vice-versa.

PROOF. The proof proceeds by induction on the size of T', as in Lemma 2. [

We will now use the above lemma to prove that Syntactic Goal Replacement is
a special case of the Measure preserving Goal Replacement rule.

LeEMMA 4. Special Case of Goal Replacement Let Py — ... — P; be a
sequence of measure consistent programs. Then, any syntactic goal replacement
transformation applicable in P; is also a Measure preserving goal replacement trans-
formation (transformation 6) applicable in P;.

PROOF. For any ground instantiation # of G and G’ (recall vars(G) = vars(G")),
by using lemma 2, we have P; F G6 < P; F G'6. To prove that the other condi-
tions of Measure preserving goal replacement transformation are also true when-
ever syntactic goal replacement is applicable, we now just need to show that the
inequalities in conditions (i) and (ii) of rule 6) are satisfied whenever syntactic goal
replacement is applicable. We have v + 0 + >, ;< @min(4;) > 0 = (0,...,0).

We also need to show that whenever Syntactic Goal Replacement is applied to

6Note that oo is only a notational convenience. Tt represents a value that exceeds the weights
of all atoms. Formally, this can be achieved by extending the clause annotations by one extra
stratum.

Unfold/fold Transformations for Definite Logic Programs : 23

clause C to replace G by G' we have V8 § < a(G) — a(G'8) < §'. Since ¢’ =
(00,0,...,0), therefore §' is lexicographically greater than the weight of any ground
atom; hence a(G) — a(G'0) < ¢'. We now prove that § < a(G0) — a(G'8) where
6 = minpeciyqy (1, (D) — @min(hd(D))) and CI;(G) are the clause in P; whose
heads unify with G.

Since P; is measure consistent, therefore if G§ € M (P;), then Gf has a strongly

measure consistent proof 7' in P;. Hence, by lemma 3, G'# has a proof T' in P;
such that w(T) = w(T"). Let Crot be the clause used the root of T. Clearly
Croot € Cl;(@). Let the ground instance of C,.,.¢ used at the root of ground proof
TbeG0:—By,...,Bpy. Then :

a(G8) > min(GO) + (Vo(Croot) — amin(GA)) + Y a(B)
1<j<m

Since each of the body atoms B; also have strongly measure consistent proofs as
subproofs of T', we can again use this condition to expand out the «(B;) in the
above inequality. Continuing in this way until we reach the leaves of T', we get the
following inequality (where hd(C) denotes the head of clause C).

a(GO) > Y amin(hdC)+ D (4,(C) — amin (hd(C)))
C used in T C used in T
According to the definition of @y, in the SCOUT system
> amin(hd(C)) = w(T)
C used in T

The above inequality follows from that fact that each of the nodes of T are the
head of some clause C used in T'. Thus, we have:

a(GO) > w(T)+ Y (1,(C) = amin(hd(C)))
C used in T
Now, since VC € rel(G, P;), we have (v/ (C) — amin(hd(C))) to be non-negative:
Y. (0(0) = amin(hd(C))) > (¥y(Croot) = Amin(hd(Croot))) > 8
C used in T
Note that 7, (Croot) — @min(hd(Croot))
a(GO) > w(T)+9
>w(T")+6 (by Lemma 3)
> Measure of lexicographically shortest proof of G’ in P;
= a(G'9) (since rel(G', Py) = rel(G', P;))

Hence, a(G#) > a(G'H) + § for any ground substitution § of G and G'. This
completes the proof. O

Y

d since Croot € Cl;(G). Thus,

Applicability of the Syntactic Goal Replacement rule is testable and the clause
annotations of the new clause C’ can be effectively computed since we have conser-
vatively estimated the value of d,0’. Note that in the Syntactic Goal Replacement
rule, we have set ¢’ to (00,0, ...,0). This will prevent the new clause C’ from being

used as a folder later in the transformation sequence. However, our choice of §

24 . Roychoudhury, Kumar, Ramakrishnan, Ramakrishnan

satisfies 6 > (0,...,0) and therefore we will always have 7, (C") > 4}, (C). Thus,
C' can participate in future folding transformations as one of the folded clauses.
Also, note that a tighter value of ¢’ is hard to obtain. This is because we need to
satisfy a(Gf) — a(G'8) < ¢’ for any ground substitution §. The proof sizes of G
and G'6 could be monotonic on the instantiation of some variable of G,G' and 6
could be constructed to instantiate that variable to larger and larger ground terms,

thereby ruling out a tighter value of §'.

Other standard transformations. In addition to unfolding/folding/goal replace-
ment, a number of other standard transformations, such as deletion of subsumed
clauses, deletion of duplicate goals [Pettorossi and Proietti 1998] can be readily
adapted to the SCOUT system. These transformations can also be useful for con-
structing proofs.

Also, note that we do not explicitly consider a Definition Introduction transfor-
mation which allows us to define new predicates in terms of old predicates. This is
because new predicates introduced in the course of constructing a transformation
sequence Py, ..., P, can be assumed to be present in the initial program [Tamaki
and Sato 1984].

5.2 On the utility of Stratification

The SCOUT transformation system allows the predicate symbols of the initial pro-
gram Py to be a-priori partitioned into n > 1 strata. This may give us additional
flexibility in constructing a totally correct transformation sequence without exactly
computing the clause annotations. To illustrate this point, consider the following
goal replacement step P; — P;;1. The predicates are partitioned into 2 strata : p
is placed in the upper strata, and q,r are placed in the lower strata.

Pp:— q (<1/O>7<110>) pi—r (<17—>7<17—>)

q. ((0,1),¢0,1)) q. ((0,1),¢0,1))

r. ((0,1),¢0,1)) r. ((0,1),¢0,1))
Program P; Program P;4q

Recall that the stratification of predicates is such that a predicate of stratum j
is defined using predicates of stratum < j in Fy. Therefore, in the above example
since q,r are placed in the lower stratum we can conclude that a(q) = (0,_) and
a(r) = (0,.). Thus, the annotations of the replaced clause p :— r are guaranteed
to be of the form (1,_) irrespective of the exact value of a(q) — a(r).

The above observation could be successfully exploited while constructing a trans-
formation sequence as follows. Recall that the Goal Replacement rule does not
prescribe exact values of §,8" and hence its application is not automated.” Con-
sider a goal replacement step P; — P;1q1 in which G is replaced by G’ in clause
C = A— Ay,..., Ay, G. We can avoid computing a(G) — a(G') and annotate
the new clause C' = A:— Ay,..., Ay, G’ with only approrimate annotations if the

"This problem is partially remedied in the Syntactic Goal Replacement rule which tells us how
to compute §,8" provided certain extra conditions (such as conditions 2,3 of the Syntactic Goal
Replacement rule) are satisfied.

