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1. INTRODUCTIONSome of the most extensively studied transformation systems for de�nite logi pro-grams are the so alled unfold/fold transformation systems. At a high level unfoldand fold transformations an be viewed as follows. De�nite logi programs onsistof de�nitions of the form A:� � where A is an atom and � is a positive boolean for-mula over atoms. Unfolding replaes an ourrene of A in a program with � whilefolding replaes an ourrene of � with A. Folding is alled reversible if its e�etsan be undone by an unfolding, and irreversible otherwise. An unfold/fold trans-formation system for de�nite logi programs was �rst desribed in a seminal paperby Tamaki and Sato [1984℄. In the urry of researh ativity that followed, a num-ber of unfold/fold transformation systems were developed. Kanamori and Fujita[1987℄ proposed a transformation system that was based on maintaining ountersto guide folding. Maher [Maher 1987; 1993℄ desribed a transformation system thatpermits only reversible folding. The basi Tamaki-Sato system itself was extendedin several diretions (e.g., to handle folding with multiple lauses [Gergatsoulis andKatzouraki 1994℄, negation [Aravindan and Dung 1995; Seki 1991; 1993℄) and ap-plied to program optimization problems (e.g., [Bossi et al. 1990; Boulanger andBruynooghe 1993; Pettorossi et al. 1997℄). (See Pettorossi and Proietti [1998℄ foran exellent survey of researh on this topi over the past deade).Corretness of Unfold/Fold Transformations. Corretness proofs for unfold/foldtransformations onsider transformation sequenes of the form P0; P1; : : : ; whereP0 is an initial program and Pi+1 is obtained from Pi by applying an unfolding orfolding transformation. The proofs usually show that all programs in the trans-formation sequene have the same least Herbrand model. It is easy to verify thattransforming Pi to Pi+1 using unfolding or folding is partially orret, i.e., the leastmodel of Pi+1 is a subset of that of Pi. It is also easy to show, by indution on thestruture of the proof trees, that unfolding transformation is totally orret, i.e.,it preserves the least model. However, as illustrated below, indisriminate foldingmay introdue irularity in de�nitions, thereby replaing �nite proof paths within�nite ones.Consider the sequene of programs in Figure 1. In the �gure, P1 is derived byunfolding the ourrene of q(X) in the �rst lause of P0. P2 is derived from P1 byfolding the literal q(X) in the body of the seond lause of prediate p into p(X)using the lause p(X) :- q(X) in P0. Alternatively, onsider the transformationp(X):-q(X).q(a).q(f(X)):-q(X). p(a).p(f(X)):-q(X).q(a).q(f(X)):-q(X). p(a).p(f(X)):-p(X).q(a).q(f(X)):-q(X).Program P0 Program P1 Program P2Fig. 1. An example of orret unfold/fold transformation sequene



Unfold/fold Transformations for De�nite Logi Programs � 3sequene in �gure 2. By folding q(X) in the seond lause of p in P1 (using theseond lause de�ning q in P1), we obtain program P 02. Now folding q(X) in theseond lause of q in P 02 (using seond lause of p in P1), we get program P 03, whoseleast model di�ers from that of P0.Transformation Systems with Irreversible Folding. If the folding transformationis reversible, then sine its e�et an be undone by an unfolding, any partiallyorret unfold/fold transformation sequene is also totally orret. However, forreversibility, folding at step i of the transformation an only use the lauses in Pi.Therefore reversibility is a restritive ondition that seriously limits the power ofunfold/fold systems by disallowing many orret folding transformations, suh asthe one used to derive P2 from P1. Hene almost all researh on unfold/fold trans-formations have foused on onstruting systems that permit irreversible folding.In suh systems, folding at step i an use lauses that are not in Pi. For example,in the original and extended Tamaki-Sato systems [1984; 1986a℄ folding always useslauses in P0 whereas in the Kanamori-Fujita system [1987℄ the lauses an omefrom any Pj (j � i). But ensuring total orretness of irreversible transformationsequenes is diÆult. In order to ensure that folding is still totally orret, thesesystems permit folding using only lauses with ertain (syntati) properties. Forinstane, the original Tamaki-Sato system permits folding using a single lause only(onjuntive folding) and this lause is required to be non-reursive. In [Gergat-soulis and Katzouraki 1994℄ the above system was extended to allow folding withmultiple lauses (disjuntive folding) but all the lauses are required to be be non-reursive. Kanamori and Fujita [1987℄ as well Tamaki and Sato in a later paper[1986a℄ gave two di�erent approahes for onjuntive folding using reursive lauses.But the design of a transformation system that allows folding in the presene ofboth disjuntion and reursion has remained open so far. We will desribe suh asystem in this paper.To generalize in this diretion one needs to �rst understand the strengths andlimitations of the above systems. The key observation is that, although the book-keeping needed to determine permissible foldings appear radially di�erent in thedi�erent systems, there is a striking similarity in how the transformations are provedorret. Essentially, these systems assoiate some measure with di�erent programelements, namely, atoms and lauses to determine whether folding is permissiblein that step (e.g., \foldable" ag in [Tamaki and Sato 1984℄, desent levels/stratanumbers in [Tamaki and Sato 1986a℄, and ounters in [Kanamori and Fujita 1987℄).Moreover, they ensure that eah transformation step maintains an invariant re-lating proofs in the derived program to the various measures (e.g., the notions ofp(X):-q(X).q(a).q(f(X)):-q(X). p(a).p(f(X)):-q(X).q(a).q(f(X)):-q(X). p(a).p(f(X)):-q(f(X)).q(a).q(f(X)):-q(X). p(a).p(f(X)):-q(f(X)).q(a).q(f(X)):-p(f(X)).Program P0 Program P1 Program P 02 Program P 03Fig. 2. An example of inorret unfold/fold transformation sequene



4 � Royhoudhury, Kumar, Ramakrishnan, Ramakrishnanrank-onsisteny in [Kanamori and Fujita 1987; Tamaki and Sato 1984℄, weight-onsisteny in [Gergatsoulis and Katzouraki 1994℄ and �-ompleteness in [Tamakiand Sato 1986a℄). This raises another interesting question: an we exploit the sim-ilarities in the orretness proofs of irreversible unfold/fold systems to develop anabstrat framework. Suh a framework will speify the obligations that must be sat-is�ed to ensure total orretness and hene an simplify onstrution of unfold/foldsystems to the extent that one is relieved of the burden of giving orretness proofs.We propose suh a framework in this paper.Summary of Results. In this paper, we develop a general transformationframework for de�nite logi programs parameterized by ertain abstrat measures.These abstrat measures are obtained by suitably abstrating and extending themeasures used in [Gergatsoulis and Katzouraki 1994; Kanamori and Fujita 1987;Tamaki and Sato 1984; 1986a℄ (see Setion 2). We relax the invariants needed in theproofs to permit approximation of measure values. This is the key idea that enablesus to fold using multiple reursive lauses. We prove the orretness of transfor-mations in the framework based only on the properties of the abstrat measures.We show that various existing unfold/fold transformation systems an be derivedfrom the framework by instantiating these abstrat measures (see Setion 4). Wealso show how the framework an be extended to inlude the Goal Replaementtransformation (see Setion 3).The parameterized framework presented in this paper is useful for understandingthe strengths and limitations of existing transformation systems. It also enables theonstrution of new unfold/fold systems. As evidene we obtain SCOUT (Strataand COunter based Unfold/fold Transformations), a transformation system thatpermits disjuntive folding using reursive lauses. The development of SCOUTwas based on two ruial observations made possible by the framework. First, wheninstantiating the framework to obtain the Kanamori-Fujita system, it is easy to seethat the ounters (the measure used in their system) may ome from any linearlyordered set; this permits us to inorporate strati�ation into the ounters to obtaina system that generalizes the extended Tamaki-Sato system [1986a℄ as well as theKanamori-Fujita system. Seondly, the framework enables us to maintain approx-imate ounters; we an hene generalize the ombination of the Kanamori-Fujitaand the extended Tamaki-Sato systems to fold using multiple reursive lauses.The motivation behind the development of our parameterized transformationframework is its appliability in indutive reasoning. Unfold/fold transformationshave traditionally been used for program eÆieny improvement. However, therehas been a parallel line of work in using unfold/fold transformations for onstrutingproofs [Hsiang and Srivas 1987; Kanamori and Fujita 1986; Pettorossi and Proietti1999; Royhoudhury and Ramakrishnan 2001℄. Roughly speaking, these worksprove prediate equivalenes of the form p � q by transforming p and q suh thattheir equivalene an be inferrred from syntax. Our generalized folding rule is usefulfor onstruting suh proofs. In partiular, when p , q are de�ned using prediateswith multiple lauses (some of whih may be reursive) we may need a more generalfolding rule to transform p, q. An interesting appliation where suh a situationrops up is in the veri�ation of temporal properties (prediates desribing temporalproperties are enoded using multiple reursive lauses). We show the appliation



Unfold/fold Transformations for De�nite Logi Programs � 5of our more general transformations with a detailed example in Setion 5.2. A PARAMETERIZED TRANSFORMATION FRAMEWORKWe now desribe our parameterized unfold/fold transformation framework and il-lustrate the abstrations by drawing analogies to the Kanamori-Fujita system.We assume familiarity with the standard notions of terms, models, substitutions,uni�ation, most general uni�er (mgu), de�nite lauses, SLD resolution, and prooftrees. For a bakground on these materials, the reader is referred to [Das 1992;Lloyd 1993℄. We will use the following symbols (possibly with primes and sub-sripts): P to denote a de�nite logi program; M(P ) its least Herbrand model; Cand D for lauses; A;B to denote atoms and literals and � for most general uni�er(mgu).2.1 Unfolding and FoldingThe unfolding and folding rules are de�ned as follows:Rule 1. Unfolding Let C be a lause in Pi and A an atom in the body of C.Let C1; : : : ; Cm be the lauses in Pi whose heads are uni�able with A with mostgeneral uni�er �1; : : : ; �m. Let C 0j be the lause that is obtained by replaing A�jby the body of Cj�j in C�j (1 � j � m). Assign (Pi � fCg) [ fC 01; : : : ; C 0mg toPi+1. 2Rule 2. Folding Let fC1; : : : ; Cmg � Pi where Cl denotes the lauseA:� Al;1; : : : ; Al;nl ; A01; : : : ; A0nand fD1; : : : ; Dmg � Pj (j � i) whereDl is the lause Bl:� Bl;1; : : : ; Bl;nl . Further,let:(1) 81 � l � m 9�l 81 � k � nl Al;k = Bl;k�l(2) B1�1 = B2�2 = � � � = Bm�m = B(3) D1; : : : ; Dm are the only lauses in Pj whose heads are uni�able with B(4) 81 � l � m, �l substitutes the internal variables1 of Dl to distint variableswhih do not appear in fA;B;A01; : : : A0ng.Then Pi+1 := (Pi � fC1; : : : ; Cmg) [ fC 0g where C 0 � A:� B;A01; : : : ; A0n: 2D1; : : : ; Dm are the folder lauses, C1; : : : ; Cm are the folded lauses, and B isthe folder atom. A folding step is onjuntive whenever both the folder and foldedlauses are singleton sets and is disjuntive otherwise. Note that in the latter asea set of folded lauses is simultaneously replaed by a single lause using a set offolder lauses.We say that P0; P1; : : : ; Pn is an unfold/fold transformation sequene if the pro-gram Pi+1 is obtained from Pi (i � 0) by appliation of an unfold or a fold rule.Partial orretness of an unfold/fold transformation sequene (Theorem 1) nowfollows easily.1Variables appearing in the body of a lause, but not its head



6 � Royhoudhury, Kumar, Ramakrishnan, RamakrishnanTheorem 1. Partial Corretness Let P0; P1; : : : ; Pi be a program transforma-tion sequene where M(Pj) =M(P0) for all 0 � j � i. If Pi+1 is obtained from Piby applying either unfolding or folding, then M(Pi+1) �M(Pi).Proof. This is established by showing that a proof T of any ground atom A 2M(Pi+1), has a orresponding proof T 0 of A in Pi. This an be proved by indutionon the struture of T . Let C = (A:� A1; : : : ; An) be the lause applied at the rootof T . There are three ases:Case 1: C 2 Pi.Then, the result follows by indution hypothesis.Case 2: C is obtained by unfolding.Let C 2 Pi+1 be obtained by unfolding lause C 0 2 Pi using lause D 2 Pi.Without loss of generality, there exist ground instanes of C 0 and D, in Pi, of theform A:� B;Ak+1; : : : ; An and B:� A1; : : : ; Ak. The proof T 0 of A an be thenonstruted by applying lause C 0 at the root, and then lause D. The existeneof ground proofs of A1; : : : ; An in Pi follows by indution hypothesis.Case 3: C is obtained by folding.Let C 2 Pi+1 be obtained by folding C 0 2 Pi using D 2 Pj(j � i) as folder.Let A1 be the folder atom in lause C, i.e. the atom introdued by folding.Sine M(Pj) = M(Pi) and A1 2 M(Pi) (by indution hypothesis) therefore A1 2M(Pj). Thus, A1 has a ground proof T1 in Pj . By ondition 3 of the foldingtransformation, the lause applied at the root of T1 must be one of the folderlauses. Let this folder lause be D and let the orresponding folded lause beC 0 2 Pi. Then, without loss of generality, C 0 and D have ground instanes ofthe form A:� A1;1; : : : ; A1;l; A2; : : : ; An and A1:� A1;1; : : : ; A1;l respetively. SineA1;1; : : : ; A1;l 2 M(Pj) therefore A1;1; : : : ; A1;l 2 M(Pi). Thus, A1;1; : : : ; A1;l haveground proofs in Pi. Also, A2; : : : ; An have ground proofs in Pi by indution hy-pothesis. Thus, we an onstrut a ground proof of A in Pi by applying lause C 0at the root. This ompletes the proof.2.2 Measures, Measure-Consistent Proofs and Total CorretnessTotal orretness of an unfold/fold transformation sequene is established by in-dution over some well-founded order to onstrut a proof in Pi+1 for any atomA in M(Pi). To see the subtleties involved in proving total orretness, onsidertransforming Pi to Pi+1 using a onjuntive folding step. To onstrut a proof of A(the head of the folded lause) in Pi+1, we need a proof of B (the folder atom) inPi+1. But the existene of suh a proof an be established (by indution hypothesis)only if B is less than A in the well-founded order on whih the indutive argumentis presented. Note that if the folder lause is piked from Pj , j < i, we annot usesimple well-founded orders like size of proof trees in Pi, as the proof of B in Pi anbe larger in size than the proof of A in Pi.It is worth noting that we do not attempt to translate every proof of A in Pi to aproof of A in Pi+1. Instead, following [Kanamori and Fujita 1987; Tamaki and Sato1984; 1986a℄ we onsider a \speial proof" alled strongly measure onsistent proof(see De�nition 6) of A in Pi and onstrut a proof of A in Pi+1. The indutionproof for establishing total orretness is ompleted by showing that the proof ofA in Pi+1 thus onstruted is itself strongly measure onsistent.



Unfold/fold Transformations for De�nite Logi Programs � 7Reall that irreversible folding steps need to be onstrained in order to preservethe semantis. In order to enfore these onstraints, we maintain some book-keepinginformation as we perform the transformations, formalized using the following no-tions of Measure struture, Atom measure, and Clause measure.Definition 1. Measure Struture A Measure Struture is a 4-tuple � =hM;�;�;Wi where hM;�i is a ommutative group with 000 2 M as its identityelement, � is a linear order on M, � is monotone w.r.t. �, and W is a subset offx 2M j 000 � xg, over whih � is well-founded.We will refer to M, the �rst omponent of the measure struture, as the measurespae. We let � denote � or =. Moreover, we use 	 to denote the inverse operationof the group hM;�i. We also use 	 as a binary operator, a	 b meaning a� (	b)(where (	b) is the inverse of b). The Kanamori-Fujita system [1987℄ keeps trakof integer ounters. Thus the measure struture is hZ;+;<;Ni, where Z and N arethe set of integers and natural numbers respetively, + denotes integer addition,and < is the arithmeti omparison operator.Definition 2. Atom Measure An atom measure � of a program P w.r.t. ameasure struture � is a partial funtion from the Herbrand base of P to W suhthat it is total on the least Herbrand model of P . For our purposes, it suÆes touse the same atom measure for eah program in a transformation sequene.In the Kanamori-Fujita system, the atom measure of any Pi in the transformationsequene is the number of nodes in the shortest proof tree of A in the initial programP0. The proof of total orretness for folding will indut on the atom measure,relating the atom measure of A (the head of the folded lauses) with the atommeasure of B (the folder atom).Definition 3. Clause Measure A lause measure (lo; hi) of a program Pw.r.t. a measure struture � is a pair of total funtions from lauses of P to Msuh that 8C 2 P lo(C) � hi(C).In the Kanamori-Fujita system, lo and hi are the same and map eah lause toits orresponding ounter value. However, as we will see later, to allow disjuntivefolding we will need the two distint funtions lo and hi. Heneforth, we denotethe lause measure of a program Pi by (ilo; ihi). We will now develop the idea of\speial proofs" mentioned earlier. For that purpose, we need the de�nition:Definition 4. Ground Proof of an Atom Let T be a tree, eah of whosenodes is labeled with a ground atom. Then T is a ground proof in program P , ifevery node A in T satis�es the ondition : A:� A1; :::; An is a ground instane ofa lause in P , where A1; :::; An (n � 0) are the hildren of A in T .Consider transforming Pi to Pi+1 by a folding step (see �gure below). C and D arethe folded and folder lauses respetively and j < i......D : q:� q1; :::; qk..... .....C : p:� q1; :::; qk; qk+1; :::; qn..... .....C 0 : p:� q; qk+1; :::; qn.....Program Pj Program Pi Program Pi+1



8 � Royhoudhury, Kumar, Ramakrishnan, RamakrishnanIn order to show that p 2M(Pi)) p 2M(Pi+1) by indution on �, we would liketo show that �(q) � �(p). The atoms p and q are related by what is shared betweenthe bodies of the lauses C and D. Hene we attempt to relate their measures viathe measures of bodies of C and D. Suppose D satis�es�(q) � X1�i�k�(qi) (i)then we an relate �(q) to the sum of the measures of the body atoms of the foldedlause C (sine k � n). Further if C satis�es�(p) � X1�i�n�(qi) (ii)then we an establish that �(q) � �(p). If either (i) or (ii) is a strit relationshipthen we an establish that �(q) � �(p). Relations (i) and (ii) form the basis forthe notions of weak and strong measure onsisteny .Definition 5. Weakly Measure Consistent Proof A ground proof T inprogram Pi is weakly measure onsistent w.r.t. atom measure � and lause measure(ilo; ihi) if every ground instane A:� A1; :::; An of a lause C 2 Pi used in Tsatis�es �(A) � ihi(C) �P1�l�n �(Al).Definition 6. Strongly Measure Consistent Proof A ground proof T inprogram Pi is strongly measure onsistent w.r.t. atom measure � and lause mea-sure (ilo; ihi) if every ground instane A:� A1; :::; An of a lause C 2 Pi used in Tsatis�es 81 � l � n �(Al) � �(A) and �(A) � ilo(C)�P1�l�n �(Al)Definition 7. Measure Consistent Proof A ground proof T in program Pi issaid to be measure onsistent w.r.t. atom measure � and lause measure (ilo; ihi),if it is strongly and weakly measure onsistent w.r.t. � and (ilo; ihi).We point out that our abstrat notion of measure onsisteny relaxes the onretenotion of rank onsisteny of [Kanamori and Fujita 1987℄. While rank onsistenyof [Kanamori and Fujita 1987℄ imposes a strit equality onstraint on �(A), mea-sure onsisteny only bounds it from above and below. As we will show later, thisfailitates maintenane of approximate information. This is the entral idea thatpermits us to do disjuntive folding using reursive lauses. For proving totalorretness, we need :Definition 8. Measure onsistent Program A program P is measure on-sistent w.r.t. atom measure � and lause measure (lo; hi), if for all A 2 M(P ),we have(1 ) All ground proofs of A in P are weakly measure onsistent w.r.t. � and (lo; hi)(2 ) A has a ground proof in P whih is strongly measure onsistent w.r.t. � and(lo; hi)We are now ready to de�ne the abstrat onditions on folding and onstraints onhow the lause measures are to be updated after an unfold/fold step. For eahlause C obtained by applying an unfold/fold transformation on program Pi, wederive a lower bound on i+1hi (C) and an upper bound on i+1lo (C), denoted by



Unfold/fold Transformations for De�nite Logi Programs � 9GLB i+1(C) and LUB i+1(C) respetively. We will see later that the onditions onwhen the rules beome appliable, as well as these bounds are designed to ensurethe orretness of the folding step.We assume that for any atomA (not neessarily ground), �min(A) denotes a lowerbound on the measure of any provable ground instantiation of A i.e. 8� �min(A) ��(A�). We use �min in the folding ondition of rule 4 below.Rule 3. Measure Preserving Unfolding Let Pi+1 be obtained from Pi byan unfolding transformation as desribed in Rule 1. We say that the unfoldingstep is measure preserving if the assoiated lause measures satisfy the followinginequalities: 81 � j � mi+1lo (C 0j) � ilo(C)� ilo(Cj) ( def= GLB i+1(C 0j) ) (1)i+1hi (C 0j) � ihi(C) � ihi(Cj) ( def= LUB i+1(C 0j) ) (2)and the lause measure of all other lauses in Pi+1 are inherited from Pi. 2Rule 4. Measure Preserving Folding Let Pi+1 be obtained from Pi by afolding transformation as desribed in Rule 2. We say that this folding step ismeasure preserving, if the assoiated lause measures satisfy the following: 281 � l � m: jhi(Dl) � ilo(Cl)� X1�k�n�min(A0k)and moreover,i+1lo (C 0) � min1�l�m(ilo(Cl)	 jhi(Dl)) ( def= GLB i+1(C 0) ) (3)i+1hi (C 0) � max1�l�m(ihi(Cl)	 jlo(Dl)) ( def= LUB i+1(C 0) ) (4)and the lause measure of all other lauses in Pi+1 are inherited from Pi. 2It should be noted that the above rules do not presribe unique values for upper andlower lause measures for the lauses generated by the transformations. Instead,they only speify bounds of these values; the values themselves are hosen onlywhen instantiating the framework to a onrete system.Observe from the de�nition of atom measures that we an always assign 0 to�min. However, by setting a more aurate estimate of �min, we an allow morefolding steps. As an example, onsider any onjuntive folding step where thefolded lause C 2 Pi has more body atoms than the folder lause D 2 Pj , andilo(C) = jhi(D). Suh a folding step will not be allowed if 8A �min(A) = 0.The Need for Approximate Clause Measures. In the Kanamori-Fujita system,a ounter (orresponding to our lause measure) is assoiated with every lause.Roughly, the ounter assoiated with a lause C 2 Pi where C � A:� A1; : : : ; Anindiates the number of interior nodes in the smallest proof tree in P0 that derivesA1; : : : ; An from A. Thus, it is the amount saved (in terms of proof tree size,ompared to the smallest proof in P0) whenever C is used in a proof in Pi. Thefolding rule is appliable provided the savings arued in the folded lause is morethan that in the folder lause.