Unfold/fold Transformations for Definite Logic Programs : 25

predicates are partitioned into > 1 strata. In the above example, we observed that
(0, ~00) < a(q) - a(x) < (0,00)

We then used these inequalities to compute the approximate annotations of the
replaced clause p :— r as ({1,.),(1,.)) In this example, if all the predicates are
placed in only one stratum, we must compute a(G) — a(G'). Otherwise, we will
annotate the new clause C' with the counters (—oo, o). Clearly this will forbid C’
from participating in any future folding step.

5.3 An Example Induction Proof

We now illustrate by an example how our program transformation rules can be
used for constructing induction proofs. Consider the program Py given below. Any
string consisting of only 0’s is generated by gen while the test predicate checks
whether a given list can be transformed (through finite number of applications of
trans) into a string consisting of only 1’s. The trans predicate transforms a string
by converting the leftmost occurrence of 0 in the string to 1. The property that we
would like to establish is V X gen(X) = test(X). A hand proof of this property
will proceed by induction on the length of the strings generated by gen.

In P, all predicate symbols are assumed to be in the same stratum and the lower
and upper clause measures are set to 1 for all clauses. In the following, the clause
annotations (v, (C),7},(C)) for any clause C' € P; are shown in parentheses beside
clause C.

thm(X) :- gen(X), test(X) (1,1)
gen([1). (1,1)
gen([0lX]) :- gen(X). (1,1
test(X) :- canon(X). (1,1)
test(X) :- trans(X,Y), test(Y). (1,1)
canon([]). (1,1)
canon([1]X]) :- canon(X). (1,1)
trans([01X], [11X]). (1,1

trans([1]T],[11T1]) :- trams(T,T1). (1,1)

Now, from the definition of thm in Py we see that V X thm(X) & gen(X) A
test (X). Thus, if we can establish that V X thm(X) < gen(X) then we can conclude
that the formula V X gen(X) = test(X) is true. One technique to establish V X
thm(X) < gen(X) is to show that the above program P, is equivalent to some
program Pyipne in which the thm(X) and gen(X) are syntactically equivalent.

We now construct such a transformation sequence Fy, ..., Ptinq. Unfolding the
only clause of thm/1 several times we obtain:
thm([]) . (4,4)
thm([0]X]) :- gen(X), canon(X). (6,6)

thm([0|X]) :- gen(X), trans(X,Y), test([1]Y]). (6,6)
We now introduce the definition:
test1(Y) :- test([1]Y]). (1,1)
and fold the occurrence of test ([1]1Y]) in the last clause of thm/1 to obtain:

thm([]). (4,4)
thm([0|X]) :- gen(X), canon(X). (6,6)
thm([0[X]) :- gen(X), trans(X,Y), test1(Y). (5,5)

26 . Roychoudhury, Kumar, Ramakrishnan, Ramakrishnan

Unfolding the definition clause of test1/1 several times and then folding (using
the definition clause of test1/1 as the folder) we get:

test1(Y) :- canon(Y). (3,3)
test1(Y) :- trans(Y,Z), test1(Z). (2,2)

Note that test1(Y) and test(Y) are syntactically equivalent, since the clauses
of test/1 are :

test(X) :- canon(X). 1,1)
test(X) :- trans(X,Y), test(Y). (1,1)

We therefore apply Syntactic Goal Replacement in the last clause of thm/1 to
obtain the following :

thm([]). (4,4)
thm([0[X]) :- gen(X), canon(X). (6,6)
thm([0]X]) :- gen(X), trans(X,Y), test(Y). (6, 00)

We can now fold the above clauses of thm/1 using the clauses of test/1 as the
folder. Note that we are folding using multiple recursive clauses as the folder. The
additional power of our folding rule is exploited in this transformation step. We
obtain:

thm([]1). (4,4)
thm([0]X]) :- gen(X), test(X). (5,00)

Finally, we fold using the clause of thm/1 in P, as folder to obtain the program
Rfinal

thm([]) . (4,4)
thm([0]X]) :- thm(X). (4, 0)
gen([1). (1,1)
gen([01X]) :- gen(X). (1,1)
test(X) :- canon(X). (1,1)
test(X) :- trans(X,Y), test(Y). (1,1)
canon([]). (1,1)
canon([1]X]) :- canon(X). (1,1)
trans ([O|T],[1]T]). (1,1)

trans([1IT], [1IT1]) :- trans(T,T1). (1,1)

The atoms thm(X) and gen(X) are now syntactically equivalent (refer definition 10).
Thus, M(Pfina) = V X thm(X) < gen(X). Since M (Pfinar) = M(P,) therefore
M(Py) =V X thm(X) & gen(X). By definition of thm(X) in Py, this means that
M(P) =V X gen(X) = test(X). Thus, by using our transformation rules, we have
constructed a nontrivial induction proof.

5.4 Verification of Parameterized Concurrent Systems

The above proof is illustrative since it is structurally similar to the proofs that arise
in the verification of concurrent systems. Using the transformation rules of SCOUT
and the Syntactic Goal Replacement rule in a similar fashion we verified properties
like liveness of a m-bit shift register, correctness of a m-bit carry-lookahead adder
etc. Thus, in the problem of verification of liveness of a m-bit shift register : the
predicate gen represents the encoding of the m-bit shift register while the predicate
test represents the encoding of the liveness property that we verify. To accomplish

Unfold/fold Transformations for Definite Logic Programs : 27

the proof of liveness for any m, we perform a folding step using test as the folder
similar to the above example. Moreover, as in the above example, the proof of
liveness also involves application of the Syntactic Goal Replacement rule to replace
a specialized version of test. This corresponds to proving that the liveness property
holds in a process () iff the property holds in a sub-process of ().

In particular, we have used the transformations developed in this paper to induc-
tively prove temporal properties of parameterized concurrent systems [Roychoud-
hury 2000; Roychoudhury et al. 2000; Roychoudhury and Ramakrishnan 2001].
Verification of distributed algorithms with arbitrary number of constituent pro-
cesses can be naturally cast as verifying parameterized systems. A parameterized
concurrent system (such as a n-bit shift register for arbitrary n) represents an
infinite family of finite state concurrent systems, parameterized by a recursively
defined type. Therefore, it is natural to prove properties of parameterized con-
current systems by inducting over this type. We have automated the construction
of these induction proofs by using the unfold/fold rules developed in this paper
along with domain specific control strategies. In our approach, the parameterized
system and the temporal property to be verified are encoded as a logic program.
The verification problem is reduced to the problem of determining the equivalence
of predicates in this program. The predicate equivalences are then established by
employing unfold/fold transformations on the predicates. Finally the proof of se-
mantic equivalence of the predicates is achieved by showing syntactic equivalence
of their transformed definitions.