10 � Royhoudhury, Kumar, Ramakrishnan, RamakrishnanTo see why a single ounter is inadequate for disjuntive folding, onsider thefollowing example:C1: p :- r, t. (x1)C2: p :- s, t. (x2)C3: q :- r. (x3)C4: q :- s. (x4) C 0: p :- q, t. (?)C3: q :- r. (x3)C4: q :- s. (x4)Program Pi Program Pi+1Pi+1 is obtained from Pi by folding fC3; C4g into fC1; C2g. Now, the savingsdue to C 0 in a proof of Pi+1 depends on whether C3 or C4 is used to resolve qin that proof. Sine this information is unknown at transformation time, we anonly keep approximate information about savings. In our framework we hoose toapproximate the savings by the losed interval [lo; hi℄.We now have the neessary mahinery for establishing total orretness of asequene of unfold/fold transformations.Lemma 1. Preserving Weak Measure Consisteny Consider a transforma-tion sequene of measure onsistent programs P0; : : : ; Pi suh that M(P0) =M(Pj)for all 0 � j � i. Let Pi+1 be obtained from Pi by applying measure-preserving un-folding or measure-preserving folding. Then, all ground proofs of Pi+1 are weaklymeasure onsistent.Proof. We will useM(Pi+1) �M(Pi), a result whih was independently provedin theorem 1. The proof proeeds by indution on size of ground proofs in Pi+1. LetT be a ground proof of some ground atom A in Pi+1, and let A:� A1; : : : ; An (wheren � 0) be the ground instane of a lause C 2 Pi+1 that is used at the root of theproof T . Then the proofs ofA1; : : : ; An in T are weakly measure onsistent by indu-tion hypothesis. Hene, it suÆes to show that, �(A) � i+1hi (C)�P1�l�n �(Al).Case 1: C was inherited from PiSine M(Pi+1) � M(Pi), hene A1; : : : ; An are provable in Pi. Therefore, theground lause A:� A1; : : : ; An is used at the root of a ground proof in Pi. Sine Piis measure onsistent, the result follows.Case 2: C was obtained by unfoldingLet A1; : : : ; Ak be the instanes of the body atoms of C whih were introduedthrough unfolding. By the de�nition of the unfolding transformation, then theremust be lauses C 0 and C 00 in Pi with ground instanes A:� B;Ak+1; : : : ; An andB:� A1; : : : ; Ak respetively with i+1hi (C) � ihi(C 0)� ihi(C 00).Again, A1; : : : ; Ak; Ak+1; : : : ; An are provable in Pi (as M(Pi+1) � M(Pi)).Hene, the above mentioned ground instanes of C 0 and C 00 are ground lausesused at the root of some proof in Pi. As Pi is a measure onsistent program, wehave : �(A) � ihi(C 0)� �(B) � Xk+1�l�n�(Al)�(B) � ihi(C 00)� X1�l�k�(Al)The result now follows by ombining these two inequations.



Unfold/fold Transformations for De�nite Logi Programs � 11Case 3: C was obtained by foldingLet A1 be the instane of the folder atom (i.e. the atom orresponding to the head ofthe folder lauses) in C, and let Pj(j � i) be the program from whih folder lauseswere piked. We have M(Pi) = M(Pj) = M(P0), and hene M(Pi+1) � M(Pj).Thus, A1 2 M(Pj). Sine Pj is a measure onsistent program, A1 must have astrongly measure onsistent proof T 0A1 in Pj . Let the lause used at the root ofthis proof be D0 and let the ground instane of D0 used at the root of T 0A1 beA1:� A1;1; : : : ; A1;k. Then, by the strong measure onsisteny of T 0A1�(A1) � jlo(D0)� X1�l�k�(A1;l)But, D0 must be a folder lause by de�nition of folding. Hene, there must be alause C 0 in Pi with a ground instane A:� A1;1; : : : ; A1;k; A2; : : : ; An (this is thefolded lause orresponding to D0). Now, A2; : : : ; An are provable in Pi (sineM(Pi+1) � M(Pi)), and also A1;1; : : : ; A1;k are provable in Pi (sine M(Pj) =M(Pi)). Therefore, the above mentioned ground instane of C 0 is used at theroot of a weakly measure onsistent proof of A in Pi (sine program Pi is measureonsistent). Hene�(A) � ihi(C 0)� X1�l�k �(A1;l)� X2�l�n�(Al)� ihi(C 0)	 jlo(D0)� �(A1)� X2�l�n�(Al)� ihi(C 0)	 jlo(D0)� X1�l�n�(Al)Sine D0 and C 0 are folder and folded lauses and C is the lause obtained byfolding therefore i+1hi (C) � ihi(C 0)	 jlo(D0), and hene�(A) � i+1hi (C) � X1�l�n�(Al)Thus, we have established that any arbitrary ground proof T in Pi+1 is weaklymeasure onsistent.We now formally state and prove the total orretness of any unfold/fold trans-formation sequene.Theorem 2. Total Corretness Let P0; P1; : : : ; Pi be a transformation se-quene of measure onsistent programs suh that M(P0) = M(Pj) for all 0 �j � i. Let Pi+1 be obtained from Pi by applying measure-preserving unfolding ormeasure-preserving folding. Then, (i) M(Pi+1) =M(Pi) and (ii) Pi+1 is a measure-onsistent program.Proof. By theorem 1, we have M(Pi+1) � M(Pi), and by lemma 1 we knowthat all ground proofs of Pi+1 are weakly measure onsistent. Hene it is suÆientto prove that (1) M(Pi) � M(Pi+1) and (2) 8A 2 M(Pi+1), A has a stronglymeasure onsistent proof in Pi+1.Consider any ground atom A 2 M(Pi). Sine Pi is measure onsistent, A has astrongly measure onsistent proof T in Pi. We now onstrut a strongly measure



12 � Royhoudhury, Kumar, Ramakrishnan, Ramakrishnanonsistent proof T 0 of A in Pi+1. Constrution of T 0 proeeds by indution on atommeasures. Let C be a lause used at the root of T . Let A:� A1; :::; An (where n � 0)be the ground instantiation of C at the root of T . Sine T is strongly measureonsistent �(Ai) � �(A), for all 1 � i � n. Hene, we have strongly measureonsistent proofs T 01; :::; T 0n of A1; :::; An in Pi+1. We onstrut T 0 by onsideringthe following ases:Case 1: C is inherited from Pi into Pi+1T 0 is onstruted with A:� A1; :::; An at its root and T 01; :::; T 0n as its hildren. Thisproof T 0 is strongly measure onsistent.Case 2: C is unfolded.Let A1 be the atom in the body of C whih is unfolded. Let the lause used toresolve A1 in T be C1 and the ground instane of C1 used be A1:� A1;1; :::; A1;l1 .By de�nition of unfolding, A:� A1;1; :::; A1;l1 ; A2; :::; An is a ground instane of alause C 01 in Pi+1 with i+1lo (C 01) � ilo(C) � ilo(C1). Also, �(A1;j) � �(A1) and�(A1) � �(A), for all 1 � j � l1. Thus, we have strongly measure onsistent proofsT 01;1; :::; T 01;l1 of A1;1; :::; A1;l1 in Pi+1. The proof T 0 is now onstruted by applyingA:� A1;1; :::; A1;l1 ; A2; :::; An at the root, and putting T 01;1; :::; T 01;l1 ; T 02; :::; T 0n as thehildren. Sine T is strongly measure onsistent,�(A) � ilo(C)�P1�j�n �(Aj) and �(A1) � ilo(C1)�P1�j�l1 �(A1;j)=) (�(A) � �(A1)) � ilo(C) � ilo(C1)�P1�j�n �(Aj)�P1�j�l1 �(A1;j)=) �(A) � i+1lo (C 01)�P2�j�n �(Aj)�P1�j�l1 �(A1;j)Hene, T 0 is a strongly measure onsistent proof in Pi+1.Case 3: C is folded.Let C (potentially with other lauses) be folded, using folder lauses from Pj ,j � i, to lause C 0 in Pi+1. Assume that A1; :::; Ak are the instanes of the foldedatoms in C. Then, C 0 has a ground instane of the form A:� B;Ak+1; :::; An whereB:� A1; :::; Ak is a ground instane of a folder lause D 2 Pj .3 Sine M(Pi) =M(Pj) and A1; :::; Ak are provable in Pi they must also be provable in Pj . Moreover,sine D 2 Pj , B 2M(Pj) =M(Pi). Sine Pj is measure onsistent,�(B) � jhi(D)� X1�l�k �(Al):Now, by the strong measure onsisteny of T ,�(A) � ilo(C) � X1�l�k�(Al)� Xk+1�l�n�(Al)� ilo(C) � (�(B)	 jhi(D))� Xk+1�l�n�(Al) (5)� (ilo(C)	 jhi(D)) � �(B)� Xk+1�l�n�min(Al)� �(B) (by ondition of measure preserving folding)3Reall that in the folding transformation, all lauses in Pj whose head is uni�able with B arefolder lauses.



Unfold/fold Transformations for De�nite Logi Programs � 13Now, by indution hypothesis, B has a strongly measure onsistent proof T 0B inPi+1. We onstrut T 0, the proof of A in Pi+1, with A:� B;Ak+1; :::; An at itsroot, and T 0B; T 0k+1; :::; T 0n as its hildren. To show that T 0 is strongly measureonsistent, note that i+1lo (C 0) � (ilo(C) 	 jhi(D)) aording to the de�nition ofmeasure preserving folding, as C and D are folded and folder lauses. Combiningthis with inequation (5) we get,�(A) � i+1lo (C 0)� �(B) �Pk+1�l�n �(Al)This ompletes the proof.Assigning tighter lause measures. The measure preserving unfolding and fold-ing transformations of Rules 3, 4 provide onstraints on the lause measures inPi+1. Note that by applying measure preserving unfolding/folding to program Piwe an generate a lause C whih is already in Pi, but with new lause measures.Instead of assigning the lause measures as presribed by Rules 3 and 4 (omputedvia addition/subtration), we an assign tighter measures as follows. Formally,let unfold(C 0) be the set of lauses generated by measure preserving unfolding ofC 0 2 Pi and let there exist a lause C s.t. C 2 unfold(C 0)^C 2 Pi�fC 0g. Clearly,then C 2 Pi+1. However, the question is how do we assign (i+1lo (C); i+1hi (C)),the lause measures of C in Pi+1. Similarly, by measure preserving folding offC1; : : : ; Cmg � Pi, we an generate a lauseC 2 Pi�fC1; : : : ; Cmg. Again, we needto assign (i+1lo (C); i+1hi (C)). Let the lause measures of C omputed by the un-fold/fold transformation be (0lo; 0hi). We an then set i+1lo (C) = min(0lo; ilo(C))and i+1hi (C) = min(0hi; ihi(C)) without a�eting the measure onsisteny of Pi+1.For the purposes of measure onsisteny, note that we ould have hosen i+1hi (C) =max(0hi; ihi(C)). Taking the minimum, whih also preserves measure onsisteny,gives us a tighter bound. This also ensures that when we restrit ourselves toonjuntive folding, the lower and higher measures of any lause in program Pi(appearing in some transformation sequene of measure onsistent programs) areidential.3. GOAL REPLACEMENTAugmenting an unfold/fold transformation system with the goal replaement rulemakes it more powerful. In this setion we inorporate goal replaement to ourparameterized framework. Goal replaement allows semantially equivalent on-juntions of atoms to be freely interhanged. We formally de�ne it below. For aonjuntion of atoms A1; :::; An, we use the notation vars(A1; :::; An) to denote theset of variables in A1; :::; An.Rule 5. Goal Replaement Let C be a lause A:� A1; : : : ; Ak; G in Pi, andG0 be an atom suh that vars(G) = vars(G0) � vars(A;A1; :::; Ak). Suppose forall ground instantiation � of G;G0 we have Pi ` G� , Pi ` G0�. Then Pi+1 :=(Pi � fCg) [ fC 0g where C 0 � A:� A1; : : : ; Ak; G0. 2Note that although we replae a single atom G by another atom G0 (where G andG0 do not ontain any internal variables), we an replae onjuntions of atomsusing a sequene of folding, goal replaement and unfolding transformations.The above transformation is partially orret. A formal proof of its partial or-retness appears below.



14 � Royhoudhury, Kumar, Ramakrishnan, RamakrishnanTheorem 3. Let program Pi+1 be obtained from program Pi by applying goalreplaement as desribed in rule 5. Then, M(Pi+1) �M(Pi).Proof. We take any ground proof T of some B 2 M(Pi+1) and onstrut aground proof T 0 of B in Pi, thereby provingM(Pi+1) �M(Pi). This proof proeedsby indution on size of ground proofs in Pi+1. The base ase is obvious beauseunit lauses are not manipulated by goal replaement. For the indution step, ifthe lause used at the root of T is not the replaing lause C 0, then the prooffollows from indution hypothesis. Let the lause used at the root of T be a groundinstane of C 0 and let the ground instane used be A�:� A1�; : : : Ak�;G0�. Then,A1�,: : :,Ak�;G0� have ground proofs T 01; : : : ; T 0k; T 0G0� in Pi by indution hypothesis.Then, by rule 5, there exists a ground proof T 0G� of G� in Pi. Now T 0, the groundproof of A� in Pi, is onstruted with the ground lause A�:� A1�; : : : ; Ak�;G� atthe root and T 01; : : : ; T 0k; T 0G� as its hildren.However, if goal replaement is applied to a measure onsistent program Pi it istotally orret. But then we also need to ensure that the resulting program Pi+1 ismeasure onsistent. If this is ensured, then even if goal replaement is interleavedwith irreversible folding total orretness will be preserved. Formally,Rule 6. Measure Preserving Goal Replaement Let program Pi+1 is ob-tained from program Pi by applying the goal replaement transformation as de-sribed in Rule 5. We say that suh a goal replaement is measure preserving ifthere exists Æ; Æ0 2M (where measure struture is � = hM;�;�;Wi) suh that forall ground instantiation � of G;G0:(i) Æ � �(G�) 	 �(G0�) � Æ0(ii) ilo(C)� Æ �P1�p�k �min(Ap) � 000.and further the assoiated lause measures satisfy,i+1lo (C 0) � ilo(C)� Æ (6)i+1hi (C 0) � ihi(C)� Æ0 (7)The lause measures of the other lauses of Pi+1 are inherited from Pi. 2We now present a formal proof of total orretness and preservation of measureonsisteny of the above rule.Theorem 4. Let Pi+1 be derived from Pi by applying measure preserving goalreplaement as desribed in rule 6. If Pi is measure onsistent, then M(Pi) =M(Pi+1) and Pi+1 is also measure onsistent.Proof. Sine measure preserving goal replaement is a speial ase of the goalreplaement transformation in rule 5, we have M(Pi+1) � M(Pi) by partial or-retness of rule 5. Therefore it is suÆient to prove that:(1) All ground proofs of Pi+1 are weakly measure onsistent(2) M(Pi) �M(Pi+1)(3) 8B 2M(Pi+1) there exists a strongly measure onsistent proof of B in Pi+1.



Unfold/fold Transformations for De�nite Logi Programs � 15We prove the obligation (1) separately. Proof obligations (2) and (3) are provedby showing that: 8B 2 M(Pi) there exists a strongly measure onsistent proof ofB in Pi+1. This is suÆient sine we know M(Pi+1) �M(Pi).First, we prove that all ground proofs of Pi+1 are weakly measure onsistent.The proof proeeds by indution on the size of ground proofs in Pi+1. Let T be aground proof of a ground atom B in Pi+1. If the lause used at the root of T is notthe new lause C 0, then the proof follows by indution hypothesis and the measureonsisteny of Pi. If the lause used at the root of T is C 0, then let the groundinstane of C 0 used at the root of T be A�:� A1�; : : : ; Ak�;G0�. By indutionhypothesis, the proofs of A1�; : : : ; Ak�;G0� in T are weakly measure onsistent. ItsuÆes to show that�(A) � i+1hi (C 0)� X1�l�k �(Al�)� �(G0�)Now, G0� 2M(Pi+1)) G0� 2M(Pi). Hene by rule 5 we have G� 2M(Pi). Also,81 � l � k: Al� 2 M(Pi) (as M(Pi+1 � M(Pi)). Then, A�:� A1�; : : : Ak�;G� is aground instantiation of C whih appears at the root of some ground proof in Pi.Sine Pi is measure onsistent we have�(A) � ihi(C) �P1�l�k �(Al�)� �(G�)� ihi(C) �P1�l�k �(Al�)� ( �(G0�)� Æ0 )� i+1hi (C 0)�P1�l�k �(Al�)� �(G0�)Now, we prove that 8B 2 M(Pi) there is a strongly measure onsistent proofof B in Pi+1. Sine Pi is measure onsistent, it suÆes to translate a stronglymeasure onsistent proof T of B in Pi to a strongly measure onsistent proof T 0of B in Pi+1 for all B 2 M(Pi). We do this translation by indution on the atommeasures. If the lause used at the root of T is not C (where C is the lause inPi that is replaed) then the proof follows from the de�nition of strong measureonsisteny and indution hypothesis. Let C be the lause used at the root of T(a strongly measure onsistent proof of A in Pi) and let A�:� A1�; : : : ; Ak�;G�be the ground instane of C used. Then, by strong measure onsisteny of T ,�(Al�) � �(A�) for all 1 � l � k. By indution hypothesis, we then have stronglymeasure onsistent ground proofs T 01; : : : ; T 0k of A1�; : : : ; Ak� in Pi+1. Also, bystrong measure onsisteny of T�(A) � ilo(C) � X1�l�k�(Al�)� �(G�)� ilo(C) � X1�l�k�(Al�)� ( �(G0�)� Æ ) (8)� ( ilo(C) � X1�l�k�min(Al�)� Æ )� �(G0�)� �(G0�) (By ondition (ii) of rule 6)Then, by indution hypothesis, G0� has a proof T 0G0� in Pi+1. The ground proof T 0is onstruted with A�:� A1�; : : : ; Ak�;G0� at the root (this is a ground instane ofC 0, the new lause in Pi+1) and T 01; : : : ; T 0k; T 0G0� as its hildren. To show that thisproof T 0 is measure onsistent, note that i+1lo (C 0) � ilo(C) � Æ. Combining this



16 � Royhoudhury, Kumar, Ramakrishnan, Ramakrishnanwith inequation (8), we get�(A) � i+1lo (C 0)� X1�l�k �(Al�)� �(G0�)This ompletes the proof.Observe that, similar to the goal replaement transformation in [Kanamori andFujita 1987; Tamaki and Sato 1984; 1986a℄ the onditions under whih rule 6 maybe applied are not testable at transformation time. For testability we need to (1)determine whether G and G0 are semantially equivalent, and (2) estimate Æ andÆ0 suh that the lause measures of Pi+1 an be omputed. We have developed atestable goal replaement rule alled Syntati Goal Replaement. A desription ofthis rule will appear in Setion 5.4. CONSTRUCTING CONCRETE UNFOLD/FOLD SYSTEMS BY INSTANTIATINGTHE FRAMEWORKTo onstrut a onrete unfold/fold transformation system from our abstrat frame-work, the following parameters need to be instantiated :(1) a measure struture �;(2) atom measure � and �min;(3) lause measure (lo; hi) for lauses in the initial program P0 suh that P0 ismeasure onsistent; and(4) funtions to ompute the lause measure of new lauses obtained by the trans-formations suh that they satisfy the onstraints imposed by equations (1)through (4) (refer Rules 3 and 4).There are no further proof obligations. One the above four elements are de�ned,total orretness of the transformation system is guaranteed by the framework. Wenow instantiate our farmework to obtain some existing transformation systems.Note that the instantiations given below onsider all three rules (unfolding, foldingand goal replaement) of these existing transformation systems.4.1 Existing Unfold/fold SystemsWe now show how our framework an be instantiated to obtain the Kanamori-Fujitaand the extended Tamaki-Sato systems. To the best of our knowledge, these arethe only two existing systems that allow folding using reursive lauses. Howeverin both of these systems folding is onjuntive.The Kanamori-Fujita System [1987℄. This system an be obtained as an instaneof our framework as follows:(1) � = hZ;+; <;Ni. This measure struture orresponds to the use of integerounters in [Kanamori and Fujita 1987℄.(2) �(A) = number of nodes in the smallest proof of A in P0, and for any atom A,�min(A) = 1. Thus, �(A) denotes the rank of A desribed in [Kanamori andFujita 1987℄.