The additional power of our transformation rules is useful in our transformation
based proofs of temporal properties. Note that temporal properties contain fixed
point operators. These properties are typically encoded as a logic program pred-
icate with multiple recursive clauses e.g. a least fixed point property containing
disjunctions is encoded using multiple recursive clauses. Therefore, one cannot as-
sume restrictions that are imposed by existing transformation systems [Tamaki and
Sato 1984; 1986a; Kanamori and Fujita 1987; Gergatsoulis and Katzouraki 1994] on
the syntax of clauses encoding a temporal property. As mentioned before, the ap-
plicability of our transformation rules is not restricted by program syntax. Instead,
book-keeping is performed at every transformation step, and this book-keeping is
used to restrict the applicability of the transformation rules. This makes these rules
suitable for constructing proofs of temporal properties.

A full-fledged discussion of the use of our transformations for verification needs
to discuss transformation strategies as well. This is outside the scope of this paper.
The interested reader is referred to [Roychoudhury 2000].

6. RELATED WORK

In this section, we survey related work on unfold/fold transformations and their
usage in deduction. In Section 6.1, we discuss work on developing totally cor-
rect irreversible unfold/fold transformation systems. In particular, we discuss the
restrictions which need to be placed on the folding rule in order to make any in-
terleaving of unfolding/folding preserve semantics. In Section 6.2, we discuss past
work on using unfold/fold transformations of logic programs for inductive reason-
ing. Finally, we conclude by briefly discussing work on other (more traditional)
usage of logic program transformations such as: use of transformations for partial

28 . Roychoudhury, Kumar, Ramakrishnan, Ramakrishnan

deduction, and reversible transformations for deductive databases.

6.1 Restricting Transformations to ensure Total Correctness

Conditions to ensure total correctness of unfold/fold transformations have been
extensively studied for logic programs. Most of these transformation rules impose
two kinds of restrictions: (a) the syntax of the folder clauses is restricted, and (b)
clauses are annotated with book-keeping (our clause measures) which is updated in
each transformation step; conditions are imposed on this book-keeping to restrict
applicable folding steps. In this paper, we have shown that the first kind of restric-
tions (syntactic restrictions on the folder clauses) are redundant. Only the second
kind (restriction on clause measures) is necessary to show A > B in any folding
step, where A is the head of the clause produced by folding, B is the folder atom
(the atom introduced by folding) and > is a well-founded order. Preservation of
such a well-founded order allows us to prove total correctness by induction.

Syntactic Restrictions on folder clauses. Among the previous works which im-
posed syntactic restrictions on the folder clauses:

—[Tamaki and Sato 1984; Gergatsoulis and Katzouraki 1994] required the folder
clauses to be non-recursive.

[Tamaki and Sato 1984; 1986a; Kanamori and Fujita 1987] required a single folder
clause (conjunctive folding)

We have shown that our transformation framework subsumes each of these trans-
formation systems. In other words, the syntactic restrictions imposed in these
systems are not needed for ensuring total correctness. There is however, an inter-
esting observation to make from the book-keeping/annotations maintained in these
transformation systems.

Various kinds of clause annotations. The clause annotations maintained in the
afore mentioned transformation systems are of roughly two types:

[Tamaki and Sato 1984; 1986a; Gergatsoulis and Katzouraki 1994] partition the
predicate symbols into n > 1 strata (among these, [Tamaki and Sato 1984] and
[Gergatsoulis and Katzouraki 1994] set n = 2). A total order is assumed among
the strata i.e. strata 1 > ... > strata n. Also, for each clause C in program P; a
flag is maintained. The flag is set if C' was obtained via one or more unfoldings
in the sequence Py, ..., P;. In a folding step, clauses C', D can be used as folded
and folder clauses if

strata of predicate at head of C > strata of predicate at head of D, or
—strata of predicate at head of C' = strata of predicate at head of D and the

flag of C is set.
The above conditions allow the definition of a well-founded order among ground
atoms on which we can induct. This idea has also been used to develop totally
correct unfold/fold transformations for normal logic programs [Seki 1991; 1993].

A different approach is taken in [Kanamori and Fujita 1987]. Here all the predi-
cate symbols are placed in one stratum. Each clause C in program P; is annotated
with an integer counter which is incremented on unfolding and decremented on
folding. In a folding step, clauses C, D can be used as folded and folder clauses

Unfold/fold Transformations for Definite Logic Programs : 29

if annotation of C' > annotation of D. This approach is similar to the work on
functional program transformations by Kott [Kott 1985] and the seminal work of
David Sands [Sands 1996]. Intuitively both Kott and Sands allow a folding step if
the number of unfolds exceeds the number of folds (there are however important
differences which we will outline in the following).

The two different kinds of annotations (strata and counters) have been combined
in our SCOUT transformation system. This gives a transformation system which
allows more folding steps even when the syntactic restrictions on the folder clauses
hold. Thus, SCOUT can be proved to be more powerful than the Tamaki-Sato style
transformation systems.

Ensuring Total Correctness without imposing Syntactic Restrictions. One of the
key features of our transformation framework (as well as the SCOUT transforma-
tion system) is that the applicability of a transformation to program P; is decided
based on the clause measures (i.e. annotations) in P;, and not on program syntax.
This objective has previously been achieved in the work of Amtoft [Amtoft 1992].
Similar to Tamaki-Sato style transformations [Tamaki and Sato 1986a], Amtoft
partitions the predicates into n > 1 strata. This is achieved by assigning “weights”
to the predicates. In the initial program Py, weights are assigned to a clause based
on the weight of its head predicate. The weights of a clause get updated on un-
folding/folding. By unfolding an atom of higher weight, more opportunities are
created for future folding steps. The intuition presented by Amtoft is an impor-
tant one and conceptually close to the extended Tamaki-Sato system of [Tamaki
and Sato 1986a]. We believe that this similarity between the two works has not
been noticed due to the scarce availability of the [Tamaki and Sato 1986a] technical
report. Both these works show that by stratifying the predicates and annotating
the clauses with strata number during unfolding and folding it is possible to ensure
total correctness. There is also an additional restriction requiring every folding step
to be conjunctive. However, this restriction can be showed to be unnecessary for
ensuring total correctness.

The work of Amtoft gives us one way to ensure total correctness without re-
stricting folder clause syntax. However, it is conceptually different from the work
of Kanamori [Kanamori and Fujita 1987] which maintains integer counters with
every clause. Like [Tamaki and Sato 1986a], Kanamori also restricts folding to be
conjunctive; again this restriction is unnecessary. However, as observed in Section
4, there is an important difference between [Tamaki and Sato 1986a] and [Kanamori
and Fujita 1987]. The measure space in [Kanamori and Fujita 1987] is coarser than
[Tamaki and Sato 1986a] but [Kanamori and Fujita 1987] completely utilizes its
measure space by maintaining accurate clause measures. Thus the book-keeping is
more detailed. Intuitively we can argues that maintaining the number of unfold-
ings through which a clause C in program P; was derived is more detailed than
maintaining whether clause C' € P; was obtained by at least one unfolding. Thus,
Kanamori’s intuition can also be used to yield a transformation system with no
syntactic restrictions. In fact, this system is identical to our SCOUT system where
all predicates are placed in the same stratum.