Unfold/fold Transformations for De�nite Logi Programs � 17(3) 8C 2 P0 0lo(C) = 0hi(C) = 1. Sine all lause measures are 1, it followsimmediately from the de�nition of atom measures that the smallest proofs ofany ground goal G are strongly measure onsistent, and all proofs in P0 areweakly measure onsistent. Hene P0 is measure onsistent.(4) 8C 2 Pi+1 � Pi we have i+1lo (C) = GLB i+1(C) and i+1hi (C) = LUB i+1(C).Under the given measure struture, it is immediate that the above de�nition isidential to the omputation on ounters in [Kanamori and Fujita 1987℄.Furthermore, the measure preserving folding rule (Rule 4) is applied only whenboth folder and folded lauses are singleton sets. It is easy to see a one-to-oneorrespondene between the onditions on unfold/fold transformations of the aboveinstantiation and the Kanamori-Fujita system.The Extended Tamaki-Sato System [1986a℄. In this system, all the prediatesymbols are partitioned into n strata. In the initial program a prediate fromstratum j is de�ned using only prediates from strata � j. We an obtain thissystem as an instane of our framework as follows:(1) � = hZn;�;�;Nn i where� denotes oordinate-wise integer addition of n-tuplesof integers, and � denotes the lexiographi < order over n-tuples of integers.The n-tuples in the measure struture will orrespond to the n strata of theoriginal program.(2) �(A) = min(fw(T ) j T is a proof of A in P0g), where w(T ) is the weight ofthe proof T de�ned as an n-tuple hw1; : : : ; wni suh that 81 � j � n, wj is thenumber of nodes of prediates from stratum j in T . �(A) orresponds to thenotion of weight-tuple measure of A de�ned in [Tamaki and Sato 1986a℄.For any atom A, �min(A) = 0 = h0; : : : ; 0i.(3) 8C 2 P0, 0lo(C) = 0hi(C) = hw1; : : : ; wni, where C � A:� A1; : : : ; An andfor 1 � j � n, wj = 1 if the prediate symbol of A is from stratum j, and 0otherwise.For any A 2 M(P0), the proof T that de�nes �(A) (item 2 above) is stronglymeasure onsistent. Weak measure onsisteny of ground proofs in P0 is estab-lished by indution on their size.(4) 8C 2 Pi+1 � Pi, i+1hi (C) = LUB i+1(C) and i+1lo (C) = approx (GLB i+1(C)).The funtion approx redues a measure as follows. Let u = hu1; : : : ; uni andkmin be the smallest index k suh that uk > 0. Then approx (u) = hu01; : : : ; u0niwhere u0kmin = 1 and is 0 elsewhere.As in the Kanamori-Fujita system, here also the measure preserving folding ruleis applied only when both folder and folded lauses are singleton sets.To establish the orrespondene between the above instantiation and the ex-tended Tamaki-Sato system, reall that the latter assoiates a desent level witheah lause of every program in a transformation sequene. If a lause C in Pi hasthe desent level k, then with the above instantiation, ilo(C) = hl1; : : : ; lni wherelk = 1 and 0 elsewhere; i.e. the only non-zero entry in its lower lause measureappears in the kth position. Thus our lower lause measure preisely aptures theinformation that is kept trak of by the extended Tamaki-Sato system.



18 � Royhoudhury, Kumar, Ramakrishnan, RamakrishnanAssigning Measure Strutures and Clause Measures. Observe that our frameworkdoes not presribe exat values to the lause measures. Instead it bounds thelause measures from above and below. So an important aspet of our instantiationinvolves assigning values to the lause measures that satisfy these onstraints. Froman abstrat point of view, the Kanamori-Fujita system uses a relatively oarsemeasure spae (Z) but within this spae it maintains aurate lause measures(integer ounters). Our instantiation reets this by not relaxing the bounds whileupdating the lause measures (see step 4 of the instantiation). On the other hand,the extended Tamaki-Sato system uses a more �ne-grained measure spae (Zn).But this measure spae is not ompletely utilized sine lause measures are thedesent level of lauses, whih an be simply represented by an integer. Thereforein step 4 of our instantiation we aordingly loosened the bound.As far as the Gergatsoulis-Katzouraki [1994℄ and original Tamaki-Sato systems[1984℄ are onerned, �rst note that they do not permit folding using reursivelauses. The main di�erene between these two systems is that [1994℄ allows dis-juntive folding (folding where multiple lauses are replaed by one lause) whereas[1984℄ does not. However the book-keeping performed (lause measures) in thesetwo systems is not di�erent. These systems use oarse measure spaes. More-over they do not even fully utilize these measure spaes as is evident from thelesser amount of book keeping performed by them. By hoosing a oarse measurestruture and relaxing the bounds along lines similar to the extended Tamaki-Satosystem we an instantiate these two systems as well. Both these systems partitionthe program prediates into two strata, the so-alled \old" and \new" prediates.Therefore, we set the measure struture to be � = hZ2;�2;�2;N2 i where �2 de-notes oordinate-wise integer addition of 2-tuples of integers, and �2 denotes thelexiographi < order over 2-tuples of integers. Sine these systems partition theprediate symbols into \old" and \new" prediates, the hoie of a measure stru-ture with two strata is obvious.4.2 SCOUT| A New Unfold/fold SystemWe now onstrut SCOUT, an unfold/fold transformation system for de�nite logiprograms that allows disjuntive folding using reursive lauses. It inorporatesthe notion of strata from the extended Tamaki-Sato system into the ounters of theKanamori-Fujita system. Thus with every lause it maintains a pair of strati�edounters as the lause measure. The instantiation is as follows. We assume thatthe prediate symbols appearing in the initial program P0 are partitioned into nstrata, as in the extended Tamaki-Sato system.(1) � = hZn;�;�;Nn i where� denotes oordinate-wise integer addition of n-tuplesof integers, and � denotes the lexiographi < order over n-tuples of integers.(2) �(A) is de�ned exatly as in the instantiation of the extended Tamaki-Satosystem above. For any atom A we set �min(A) = hw1; : : : ; wni where wj = 1 ifA is from stratum j and 0 elsewhere.(3) Clause measure of lauses in P0 is de�ned exatly as in the instantiation of theextended Tamaki-Sato system above. Therefore the proofs of measure onsis-teny are also idential.(4) 8C 2 Pi+1 � Pi, i+1lo (C) = GLB i+1(C) and i+1hi (C) = LUB i+1(C).



Unfold/fold Transformations for De�nite Logi Programs � 19SCOUT provides a solution to two important (and orthogonal) problems thathave thus far remained open. First, it allows folding using lauses that have dis-juntions as well as reursion. Seondly, SCOUT ombines the strati�ation-based(extended) Tamaki-Sato system with the ounter-based Kanamori-Fujita systemthereby obtaining a single system that stritly subsumes either of them even whenrestrited to onjuntive folding. A formal proof of this laim appears in the ap-pendix. Note that we prove that any transformation sequene made out of un-fold/fold/goal replaement rules whih is allowed by the existing transformationsystems is also allowed by SCOUT.It is interesting to note that by simple inspetion of the instantiations, one ansee that when the number of strata is 1 and only onjuntive folding is permitted,SCOUT ollapses to the Kanamori-Fujita system. Collapsing SCOUT to otherexisting unfold/fold systems by varying the number of strata and extending theparameters (e.g. measure struture) remains an interesting open problem.5. EMPLOYING TRANSFORMATIONS TO CONSTRUCT PROOFSOur motivation in developing the transformation framework presented in this paperlies in its appliation to dedution i.e. onstruting proofs. Thus, we ensure thatour transformations preserve orretness w.r.t the model theoreti semantis ofde�nite logi programs: the least Herbrand model semantis. Our transformationframework does not onsider other operational aspets of the program, suh aspreserving termination properties (studied in [Amtoft 1992; Bossi and Coo 1994℄)and preserving omputed answer substitutions ([Kawamura and Kanamori 1990℄ isan early referene on this subjet).Unfold/fold transformations have been used for indutive reasoning in the past[Hsiang and Srivas 1987; Kanamori and Fujita 1986; Pettorossi and Proietti 1999℄.Sine unfolding represents a resolution step, it an be used to prove the base aseand �nite part of the indution step. Folding an be used to remember the indutionhypothesis and reognize its ourrene. We have used the SCOUT transformationsystem (developed in the last setion) to onstrut indutive proofs of temporalproperties of onurrent systems [Royhoudhury et al. 2000; Royhoudhury andRamakrishnan 2001℄. In this setion, we present the key issues in using the SCOUTtransformation system for dedution. We also present an example to show howadditional power of our transformations (suh as our more general folding rule)an be exploited for onstruting proofs. A full-edged disussion on the use ofour transformations for onurrent system veri�ation appears in [Royhoudhury2000℄.5.1 Automation of the Goal Replaement ruleIn order to use SCOUT for automated dedution, a seond look at the goal replae-ment transformation is neessary. Goal replaement, where semantially equivalentgoals are interhanged, reates more opportunities for folding. There are two im-mediate problems with integrating goal replaement in an automated proof sys-tem. First, the identi�ation of equivalent goals must be based on some syntati(or analysis-based) riteria, sine semanti equivalene is, in general, undeidable.Seondly, the onditions under whih goal replaement is permitted by the trans-formation system are usually spei�ed in terms of unomputable measures suh as



20 � Royhoudhury, Kumar, Ramakrishnan, Ramakrishnanthe atom measure �. Reall that in the SCOUT system the atom measure �(A) isrelated to the \shortest" ground proof of atom A.Thus, we need a nontrivial omputational mehanism to hek the semantiequivalene of two given atoms purely based on syntax. We must also identifytestable onditions that imply the untestable restritions on weights of atoms re-quired by the general goal replaement rule. The notion of syntati equivalenedesribed below addresses the �rst issue, while the de�nition of the syntati goalreplaement rule resolves the seond issue.Syntati Equivalene. Consider the following example program Pp(X) :- r(X).p(X) :- e(X,Y), p(Y).r(X) :- b(X). q(X) :- s(X).q(X) :- e(X,Y), q(Y).s(X) :- b(X).Fig. 3. A program fragment to illustrate syntati equivalener(X) and s(X) are equivalent sine the lauses de�ning them have idential righthand sides. We an now use this to infer that q(X) and p(X) are equivalent. Notethat even though the lauses of p(X) and q(X) are not syntatially idential, the\reursive struture" of these lauses is the same. We formalize this notion in thede�nition given below.Definition 9. Syntati Equivalene of Atoms Let �=P be an equivalenerelation on the set of prediates of a program P and let A = p(t1; : : : ; tk) andB = q(t01; : : : ; t0k) be two atoms. Then atoms A and B are said to be syntatiallyequivalent w.r.t. to the relation �=P , denoted A �=Patom B, if we have p �=P q and(t1; : : : ; tk) is a variant of (t01; : : : ; t0k)Definition 10. Syntati Equivalene of Prediates An equivalene rela-tion �=P on the set of prediates of P is said to be a syntati equivalene relationif whenever p �=P q we have:1. The prediates p and q belong to the same stratum.2. Let the lauses of p and q in program P be fC1; : : : ; Cmg and fD1; : : : ; Dmgrespetively. Then, for all 1 � i � m we have :(i) Ci is a variant of Di when all prediate symbols in Ci and Di are replaed withthe same prediate.(ii) Let Ci and Di be of the form H :� B1; :::; Bk and H 0:� B01; :::; B0k respetively.Then for all 1 � l � k Bl �=Patom B0l.It is easy to see that the family of syntati equivalene relations is losed underunion. Thus there is a largest syntati equivalene relation �P . The relation �Pan be omputed by starting with all prediates in the same lass, and repeatedlysplitting the lasses that violate properties (1) and (2) until a �xed point is reahed.In the example program fragment P given in Figure 3, the largest syntati equiva-lene relation �P is f(p; q); (r; s)g[Id, where Id is the identity relation. Therefore,p(X) �Patom q(X) where for two atoms A and B we say A �Patom B if and only ifA �=Patom B for some syntati equivalene relation �=P .We show that all syntatially equivalent atoms are semantially equivalent.



Unfold/fold Transformations for De�nite Logi Programs � 21Lemma 2. Let �=P be a syntati equivalene relation of the prediates of a pro-gram P . For all prediates p; q, if p �=P q, then p and q are semantially equivalentin program P.Proof : Let p �=P q. We show that for any ground proof T of a ground atom p(X)�in program P there is a ground proof T 0 of q(X)� in program P and vie-versa.For any ground proof T of p(X)� we an show the existene of a ground proof T 0of q(X)� by indution on the size (number of nodes) of T . Let the lause used atthe root of T be C = (p(: : :):� B1; : : : ; Bk). Sine p �=P q therefore q has a lauseC 0 = (q(: : :):� B01; : : : ; B0k) and pl �=P p0l where pl (p0l) is the prediate symbol inBl (B0l) for all 1 � l � k. Let pl(Y )� be the ground instantiation of Bl appearingin T . Now, the size of the subproof of pl(Y )� in T is learly less than the size ofT . By indution hypothesis there exists a ground proof of p0l(Y )�. Also p0l(Y )� isan instane of B0l� sine lause C is an instane of lause C 0 when all prediatesare replaed by their labels. By applying lause C 0 at the root we an onstrut aground proof T 0 of q(X)�.For any ground proof T 0 of q(X)� we an show the existene of a ground proofT of p(X)� in a similar fashion. 2Note that we an straightforwardly generalize our de�nition of syntati equiva-lene to de�ne syntati equivalene of subgoals. Thus, we an then make infereneslike p(f(X)) � q(X) based on the syntax4. We now introdue the notion of relevantlause set of an atom. Intuitively, it is a onservative estimate (i.e. a superset) ofthe set of lauses whih are used in the proof of some ground instane of the atom.Definition Relevant Clause Set. Let A be an atom and P a program. Letreah(A;P ) denote the set of prediates whih are reahable from the prediate ofA in the prediate dependeny graph5 of P . Then, the relevant lause set of A inP ( denoted rel(A;P ) ) is the set of lauses of the prediates in reah(A;P ).We now de�ne the Syntati Goal Replaement rule. For any lause C, hd(C) de-notes the head atom of C. Our de�nition is adapted to the SCOUT transformationsystem desribed in Setion 4.2. Reall that the SCOUT system is an instane ofour transformation framework where the prediate symbols appearing in the ini-tial program P0 are partitioned into n strata. Furthermore, for any atom A, theSCOUT system de�nes �min(A) = hw1; : : : ; wni where wj = 1 if A is from stratumj and 0 elsewhere.Rule 7. Syntati Goal Replaement Let C be a lause in Pi of the form:C � A:� A1; :::; Ak; Gand onsider another lause C 0 (not in Pi) of the form :C 0 � A:� A1; :::; Ak; G0suh that1. G and G0 are syntatially equivalent i.e. G �Piatom G0, and vars(G) =4With de�nitions 9, 10 we an only infer p(f(X)) � q(f(X)) if p � q.5The prediate dependeny graph of a program P has the prediate symbols of P as its verties,and there is an edge from prediate p to prediate q if q ours in the body of a lause of p inprogram P .



22 � Royhoudhury, Kumar, Ramakrishnan, Ramakrishnanvars(G0) � vars(A;A1; : : : ; Ak)2. The lauses in rel(G0; P0) are never modi�ed in the transformation sequeneP0; P1; : : : ; Pi i.e. rel(G0; P0) = rel(G0; Pi).3. For eah lause D 2 rel(G;Pi) ilo(D) � �min(hd(D)).4. Let Cli(G) be the lauses in Pi whose heads unify with the atom G. We de�ne:Æ = minD2Cli(G) (ilo(D)� �min(hd(D)))We must have: ilo(C) + Æ +P1�j�k �min(Aj) > 0 = h0; : : : ; 0iThen, assign Pi+1 := (Pi � fCg) [ fC 0g where C 0 is A:� A1; :::; Ak; G0. Also, seti+1lo (C 0) = ilo(C) + Æ and i+1hi (C 0) = ihi(C) + Æ0 where Æ0 = h1; 0; : : : ; 0i. 6 2Syntati Goal Replaement an be proved to be a speial ase of the GoalReplaement transformation of the SCOUT system. First we de�ne the notionof \weight of a ground proof" and use it to prove a property about syntatiallyequivalent atoms.Definition Weight of a Ground Proof. Let T be a ground proof of a groundatom A 2M(P ) for a program P . We assume that the prediate symbols of P area-priori partitioned in n strata. Then the weight of T (denoted w(T )) is the then-tuple hw1; : : : ; wni where for all 1 � i � n, wi is the number of nodes of T whoseprediate symbol is assigned to strata i.The following holds for syntatially equivalent atoms. Note that this is astronger laim than Lemma 2.Lemma 3. Let P be a program and G;G0 be atoms suh that G �Patom G0 i.e.G and G0 are syntatially equivalent in P . For any ground proof T of a groundinstantiation G� there exists a ground proof T 0 of G0� suh that w(T ) = w(T 0), andvie-versa.Proof. The proof proeeds by indution on the size of T , as in Lemma 2.We will now use the above lemma to prove that Syntati Goal Replaement isa speial ase of the Measure preserving Goal Replaement rule.Lemma 4. Speial Case of Goal Replaement Let P0 ! : : : ! Pi be asequene of measure onsistent programs. Then, any syntati goal replaementtransformation appliable in Pi is also a Measure preserving goal replaement trans-formation (transformation 6) appliable in Pi.Proof. For any ground instantiation � of G and G0 (reall vars(G) = vars(G0)),by using lemma 2, we have Pi ` G� , Pi ` G0�. To prove that the other ondi-tions of Measure preserving goal replaement transformation are also true when-ever syntati goal replaement is appliable, we now just need to show that theinequalities in onditions (i) and (ii) of rule 6) are satis�ed whenever syntati goalreplaement is appliable. We have  + Æ +P1�j�k �min(Aj) > 0 = h0; : : : ; 0i.We also need to show that whenever Syntati Goal Replaement is applied to6Note that 1 is only a notational onveniene. It represents a value that exeeds the weightsof all atoms. Formally, this an be ahieved by extending the lause annotations by one extrastratum.



Unfold/fold Transformations for De�nite Logi Programs � 23lause C to replae G by G0 we have 8� Æ � �(G�) � �(G0�) � Æ0. Sine Æ0 =h1; 0; : : : ; 0i, therefore Æ0 is lexiographially greater than the weight of any groundatom; hene �(G�) � �(G0�) � Æ0. We now prove that Æ � �(G�) � �(G0�) whereÆ = minD2Cli(G) (ilo(D) � �min(hd(D))) and Cli(G) are the lause in Pi whoseheads unify with G.Sine Pi is measure onsistent, therefore if G� 2 M(Pi), then G� has a stronglymeasure onsistent proof T in Pi. Hene, by lemma 3, G0� has a proof T 0 in Pisuh that w(T ) = w(T 0). Let Croot be the lause used the root of T . ClearlyCroot 2 Cli(G). Let the ground instane of Croot used at the root of ground proofT be G� : �B1; : : : ; Bm. Then :�(G�) � �min(G�) + (ilo(Croot)� �min(G�)) + X1�j�m�(Bj)Sine eah of the body atoms Bj also have strongly measure onsistent proofs assubproofs of T , we an again use this ondition to expand out the �(Bj) in theabove inequality. Continuing in this way until we reah the leaves of T , we get thefollowing inequality (where hd(C) denotes the head of lause C).�(G�) � XC used in T �min(hd(C)) + XC used in T(ilo(C)� �min(hd(C)))Aording to the de�nition of �min in the SCOUT systemXC used in T �min(hd(C)) = w(T )The above inequality follows from that fat that eah of the nodes of T are thehead of some lause C used in T . Thus, we have:�(G�) � w(T ) + XC used in T(ilo(C)� �min(hd(C)))Now, sine 8C 2 rel(G;Pi), we have (ilo(C)��min(hd(C))) to be non-negative:XC used in T(ilo(C)� �min(hd(C))) � (ilo(Croot)� �min(hd(Croot))) � ÆNote that ilo(Croot)� �min(hd(Croot)) � Æ sine Croot 2 Cli(G). Thus,�(G�) � w(T ) + Æ� w(T 0) + Æ (by Lemma 3)� Measure of lexiographially shortest proof of G0� in Pi= �(G0�) (sine rel(G0; P0) = rel(G0; Pi))Hene, �(G�) � �(G0�) + Æ for any ground substitution � of G and G0. Thisompletes the proof.Appliability of the Syntati Goal Replaement rule is testable and the lauseannotations of the new lause C 0 an be e�etively omputed sine we have onser-vatively estimated the value of Æ; Æ0. Note that in the Syntati Goal Replaementrule, we have set Æ0 to h1; 0; : : : ; 0i. This will prevent the new lause C 0 from beingused as a folder later in the transformation sequene. However, our hoie of Æ



24 � Royhoudhury, Kumar, Ramakrishnan, Ramakrishnansatis�es Æ � h0; : : : ; 0i and therefore we will always have i+1lo (C 0) � ilo(C). Thus,C 0 an partiipate in future folding transformations as one of the folded lauses.Also, note that a tighter value of Æ0 is hard to obtain. This is beause we need tosatisfy �(G�) � �(G0�) � Æ0 for any ground substitution �. The proof sizes of G�and G0� ould be monotoni on the instantiation of some variable of G;G0 and �ould be onstruted to instantiate that variable to larger and larger ground terms,thereby ruling out a tighter value of Æ0.Other standard transformations. In addition to unfolding/folding/goal replae-ment, a number of other standard transformations, suh as deletion of subsumedlauses, deletion of dupliate goals [Pettorossi and Proietti 1998℄ an be readilyadapted to the SCOUT system. These transformations an also be useful for on-struting proofs.Also, note that we do not expliitly onsider a De�nition Introdution transfor-mation whih allows us to de�ne new prediates in terms of old prediates. This isbeause new prediates introdued in the ourse of onstruting a transformationsequene P0; : : : ; Pn an be assumed to be present in the initial program [Tamakiand Sato 1984℄.5.2 On the utility of Strati�ationThe SCOUT transformation system allows the prediate symbols of the initial pro-gram P0 to be a-priori partitioned into n � 1 strata. This may give us additionalexibility in onstruting a totally orret transformation sequene without exatlyomputing the lause annotations. To illustrate this point, onsider the followinggoal replaement step Pi ! Pi+1. The prediates are partitioned into 2 strata : pis plaed in the upper strata, and q,r are plaed in the lower strata.p :� q. (h1; 0i; h1; 0i)q. (h0; 1i; h0; 1i)r. (h0; 1i; h0; 1i) p :� r. (h1; i; h1; i)q. (h0; 1i; h0; 1i)r. (h0; 1i; h0; 1i)Program Pi Program Pi+1Reall that the strati�ation of prediates is suh that a prediate of stratum jis de�ned using prediates of stratum � j in P0. Therefore, in the above examplesine q,r are plaed in the lower stratum we an onlude that �(q) = h0; i and�(r) = h0; i. Thus, the annotations of the replaed lause p :� r are guaranteedto be of the form h1; i irrespetive of the exat value of �(q)� �(r).The above observation ould be suessfully exploited while onstruting a trans-formation sequene as follows. Reall that the Goal Replaement rule does notpresribe exat values of Æ; Æ0 and hene its appliation is not automated.7 Con-sider a goal replaement step Pi ! Pi+1 in whih G is replaed by G0 in lauseC � A:� A1; : : : ; Ak; G. We an avoid omputing �(G) � �(G0) and annotatethe new lause C 0 � A:� A1; : : : ; Ak; G0 with only approximate annotations if the7This problem is partially remedied in the Syntati Goal Replaement rule whih tells us howto ompute Æ; Æ0 provided ertain extra onditions (suh as onditions 2,3 of the Syntati GoalReplaement rule) are satis�ed.