In functional programming, similar ideas have been used to ensure correctness of
unfold/fold transformations. Kott [Kott 1985] presents a restricted transformation

30 : Roychoudhury, Kumar, Ramakrishnan, Ramakrishnan

system for a set of mutually recursive functions fi, ..., f, in a first order functional
language. In this work, a particular function f; is transformed as follows: (a)
unfold the body of f; (b) apply certain “laws” (c) fold the body of f;. A “law”
corresponds to a rewriting of semantically equivalent expressions (similar to our
goal replacement). Subsequent to the transformation, Kott’s method checks the
correctness of the transformation sequence. If all the functions are strict, then this
check corresponds to checking that the number of unfolds exceeds the number of
folds. Thus, Kanamori’s method of checking counter values of folder and folded
clauses is similar to Kott’s check. However Kanamori checks the applicability of a
folding step at the time of transformation and not post-mortem.

One of the most well-understood and comprehensive work on functional program
transformations is by David Sands [Sands 1996]. Sands presents an elegant theory of
improvement which clarifies the “number of unfolds exceeds number of folds” check
proposed by Kott. Moreover, [Sands 1996] is applicable to higher order functional
languages as well. In [Sands 1996], a transformation from fz 2 eto gz 2 ¢ using
the equivalence e = €' is totally correct if €’ is an improvement over e. In other
words, for any context if e terminates with n function calls then e’ must terminate
with at most n function calls. Sands then exploits this notion of improvement for
unfold/fold transformations by requiring an unfold /fold transformation sequence to
show overall improvement. Superficially, this might appear similar to Kanamori’s
check on counters. There are however, important differences. Since an unfold step
reduces a function call, Sands records this by inserting a “tick”. Similarly a fold
step increases a function call, so it must be paid for by removing a tick (which
was introduced earlier by an unfold). Thus, the total number of ticks in a function
definition roughly correponds to Kanmori’s counter annotation of a clause. How-
ever this correspondence holds only if ticks can be arbitrarily propagated in an
expression, that is, any tick introduced by unfolding can be used to pay for a future
folding. This is in general not true if an unfolding step produces a lazy context.
The tick introduced by unfolding cannot be propagated across this lazy context and
thus cannot be used to pay for a future folding. This issue does not arise in logic
programs. Any unfolding step can “increase” the clause measures and can thus be
used to pay for any future folding step. This is reflected in our generalized transfor-
mation framework, as well as in [Kanamori and Fujita 1987]. Furthermore, our work
combines the notion of stratification with counters to maintain more fine-grained
book-keeping per clause. This is evidenced in the SCOUT transformation system.
Our generalized transformation framework abstractly specifies the conditions which
the clause annotaions must satisfy in order to maintain total correctness. Qur no-
tion of measure consistency captures thes conditions. This parallels with Sands’
theory of improvement for functional programs where he shows that a transforma-
tion sequence which leads to improvement (in terms of function calls) is guaranteed
to preserve correctness. The tick algebra of Sands is a mechanism for ensuring this
“improvement”. Similarly the transformation rules in our SCOUT transformation
are guaranteed to ensure the abstract notion of “measure consistency”.

We conclude this section by discussing the work of Bossi, Cocco and Etalle on
correctness of replacement operations in normal logic programs [Bossi et al. 1992;
1996]. Since unfolding and folding are restricted versions of goal replacement, their

Unfold/fold Transformations for Definite Logic Programs : 31

correctness theorem can also be used to derive a safe folding operation [Bossi et al.
1992]. In particular, their correctness condition depends on two notions:

—dependency degree: Intuitively, the dependency degree of an atom B on clause C is
the shortest path from B to C in a proof of B. Thus, if a circularity is introduced
by folding B into clause C' then the length of the loop is the dependency degree
of Bon C.

semantic delay: The semantic delay of a goal G w.r.t. another goal G' roughly
denotes the minimum difference in the lengths of their derivations.

A typical sufficient condition for correct folding of clause C using folder clause
B:— By,...,B,, is: dependency degree of B on C' > semantic delay of B w.r.t.
By, ..., B,,. Intuitively, the semantic delay of B w.r.t. By,..., B,, is related to the
transformation history: the unfold/fold steps taken so far from the folder clause.
However, the idea of dependency degree does not only correspond to the transforma-
tion history. Instead it is also related to the stratification of the predicates used in
Tamaki-Sato style systems. In particular, if B never uses clause C in its proof, then
the dependency degree is the ordinal w and folding of C' using B:— By,..., B, is
always allowed. This roughly corresponds to the folding of “old” predicates w.r.t.
“new” predicates in [Tamaki and Sato 1984; Gergatsoulis and Katzouraki 1994].
Thus, the notion of dependency degree is related to stratification of predicates as
well as transformation history. It seems that our correctness condition is more
uniform: it simply compares the clause measures of the folded and folder clauses.
These clause measures can be instantiated to incorporate the notions of stratifica-

tion and/or counting of past unfold/fold steps (the transformation history).

6.2 Logic Program Transformations to construct proofs

Unfold/fold logic program transformations have been primarily used for program
synthesis, specialization and optimization (see [Bossi et al. 1990; Boulanger and
Bruynooghe 1993; Schreye et al. 1999; Pettorossi et al. 1997]). These works use re-
stricted versions of unfold/fold rules and concentrate on a different (and important)
issue: automated strategies to guide the rules. For example, partial deduction or
partial evaluation [Jones et al. 1993; Komorowski 1982] primarily allows unfolding.
Folding is often restricted to a single atom, and is often used to replace a partially
instantiated atom p(t(X)) to an open atom q(X) via the definition q(X) : —p(t(X)).
This is relaxed in conjunctive partial deduction [Schreye et al. 1999] which allows
specialization w.r.t. conjunctions of atoms (instead of a single atom). Still folding
of multiple clauses in one step is not allowed in the interests of automated control.

Relatively little work has been done on using these transformations for construct-
ing proofs. As discussed in the previous section, unfold/fold transformations can
be used to construct induction proofs of program properties. In such induction
proofs, unfolding accomplishes the base case and the finite part of the induction
step, and folding roughly corresponds to application of induction hypothesis. This
observation has been exploited in [Hsiang and Srivas 1987; Kanamori and Fujita
1986; Pettorossi and Proietti 1999; 2000] to construct inductive proofs of program
properties.