Unfold/fold Transformations for De�nite Logi Programs � 25prediates are partitioned into > 1 strata. In the above example, we observed thath0;�1i � �(q)� �(r) � h0;1iWe then used these inequalities to ompute the approximate annotations of thereplaed lause p :� r as (h1; i; h1; i) In this example, if all the prediates areplaed in only one stratum, we must ompute �(G) � �(G0). Otherwise, we willannotate the new lause C 0 with the ounters (�1;1). Clearly this will forbid C 0from partiipating in any future folding step.5.3 An Example Indution ProofWe now illustrate by an example how our program transformation rules an beused for onstruting indution proofs. Consider the program P0 given below. Anystring onsisting of only 0's is generated by gen while the test prediate hekswhether a given list an be transformed (through �nite number of appliations oftrans ) into a string onsisting of only 1's. The trans prediate transforms a stringby onverting the leftmost ourrene of 0 in the string to 1. The property that wewould like to establish is 8 X gen(X) ) test(X). A hand proof of this propertywill proeed by indution on the length of the strings generated by gen.In P0, all prediate symbols are assumed to be in the same stratum and the lowerand upper lause measures are set to 1 for all lauses. In the following, the lauseannotations (ilo(C); ihi(C)) for any lause C 2 Pi are shown in parentheses besidelause C. thm(X) :- gen(X), test(X) (1,1)gen([℄). (1,1)gen([0|X℄) :- gen(X). (1,1)test(X) :- anon(X). (1,1)test(X) :- trans(X,Y), test(Y). (1,1)anon([℄). (1,1)anon([1|X℄) :- anon(X). (1,1)trans([0|X℄, [1|X℄). (1,1)trans([1|T℄,[1|T1℄) :- trans(T,T1). (1,1)Now, from the de�nition of thm in P0 we see that 8 X thm(X) , gen(X) ^test(X). Thus, if we an establish that 8 X thm(X), gen(X) then we an onludethat the formula 8 X gen(X) ) test(X) is true. One tehnique to establish 8 Xthm(X) , gen(X) is to show that the above program P0 is equivalent to someprogram Pfinal in whih the thm(X) and gen(X) are syntatially equivalent.We now onstrut suh a transformation sequene P0; : : : ; Pfinal. Unfolding theonly lause of thm/1 several times we obtain:thm([℄). (4,4)thm([0|X℄) :- gen(X), anon(X). (6,6)thm([0|X℄) :- gen(X), trans(X,Y), test([1|Y℄). (6,6)We now introdue the de�nition:test1(Y) :- test([1|Y℄). (1,1)and fold the ourrene of test([1|Y℄) in the last lause of thm/1 to obtain:thm([℄). (4,4)thm([0|X℄) :- gen(X), anon(X). (6,6)thm([0|X℄) :- gen(X), trans(X,Y), test1(Y). (5,5)



26 � Royhoudhury, Kumar, Ramakrishnan, RamakrishnanUnfolding the de�nition lause of test1/1 several times and then folding (usingthe de�nition lause of test1/1 as the folder) we get:test1(Y) :- anon(Y). (3,3)test1(Y) :- trans(Y,Z), test1(Z). (2,2)Note that test1(Y) and test(Y) are syntatially equivalent, sine the lausesof test/1 are : test(X) :- anon(X). (1,1)test(X) :- trans(X,Y), test(Y). (1,1)We therefore apply Syntati Goal Replaement in the last lause of thm/1 toobtain the following :thm([℄). (4,4)thm([0|X℄) :- gen(X), anon(X). (6,6)thm([0|X℄) :- gen(X), trans(X,Y), test(Y). (6;1)We an now fold the above lauses of thm/1 using the lauses of test/1 as thefolder. Note that we are folding using multiple reursive lauses as the folder. Theadditional power of our folding rule is exploited in this transformation step. Weobtain: thm([℄). (4,4)thm([0|X℄) :- gen(X), test(X). (5;1)Finally, we fold using the lause of thm/1 in P0 as folder to obtain the programPfinal thm([℄). (4,4)thm([0|X℄) :- thm(X). (4;1)gen([℄). (1,1)gen([0|X℄) :- gen(X). (1,1)test(X) :- anon(X). (1,1)test(X) :- trans(X,Y), test(Y). (1,1)anon([℄). (1,1)anon([1|X℄) :- anon(X). (1,1)trans([0|T℄,[1|T℄). (1,1)trans([1|T℄, [1|T1℄) :- trans(T,T1). (1,1)The atoms thm(X) and gen(X) are now syntatially equivalent (refer de�nition 10).Thus, M(Pfinal) j= 8 X thm(X) , gen(X). Sine M(Pfinal) = M(P0) thereforeM(P0) j= 8 X thm(X) , gen(X). By de�nition of thm(X) in P0, this means thatM(P0) j= 8 X gen(X)) test(X). Thus, by using our transformation rules, we haveonstruted a nontrivial indution proof.5.4 Veri�ation of Parameterized Conurrent SystemsThe above proof is illustrative sine it is struturally similar to the proofs that arisein the veri�ation of onurrent systems. Using the transformation rules of SCOUTand the Syntati Goal Replaement rule in a similar fashion we veri�ed propertieslike liveness of a m-bit shift register, orretness of a m-bit arry-lookahead adderet. Thus, in the problem of veri�ation of liveness of a m-bit shift register : theprediate gen represents the enoding of the m-bit shift register while the prediatetest represents the enoding of the liveness property that we verify. To aomplish



Unfold/fold Transformations for De�nite Logi Programs � 27the proof of liveness for any m, we perform a folding step using test as the foldersimilar to the above example. Moreover, as in the above example, the proof ofliveness also involves appliation of the Syntati Goal Replaement rule to replaea speialized version of test. This orresponds to proving that the liveness propertyholds in a proess Q i� the property holds in a sub-proess of Q.In partiular, we have used the transformations developed in this paper to indu-tively prove temporal properties of parameterized onurrent systems [Royhoud-hury 2000; Royhoudhury et al. 2000; Royhoudhury and Ramakrishnan 2001℄.Veri�ation of distributed algorithms with arbitrary number of onstituent pro-esses an be naturally ast as verifying parameterized systems. A parameterizedonurrent system (suh as a n-bit shift register for arbitrary n) represents anin�nite family of �nite state onurrent systems, parameterized by a reursivelyde�ned type. Therefore, it is natural to prove properties of parameterized on-urrent systems by induting over this type. We have automated the onstrutionof these indution proofs by using the unfold/fold rules developed in this paperalong with domain spei� ontrol strategies. In our approah, the parameterizedsystem and the temporal property to be veri�ed are enoded as a logi program.The veri�ation problem is redued to the problem of determining the equivaleneof prediates in this program. The prediate equivalenes are then established byemploying unfold/fold transformations on the prediates. Finally the proof of se-manti equivalene of the prediates is ahieved by showing syntati equivaleneof their transformed de�nitions.The additional power of our transformation rules is useful in our transformationbased proofs of temporal properties. Note that temporal properties ontain �xedpoint operators. These properties are typially enoded as a logi program pred-iate with multiple reursive lauses e.g. a least �xed point property ontainingdisjuntions is enoded using multiple reursive lauses. Therefore, one annot as-sume restritions that are imposed by existing transformation systems [Tamaki andSato 1984; 1986a; Kanamori and Fujita 1987; Gergatsoulis and Katzouraki 1994℄ onthe syntax of lauses enoding a temporal property. As mentioned before, the ap-pliability of our transformation rules is not restrited by program syntax. Instead,book-keeping is performed at every transformation step, and this book-keeping isused to restrit the appliability of the transformation rules. This makes these rulessuitable for onstruting proofs of temporal properties.A full-edged disussion of the use of our transformations for veri�ation needsto disuss transformation strategies as well. This is outside the sope of this paper.The interested reader is referred to [Royhoudhury 2000℄.6. RELATED WORKIn this setion, we survey related work on unfold/fold transformations and theirusage in dedution. In Setion 6.1, we disuss work on developing totally or-ret irreversible unfold/fold transformation systems. In partiular, we disuss therestritions whih need to be plaed on the folding rule in order to make any in-terleaving of unfolding/folding preserve semantis. In Setion 6.2, we disuss pastwork on using unfold/fold transformations of logi programs for indutive reason-ing. Finally, we onlude by briey disussing work on other (more traditional)usage of logi program transformations suh as: use of transformations for partial



28 � Royhoudhury, Kumar, Ramakrishnan, Ramakrishnandedution, and reversible transformations for dedutive databases.6.1 Restriting Transformations to ensure Total CorretnessConditions to ensure total orretness of unfold/fold transformations have beenextensively studied for logi programs. Most of these transformation rules imposetwo kinds of restritions: (a) the syntax of the folder lauses is restrited, and (b)lauses are annotated with book-keeping (our lause measures) whih is updated ineah transformation step; onditions are imposed on this book-keeping to restritappliable folding steps. In this paper, we have shown that the �rst kind of restri-tions (syntati restritions on the folder lauses) are redundant. Only the seondkind (restrition on lause measures) is neessary to show A � B in any foldingstep, where A is the head of the lause produed by folding, B is the folder atom(the atom introdued by folding) and � is a well-founded order. Preservation ofsuh a well-founded order allows us to prove total orretness by indution.Syntati Restritions on folder lauses. Among the previous works whih im-posed syntati restritions on the folder lauses:|[Tamaki and Sato 1984; Gergatsoulis and Katzouraki 1994℄ required the folderlauses to be non-reursive.|[Tamaki and Sato 1984; 1986a; Kanamori and Fujita 1987℄ required a single folderlause (onjuntive folding)We have shown that our transformation framework subsumes eah of these trans-formation systems. In other words, the syntati restritions imposed in thesesystems are not needed for ensuring total orretness. There is however, an inter-esting observation to make from the book-keeping/annotations maintained in thesetransformation systems.Various kinds of lause annotations. The lause annotations maintained in theafore mentioned transformation systems are of roughly two types:|[Tamaki and Sato 1984; 1986a; Gergatsoulis and Katzouraki 1994℄ partition theprediate symbols into n > 1 strata (among these, [Tamaki and Sato 1984℄ and[Gergatsoulis and Katzouraki 1994℄ set n = 2). A total order is assumed amongthe strata i.e. strata 1 � : : : � strata n. Also, for eah lause C in program Pi aag is maintained. The ag is set if C was obtained via one or more unfoldingsin the sequene P0; : : : ; Pi. In a folding step, lauses C, D an be used as foldedand folder lauses if|strata of prediate at head of C � strata of prediate at head of D, or|strata of prediate at head of C = strata of prediate at head of D and theag of C is set.The above onditions allow the de�nition of a well-founded order among groundatoms on whih we an indut. This idea has also been used to develop totallyorret unfold/fold transformations for normal logi programs [Seki 1991; 1993℄.|A di�erent approah is taken in [Kanamori and Fujita 1987℄. Here all the predi-ate symbols are plaed in one stratum. Eah lause C in program Pi is annotatedwith an integer ounter whih is inremented on unfolding and deremented onfolding. In a folding step, lauses C, D an be used as folded and folder lauses