Hsiang and Srivas in [Hsiang and Srivas 1987] extended Prolog’s evaluation with
“limited forward chaining” to perform inductive theorem proving. This limited

32 . Roychoudhury, Kumar, Ramakrishnan, Ramakrishnan

forward chaining step is in fact a very restricted form of folding: only the theorem
statement (which is restricted to be conjunctive) can be used was a folder clause.
The work of Kanamori and Fujita [Kanamori and Fujita 1986] is closer to ours.
They proved certain first order theorems about the Least Herbrand Model of a
definite logic program via induction. In particular, they observed that the least
fixed point semantics of logic programs could be exploited to employ fixpoint in-
duction. Our usage of the transformations is similar. Given a program P we intend
to prove p = ¢ in the Least Herbrand Model of P. To do this proof by induction,
we transform p and ¢ to obtain a program P’. If the transformed definitions of p
and ¢ in P’ are “syntactically equivalent” (Definition 10) then our proof is finished.
Note that this equivalence check is in fact an application of fixpoint induction. It
allows us to show p = ¢q in M (P') (the least Herbrand model of P’). Furthermore,
since M (P') = M(P) this amounts to showing p = ¢ in program P. Thus, in our
work predicates are transformed to facilitate the construct of induction schemes (for
proving predicate equivalence). [Kanamori and Fujita 1986] also exploits transfor-
mations for similar purposes. However, their method performs conjunctive folding
using only a single non-recursive clause. Apart from the restriction in their folding
rule, they also do not employ goal replacement in their induction proofs. Conse-
quently, nested induction proofs cannot be constructed (the example worked out in
Section 5 is a nested induction proof).

The idea of using logic program transformations for proving goal equivalences
was explored in [Pettorossi and Proietti 1999; 2000]. These works employ more
restricted Tamaki-Sato style unfold/fold transformations, which are not suitable in
general for constructing induction proofs of temporal properties. This is because
temporal properties employ fixed point operators, and are typically encoded using
multiple recursive clauses. A simple reachability property EFp (which specifies
that a state in which proposition p holds is reachable) [Clarke et al. 1999] will be
encoded as a logic program as follows:

ef(X) :- p(X).
ef(X) :- trans(X,Y), ef(Y).

where the predicate trans captures the transtion relation of the system being ver-
ified, and p(X) is true if the proposition p holds in state X. This encoding contains
two clauses one of which is recursive. Our work relaxes restrictions on the appli-
cability of the transformation rules thereby enabling their use in proving temporal
properties.

The reader might notice similarities between a proof system based on unfold/fold
transformations a proof systems based on tabled resolution [Tamaki and Sato 1986b;
Chen and Warren 1996]. Tabled resolution combines resolution proofs with mem-
oing of calls and answers. Since folding corresponds to remembering the original
definition of predicates, there is some correspondence between folding and memo-
ing. However, folding can remember conjunctions and/or disjunctions of atoms as
the definition of a predicate. This is not possible in tabled resolution. Furthermore,
in tabled resolution when a tabled call C is encountered, the answers produced so
far for C are used to produce new answers for C'. In folding, when the clause bodies
in old definition of a predicate is encountered, it is simply replaced by the clause
head.

Unfold/fold Transformations for Definite Logic Programs : 33

The unfold/fold transformation based proof technique for constructing induction
proofs also differs substantially from many existing inductive theorem proving tech-
niques [Boyer and Moore 1990; Bundy et al. 1990]. These provers take in an explicit
induction schema and try to dispense the proof obligation in each of these cases.
In contrast, the transformation based proof technique does not input any induction
schema. The schema is constructed gradually via unfolding of the program predi-
cates. This idea has similarities to the “recursion analysis” technique employed in
the Boyer-Moore prover [Boyer and Moore 1975; 1990]. Given some functions, these
works exploit the recursive structure of these functions to prove theorems about
them. Note that, if the necessary induction schema cannot be derived via unfold-
ing, our transformation based proof technique cannot find a proof. However, this
restriction leads to increased automation in the construction of induction proofs,
and fewer cases in the induction schema constructed (see [Roychoudhury 2000] for
a detailed example).

In conclusion, we would like to note that constructing induction proofs via un-
fold/fold transformations is different from consistency based proof technqiues such
as inductionless induction [Comon and Nieuwenhuis 2000]. These techniques do
not employ any induction schema at all. To prove a predicate equivalence p = q
our proof technique uses an induction schema obtained from the structure of the
transformed definitions of p, q. However, this schema is not given a-priori but
gradually constructed via program transformations.

7. DISCUSSIONS

The development of a parameterized framework for unfold /fold transformations has
several important implications. It enables us to compare existing transformation
systems and modify them without redoing the correctness proofs (e.g., extending
measures for goal replacement in Section 3). It also facilitates the development
of new transformations systems. For instance, we derived SCOUT which permits
folding using multiple recursive clauses.

Motivation. The development of our transformation framework is motivated by
its application in constructing induction proofs. As described in Section 5, our
transformation framework can be used for inductively proving predicate equiva-
lences. In these proofs, the unfolding transformation helps prove the base case
and the finite part of the induction step. The folding transformation is useful for
uncovering the induction hypothesis. Finally, the goal replacement transformation
is used for constructing nested induction proofs (semantic equivalence of the goals
interchnaged in a goal replacement step are also proved by program transforma-
tions).

Ezxtensions. In [Roychoudhury et al. 2002], we have extended the work reported
in this paper to obtain generalized unfold/fold transformation systems for normal
logic programs. Aravindan and Dung [1995] developed an approach to parameterize
the correctness proofs of the original Tamaki-Sato system with respect to various
semantics based on the notion of semantic kernels. Incorporating the idea of se-
mantic kernel into our framework yields a framework that is parameterized with
respect to the measure structures as well as semantics.

34 : Roychoudhury, Kumar, Ramakrishnan, Ramakrishnan

Future Work. In future, it would be interesting to study whether we can de-
velop similar parameterized unfold/fold transformation frameworks for other pro-
gramming paradigms such as functional programming [Sands 1996], constraint logic
programming [Etalle and Gabbrielli 1996; Maher 1993], concurrent constraint pro-
gramming [Etalle et al. 2001], and process algebraic specification languages (e.g.
CCS) [Francesco and Santone 1998].

In particular, [Sands 1996] reports powerful unfold/fold transformation rules for
functional languages, where the gains accrued from unfolding determine the appli-
cability of folding (similar to our framework). A comparison of Sands’ work with
our transformation framework appeared in Section 6. It would be interesting to
study whether the transformation system of [Sands 1996] can be parameterized
w.r.t. measure structures in a manner similar to ours.

8. ACKNOWLEDGEMENTS:

A preliminary version of this article appeared in the proceedings of International
Conference on Principles and Practice of Declarative Programming (PPDP) 1999,
LNCS 1702. We would like to thank the anonymous referees of PPDP 1999 for their
valuable comments. We thank Alberto Pettorossi and Maurizio Proietti for useful
discussions and pointers to earlier work. We also thank Sandro Etalle for relevant
references, Taisuke Sato for providing us with a copy of his technical report [Tamaki
and Sato 1986a], and David S. Warren for his comments about an earlier draft of
this paper. This work was partially supported by NSF grants CCR-9711386, ETA-
9705998 and CDA-9805735.

REFERENCES

AMTOFT, T. 1992. Unfold/fold transformations preserving termination properties. In 4th Interna-
tional Symposium on Programming Language Implementation and Logic Programming (PLILP
’92), Leuven, Belgium, M. Bruynooghe and M. Wirsing, Eds. LNCS, vol. 631. Springer-Verlag,
187-201.

ARAVINDAN, C. AND DUNG, P. 1995. On the correctness of unfold/fold transformations of normal
and extended logic programs. Journal of Logic Programming 24, 3, 295 322.

Bossi, A. AND Cocco, N. 1994. Preserving universal termination through unfold/fold. In Inter-
national Conference on Algebraic and Logic Programming (ALP), LNCS 850. 269 286.

Bossi, A., Cocco, N., AND DuLri, S. 1990. A method of specializing logic programs. ACM
Transactions on Programming Languages and Systems 12, 2, 253 302.

Bossi, A., Cocco, N., AND ETALLE, S. 1992. On safe folding. In Programming Language Imple-
mentation and Logic Programming (PLILP), LNCS 631. 172 186.

Bossi, A., Cocco, N., AND ETALLE, S. 1996. Simultaneous replacement in normal programs.
Journal of Logic and Computation 6, 1 (February), 79-120.

BOULANGER, D. AND BRUYNOOGHE, M. 1993. Deriving unfold/fold transformations of logic pro-
grams using extended OLDT-based abstract interpretation. Journal of Symbolic Computa-
tion 15, 5/6, 495 521.

BoYER, R. AND MOORE, J. 1975. Proving theorems about Lisp functions. Journal of the
ACM 22,1, 129 144.

BOYER, R. AND MOORE, J. 1990. A Theorem Prover for a Computational Logic. In International
Conference on Automated Deduction (CADE), LNAI /49.1 15.

BUNDY, A. ET AL. 1990. The oyster-clam system. In International Conference on Automated
Deduction (CADE), LNAT 449. 647-648.

CHEN, W. AND WARREN, D. 1996. Tabled evaluation with delaying for general logic programs.
Journal of the ACM 43, 1, 20-74.

Unfold/fold Transformations for Definite Logic Programs : 35

CLARKE, E., GRUMBERG, O., AND PELED, D. 1999. Model Checking. MIT Press.

CoMON, H. AND NIEUWENHUIS, R. 2000. Induction= i-axiomatization + first-order consistency.
Information and Computation 159, 1-2, 151-186.

Das, S. K. 1992. Deductive Databases and Logic Programming. Addison-Wesley.

ETALLE, S. AND GABBRIELLI, M. 1996. Transformations of CLP modules. Theoretical Computer
Science 166, 1, 101 146.

ETALLE, S., GABRIELL], M., AND MEO, M. 2001. Transformations of CCP programs. ACM
Transactions on Programming Languages and Systems 23, 3, 304 395.

FrRANCEScO, N. D. AND SANTONE, A. 1998. A transformation system for concurrent processes.
Acta Informatica 35, 12, 1037 1073.

GERGATSOULIS, M. AND KATZOURAKI, M. 1994. Unfold/fold transformations for definite clause
programs. In International Symposium on Programming Language Implementation and Logic
Programming (PLILP), LNCS 844. 340-354.

HsIANG, J. AND SRrIVAS, M. 1987. Automatic inductive theorem proving using Prolog. Theoretical
Computer Science 54, 3-28.

JONES, N., GoMARD, C., AND SESTOFT, P. 1993. Partial Evaluation and Automatic Program
Generation. Prentice Hall.

KaNnaMORI, T. AND FuJsiTA, H. 1986. Formulation of Induction Formulas in Verification of Prolog
Programs. In International Conference on Automated Deduction (CADE). 281-299.

KAaNAMORI, T. AND FuiiTa, H. 1987. Unfold/fold transformation of logic programs with counters.
In USA-Japan Seminar on Logics of Programs, Also available as ICOT Technical Report.

KAWAMURA, T. AND KANAMORI, T. 1990. Preservation of stronger equivalence in unfold/fold logic
program transformation. Theoretical Computer Science 75, 1&2.

KoMoOrOWSKI, J. 1982. Partial evaluation as a means for inferencing data structures in an ap-
plicative language: A theory and implementation in the case of prolog. In ACM SIGPLAN
International Conference on Principles of Programming Languages (POPL).

Korr, I.. 1985. Unfold/fold program transformations. Algebraic Methods in Semantics. Cambridge
University Press, 412 433.

Lroyp, J. 1993. Foundations of Logic Programming, Second Edition. Springer-Verlag.

MAHER, M. 1987. Correctness of a logic program transformation system. Tech. rep., IBM T.J.
Watson Research Center.

MAHER, M. J. 1993. A transformation system for deductive database modules with perfect model
semantics. Theoretical Computer Science 110, 377 403.

PETTOROSSI, A. AND PROIETTI, M. 1998. Transformation of logic programs. Handbook of Logic
in Artificial Intelligence, vol. 5. Oxford University Press, 697 787.

PETTOROSSI, A. AND PROIETTI, M. 1999. Synthesis and transformation of logic programs using
unfold/fold proofs. Journal of Logic Programming 41, 2 3, 197 230.

PETTOROSSI, A. AND PROIETTI, M. 2000. Perfect model checking via unfold/fold transformations.
In Computational Logic, LNCS 1861.

PETTOROSSI, A., PROIETTI, M., AND RENAULT, S. 1997. Reducing nondeterminism while specializ-
ing logic programs. In ACM SIGPLAN International Conference on Principles of Programming
Languages (POPL). 414-427.

ROYCHOUDHURY, A. 2000. Program transformations for verifying parameterized systems. Ph.D.
thesis, State University of New York at Stony Brook, Available from http://www.comp.nus.
edu.sg/"abhik/papers.html.

RoycuouDnHURY, A.; KumMAR, K. N., RAMAKRISHNAN, C. R., AND RAMAKRISHNAN, I. V. 2002.
Beyond Tamaki-Sato style unfold/fold transformations for normal logic programs. International
Journal on Foundations of Computer Science 13, 3, 387—403.

ROYCHOUDHURY, A., KUMAR, K. N., RAMAKRISHNAN, C. R.;, RAMAKRISHNAN, I. V., AND SMOLKA,
S. A. 2000. Verification of parameterized systems using logic program transformations. In
International Conference on Tools and Algorithms for Construction and Analysis of Systems
(TACAS). Vol. LNCS 1785. Springer-Verlag, 172-187.

36 : Roychoudhury, Kumar, Ramakrishnan, Ramakrishnan

ROYCHOUDHURY, A. AND RAMAKRISHNAN, I. V. 2001. Automated inductive verification of param-
eterized protocols. In International Conference on Computer Aided Verification (CAV). LNCS,
vol. 2102. Springer-Verlag, 25 37.

SAnDs, D. 1996. Total correctness by local improvement in the transformation of functional
programs. ACM Transactions on Programming Languages and Systems 18, 2, 175 234.

ScHREYE, D. D., GLUCK, R., JORGENSEN, J., LEUSCHEL, M., MARTENS, B., AND SORENSEN, M.
1999. Conjunctive partial deduction: Foundations, control, algorithms, and experiments. Jour-
nal of Logic Programming 41, 233-277.

Sek1, H. 1991. Unfold/fold transformation of stratified programs. Theoretical Computer Sci-
ence 86, 1, 107 139.

Sek1, H. 1993. Unfold/fold transformation of general logic programs for well-founded semantics.
Journal of Logic Programming 16, 1,5 23.

Tamaki, H. AND SATO, T. 1984. Unfold/fold transformations of logic programs. In Proceedings
of International Conference on Logic Programming. 127 138.

TAMAKI, H. AND SATO, T. 1986a. A generalized correctness proof of the unfold/ fold logic program
transformation. Tech. rep., Tbaraki University, Japan.

TAMAKI, H. AND SATO, T. 1986b. OLDT resolution with tabulation. In Third International
Conference on Logic Programming. 84—98.

Unfold/fold Transformations for Definite Logic Programs : 37

APPENDIX

In this appendix, we briefly outline the transformation systems of [Kanamori and
Fujita 1987] and [Tamaki and Sato 1986a] for the convenience of the reader. We
then prove that SCOUT is a more powerful transformation sequence (in terms of
allowed transformation sequences).

A. TRANSFORMATION SYSTEM OF KANAMORI-FUJITA

In this work [Kanamori and Fujita 1987], each clause of any program P; in a trans-
formation sequence Py, Py,... is annotated with an integer counter. The counter
of each clause in the initial program Py is set to 1. The unfolding and folding rules
are as follows.

RuLE 8. Unfolding Let C be a definite clause in program P; with counter y
and A be an atom in the body of C. Let Cy,...,Cy, be all the clauses in P; whose
heads are uniftable with A with m.g.u o1,...,0,,. Let the counters of Cy,...,Cp,
be 1,...,Ym- Let C} be the clause that is obtained by replacing Ao by the body of
Cjoj in Coj (1 <j<m). Assign (P;—{C})U{C},...,C.,} to Piy1. The counter
of C is v+ for all 1 < j < m.

RULE 9. Folding Let C be a definite clause in P; of the form A:— Ay,..., A,
with counter v and let D be a clause in P; (j < i) of the form B:— By,. .., By, with
counter §. There is no other clause in P; whose head is unifiable with B. Suppose
there is a substitution o and atoms A1, ..., Ay (m < n) in the body of C s.t.

Aj =Bjo forj=1,...,m

—o substitutes distinct variables for the internal variables of D and moreover those
variables do not occur in {A, Apg,. .., An}.

—m+d<n+y

Define a clause C' as A:— Bo, Ayq1, ..., Ay, and assign P; — {C} U{C'} to Piyq.
The counter of C' is v — 4.

As an extension, [Kanamori and Fujita 1987] mentions that the predicate symbols
of the program P, can be partitioned into strata. Folding can then be allowed even
if m+ 6 = n+~. This extension can also be captured by our transformation
framework. Furthermore, [Kanamori and Fujita 1987] mentions that the counters
of the clauses produced by unfolding (folding) at P; are given as above, unless this
clause is already present in P; with a lower counter.

B. EXTENDED TAMAKI-SATO SYSTEM

This work [Tamaki and Sato 1986a] starts with a “layered” program Py where the
predicate symbols are partitioned into n strata or descent levels. The stratification
should be such that every predicate symbol in the body of a clause C' has a levl
not greater than the level of the perdicate at the head of C'. The level of a clause
in P, is the level of its head predicate.

The transformation rules are given as in [Kanamori and Fujita 1987]. The only
difference is that each clause of program P; in a transformation sequence Py, Py, . ..
is annotated with a descent level (instead of an integer counter). The descent level
of a clause C is:

38 : Roychoudhury, Kumar, Ramakrishnan, Ramakrishnan

—if C € Py then the descent level of C' is the descent level of the predicate symbol
in its head.

if C € P,y is introduced by unfolding C' € P; at atom A, then the descent
level of C' is tge minimum of the descent level of C' and the descent level of the
predicate symbol in A.

if C' € P,y is introduced by folding/goal replacement of clause C' € P;, then the
descent level of C is the descent level of C".

—Finally, a clause C € P; can be folded using a clause D as folder provided the
descent level of C' is smaller than the descent level of D.

C. SCOUT IS A MORE POWERFUL TRANSFORMATION SYSTEM

In this section, we prove that SCOUT allows more transformation sequences than
the counter based transformation system of Kanamori Fujita [1987] as well as the
stratification based transformation system of Tamaki-Sato [1986a].

Kanamori-Fujita system [1987]. This system is special case of SCOUT where
folding is conjunctive and all the predicate symbols of the initial program are placed
in a single stratum.

Eztended Tamaki-Sato system. For proving that SCOUT covers any transforma-
tion sequence Py, Py, P», ... which is allowed by the fold/unfold/goal replacement
system of [Tamaki and Sato 1986a], we define the invariants given below. Recall
that in [Tamaki and Sato 1986a] each clause in any P; is associated with a strata
number, also called the descent level. Folding of a clause C (folded clause) using a
clause D (folder clause) is allowed if: descent level of C' < descent level of D. Also,
since [Tamaki and Sato 1986a] handles only conjunctive folding, any fold/unfold
transformation sequence of [Tamaki and Sato 1986a], if ezecutable in SCOUT, will
always produce clauses with counters of the form (v,); in other words, the two
counters of any clause will always be equal.

We now consider the following invariants :

J1(P;) = Any fold/unfold/goal replacement transformation in P; which is al-
lowed by the extended Tamaki-Sato system [1986a] is allowed by SCOUT (with
n strata).

—J2(P;) = Let C be any clause in program P; with strata number (i.e. descent
level in the terminology of [Tamaki and Sato 1986a]) j. Then, in SCOUT (with
n strata), v, (C) = v1.(C) = (71,...,7) where v; > 0A (V1 < k < j v, =0)

To prove that any unfold/fold/goal replacement transformation sequence covered
by [Tamaki and Sato 1986a] is also covered by SCOUT, it is sufficient to prove that
J1(P;) is an invariant.

THEOREM 5. Let Py, Py, P, ... be an unfold/fold/qoal replacement transforma-
tion sequence of the extended Tamaki-Sato system [1986a]. Then, Vi > 0. J1(P;) A
J2(P;)

ProOOF. The proof follows by induction on i. J1(Fy) is trivially true by the defi-
nition of the fold/unfold transformations in [Tamaki and Sato 1986a] and SCOUT.
Also, if a clause C in Py has descent level j, then 7 (C) = ~7,(C) = (..., 7n)

Unfold/fold Transformations for Definite Logic Programs : 39

where v; = 1 and 7 = 0 when | # j. Clearly then J2(Fp) is also true. Thus, we
have established the basis for the induction.

Now assume that Vi < m. J1(F;) A J2(P;). We now show that J1(Py41) A
J2(Pp,+1) holds.

First we prove J2(P,,+1). Let C be any clause in P,,;1. We show that the
property mentioned in .J2 is true for C.

Case 1: C is inherited from P,
The result holds since J2(P,,) is true by induction hypothesis.
Case 2: C is obtained by unfolding C' using C"

Since, Vi < m. J1(P;), the sequence Py, Py, ..., Py, Ppni1 can be constructed using

SCOUT. Then, 3,"(C) = 4 H(C) = 4 (C") @y (C") = 4 (C") &y (C™). Also
let the descent level of C', C'" and C" be k,k' and k" respectively. Then, by [Tamaki
and Sato 1986a], k = min(k', k""). By the induction hypothesis, the property in .J2
is true for both C" and C". Hence if 7,7 (C") = v (C") = (71, ..., 7)) and 42 (C") =
Y (C") = (s ym)s thenyp ==, =0,9{ =--- =/, =0. Also since
k is the minimum of k' and k", we have either v, = 0A ;' > 0,0r v, > 0A7y/ =0
or 7}, > 0 A} > 0. Now, 31(C) = 171 (C) = A (C") & 3 (C") = (-1)
where V1 <1 <n vy =~ +'. Hence 1 =--- =y,_1 =0 and 7 > 0. Thus the
property in J2 holds for C.

Case 8: C is obtained by folding C' using D'

Since Vi < m. J1(F;), the transformation sequence Py, Py, ..., Py, Pyy1 can be
constructed using SCOUT. Let C' and D' have descent levels k and [respectively.
Then by [Tamaki and Sato 1986a], the descent level of C' is also k and k < [. But
D' € Py, s0 4}, (D'") = 4p;(D') = (1,...,0,) where & = 1 and 8} = 0 when j # I.

Let 42 (C") = 4(C") = {71, ...,7,). As the property in J2 is true for C’, we have

M =" =% = 0and 7} > 0. Now, 5" (C0) = vi " (C) = 473 (C) (D) =
(Y1, -+, Yn) where V1 < j <n ; = v;—4;. Since k <, therefore §; = --- = §; = 0.
Thus, y1 = --- = yx—1 = 0 and vy, = 7, > 0. Hence the property in .J2 holds for C.

Case 4: C is obtained by goal replacement from clause C' € P,,.

Again, since Vi < m. J1(F;), the transformation sequence Py, ..., Py, Pnhy1 can be
constructed using SCOUT. Let C' have descent level k. then, by [Tamaki and Sato
1986a], the clause C' € Pn41 also has descent level k. Let /2 (C') = 4(C") =
(Vs vh) and 47THC) = 4 H(C) = (m,...,7a) Since property J2 is true
for C' therefore y{ = --- = 7;,_; = 0 and 7, > 0. Let C be obtained from C'
by replacing goal G with G'. Now, from the definition of goal replacement in
[Tamaki and Sato 1986a], for any ground instantiation # we have a(G6) © a(G'6) =
§ = (0,0,...,0) The clause measure of clause C will be v"*'(C) = 4**'(C) =
Y (C") = 4 (C") Therfore, clearly property J2 holds for clause C' as well.

Thus, /7 (C") ® 0@ 321 <<f, @min(A) = 0 where A, ..., A} are the body atoms
other than G in clause C’ (this holds because /7 (C') = 0, § = 0 and ain(A) = 0
for any atom A. Furthermore,

We now show that J2(Pp,41) = J1(Py41). Since the unfolding transformation is
independent of any condition on the stratified counter (or descent level) in SCOUT

40 : Roychoudhury, Kumar, Ramakrishnan, Ramakrishnan

or [Tamaki and Sato 1986a], therefore any unfolding allowed by [Tamaki and Sato
1986a] in P41 is also allowed by SCOUT.

For folding, let C € P,,41 be folded using the folder D € Py in the system
of [Tamaki and Sato 1986a]. Let the descent levels of C and D be be k and I
respectively. Then, k < I (by [Tamaki and Sato 1986a]) and the property of J2
is true for both C' and D (since J2(Ppy1) holds). So, if 7" (C) = 4+ (C) =
(71,7 and (D) = 9.(D) = (d1,...,8,) we have y; = ... = 1 = 0,
Y > 0,6 = ... =0_1 =0. As k < [, this means §; = ... = §; = 0. Clearly then
7,1 (C) is lexicographically greater than 79,(D). Hence C can be folded using D
as folder in SCOUT.

For goal replacement, let C' € P41 be of the form A:— G, Af,..., A} and
let it be replaced in [Tamaki and Sato 1986a] system to produce clause C' =
A:— G, AY, ..., AL, Let the descent level of C' be k. Then, the descent level of
clause C' is also k. By setting § = (0,...,0 we have a(G0) & a(G'0) = § =
(0,0,...,0). We also require 7" (C) & § & >, ;< @min(4)) = 0 for this goal
replacement to be applicable in SCOUT. Since property J2 holds for clause C'
therefore v"*!(C) > 0. Furthermore, § = 0 and @min(A) = 0 for any atom A.
Therefore, 7" (C) & 6 & 3, <;<p @min(A4)) = 0 and the goal replacement trans-

formation is applicable in SCOUT. This completes the proof. [

Thus, we have proved that SCOUT allows all unfold/fold transformation se-
quences allowed by [Tamaki and Sato 1986a]. To prove that it is strictly more
powerful, we need to give an example transformation sequence which is allowed by
SCOUT, but not by [Tamaki and Sato 1986a]. Any example requiring disjunc-
tive folding serves this purpose. Hence we conclude that SCOUT is strictly more
powerful than [Tamaki and Sato 1986a].