Unfold/fold Transformations for De�nite Logi Programs � 29if annotation of C > annotation of D. This approah is similar to the work onfuntional program transformations by Kott [Kott 1985℄ and the seminal work ofDavid Sands [Sands 1996℄. Intuitively both Kott and Sands allow a folding step ifthe number of unfolds exeeds the number of folds (there are however importantdi�erenes whih we will outline in the following).The two di�erent kinds of annotations (strata and ounters) have been ombinedin our SCOUT transformation system. This gives a transformation system whihallows more folding steps even when the syntati restritions on the folder lauseshold. Thus, SCOUT an be proved to be more powerful than the Tamaki-Sato styletransformation systems.Ensuring Total Corretness without imposing Syntati Restritions. One of thekey features of our transformation framework (as well as the SCOUT transforma-tion system) is that the appliability of a transformation to program Pi is deidedbased on the lause measures (i.e. annotations) in Pi, and not on program syntax.This objetive has previously been ahieved in the work of Amtoft [Amtoft 1992℄.Similar to Tamaki-Sato style transformations [Tamaki and Sato 1986a℄, Amtoftpartitions the prediates into n > 1 strata. This is ahieved by assigning \weights"to the prediates. In the initial program P0, weights are assigned to a lause basedon the weight of its head prediate. The weights of a lause get updated on un-folding/folding. By unfolding an atom of higher weight, more opportunities arereated for future folding steps. The intuition presented by Amtoft is an impor-tant one and oneptually lose to the extended Tamaki-Sato system of [Tamakiand Sato 1986a℄. We believe that this similarity between the two works has notbeen notied due to the sare availability of the [Tamaki and Sato 1986a℄ tehnialreport. Both these works show that by stratifying the prediates and annotatingthe lauses with strata number during unfolding and folding it is possible to ensuretotal orretness. There is also an additional restrition requiring every folding stepto be onjuntive. However, this restrition an be showed to be unneessary forensuring total orretness.The work of Amtoft gives us one way to ensure total orretness without re-striting folder lause syntax. However, it is oneptually di�erent from the workof Kanamori [Kanamori and Fujita 1987℄ whih maintains integer ounters withevery lause. Like [Tamaki and Sato 1986a℄, Kanamori also restrits folding to beonjuntive; again this restrition is unneessary. However, as observed in Setion4, there is an important di�erene between [Tamaki and Sato 1986a℄ and [Kanamoriand Fujita 1987℄. The measure spae in [Kanamori and Fujita 1987℄ is oarser than[Tamaki and Sato 1986a℄ but [Kanamori and Fujita 1987℄ ompletely utilizes itsmeasure spae by maintaining aurate lause measures. Thus the book-keeping ismore detailed. Intuitively we an argues that maintaining the number of unfold-ings through whih a lause C in program Pi was derived is more detailed thanmaintaining whether lause C 2 Pi was obtained by at least one unfolding. Thus,Kanamori's intuition an also be used to yield a transformation system with nosyntati restritions. In fat, this system is idential to our SCOUT system whereall prediates are plaed in the same stratum.In funtional programming, similar ideas have been used to ensure orretness ofunfold/fold transformations. Kott [Kott 1985℄ presents a restrited transformation



30 � Royhoudhury, Kumar, Ramakrishnan, Ramakrishnansystem for a set of mutually reursive funtions f1; : : : ; fn in a �rst order funtionallanguage. In this work, a partiular funtion fi is transformed as follows: (a)unfold the body of fi (b) apply ertain \laws" () fold the body of fi. A \law"orresponds to a rewriting of semantially equivalent expressions (similar to ourgoal replaement). Subsequent to the transformation, Kott's method heks theorretness of the transformation sequene. If all the funtions are strit, then thishek orresponds to heking that the number of unfolds exeeds the number offolds. Thus, Kanamori's method of heking ounter values of folder and foldedlauses is similar to Kott's hek. However Kanamori heks the appliability of afolding step at the time of transformation and not post-mortem.One of the most well-understood and omprehensive work on funtional programtransformations is by David Sands [Sands 1996℄. Sands presents an elegant theory ofimprovement whih lari�es the \number of unfolds exeeds number of folds" hekproposed by Kott. Moreover, [Sands 1996℄ is appliable to higher order funtionallanguages as well. In [Sands 1996℄, a transformation from fx 4= e to gx 4= e0 usingthe equivalene e �= e0 is totally orret if e0 is an improvement over e. In otherwords, for any ontext if e terminates with n funtion alls then e0 must terminatewith at most n funtion alls. Sands then exploits this notion of improvement forunfold/fold transformations by requiring an unfold/fold transformation sequene toshow overall improvement. Super�ially, this might appear similar to Kanamori'shek on ounters. There are however, important di�erenes. Sine an unfold stepredues a funtion all, Sands reords this by inserting a \tik". Similarly a foldstep inreases a funtion all, so it must be paid for by removing a tik (whihwas introdued earlier by an unfold). Thus, the total number of tiks in a funtionde�nition roughly orreponds to Kanmori's ounter annotation of a lause. How-ever this orrespondene holds only if tiks an be arbitrarily propagated in anexpression, that is, any tik introdued by unfolding an be used to pay for a futurefolding. This is in general not true if an unfolding step produes a lazy ontext.The tik introdued by unfolding annot be propagated aross this lazy ontext andthus annot be used to pay for a future folding. This issue does not arise in logiprograms. Any unfolding step an \inrease" the lause measures and an thus beused to pay for any future folding step. This is reeted in our generalized transfor-mation framework, as well as in [Kanamori and Fujita 1987℄. Furthermore, our workombines the notion of strati�ation with ounters to maintain more �ne-grainedbook-keeping per lause. This is evidened in the SCOUT transformation system.Our generalized transformation framework abstratly spei�es the onditions whihthe lause annotaions must satisfy in order to maintain total orretness. Our no-tion of measure onsisteny aptures thes onditions. This parallels with Sands'theory of improvement for funtional programs where he shows that a transforma-tion sequene whih leads to improvement (in terms of funtion alls) is guaranteedto preserve orretness. The tik algebra of Sands is a mehanism for ensuring this\improvement". Similarly the transformation rules in our SCOUT transformationare guaranteed to ensure the abstrat notion of \measure onsisteny".We onlude this setion by disussing the work of Bossi, Coo and Etalle onorretness of replaement operations in normal logi programs [Bossi et al. 1992;1996℄. Sine unfolding and folding are restrited versions of goal replaement, their



Unfold/fold Transformations for De�nite Logi Programs � 31orretness theorem an also be used to derive a safe folding operation [Bossi et al.1992℄. In partiular, their orretness ondition depends on two notions:|dependeny degree: Intuitively, the dependeny degree of an atomB on lause C isthe shortest path from B to C in a proof of B. Thus, if a irularity is introduedby folding B into lause C then the length of the loop is the dependeny degreeof B on C.|semanti delay: The semanti delay of a goal G w.r.t. another goal G0 roughlydenotes the minimum di�erene in the lengths of their derivations.A typial suÆient ondition for orret folding of lause C using folder lauseB:� B1; : : : ; Bm is: dependeny degree of B on C � semanti delay of B w.r.t.B1; : : : ; Bm. Intuitively, the semanti delay of B w.r.t. B1; : : : ; Bm is related to thetransformation history: the unfold/fold steps taken so far from the folder lause.However, the idea of dependeny degree does not only orrespond to the transforma-tion history. Instead it is also related to the strati�ation of the prediates used inTamaki-Sato style systems. In partiular, if B never uses lause C in its proof, thenthe dependeny degree is the ordinal ! and folding of C using B:� B1; : : : ; Bm isalways allowed. This roughly orresponds to the folding of \old" prediates w.r.t.\new" prediates in [Tamaki and Sato 1984; Gergatsoulis and Katzouraki 1994℄.Thus, the notion of dependeny degree is related to strati�ation of prediates aswell as transformation history. It seems that our orretness ondition is moreuniform: it simply ompares the lause measures of the folded and folder lauses.These lause measures an be instantiated to inorporate the notions of strati�a-tion and/or ounting of past unfold/fold steps (the transformation history).6.2 Logi Program Transformations to onstrut proofsUnfold/fold logi program transformations have been primarily used for programsynthesis, speialization and optimization (see [Bossi et al. 1990; Boulanger andBruynooghe 1993; Shreye et al. 1999; Pettorossi et al. 1997℄). These works use re-strited versions of unfold/fold rules and onentrate on a di�erent (and important)issue: automated strategies to guide the rules. For example, partial dedution orpartial evaluation [Jones et al. 1993; Komorowski 1982℄ primarily allows unfolding.Folding is often restrited to a single atom, and is often used to replae a partiallyinstantiated atom p(t(X)) to an open atom q(X) via the de�nition q(X) : �p(t(X)).This is relaxed in onjuntive partial dedution [Shreye et al. 1999℄ whih allowsspeialization w.r.t. onjuntions of atoms (instead of a single atom). Still foldingof multiple lauses in one step is not allowed in the interests of automated ontrol.Relatively little work has been done on using these transformations for onstrut-ing proofs. As disussed in the previous setion, unfold/fold transformations anbe used to onstrut indution proofs of program properties. In suh indutionproofs, unfolding aomplishes the base ase and the �nite part of the indutionstep, and folding roughly orresponds to appliation of indution hypothesis. Thisobservation has been exploited in [Hsiang and Srivas 1987; Kanamori and Fujita1986; Pettorossi and Proietti 1999; 2000℄ to onstrut indutive proofs of programproperties.Hsiang and Srivas in [Hsiang and Srivas 1987℄ extended Prolog's evaluation with\limited forward haining" to perform indutive theorem proving. This limited



32 � Royhoudhury, Kumar, Ramakrishnan, Ramakrishnanforward haining step is in fat a very restrited form of folding: only the theoremstatement (whih is restrited to be onjuntive) an be used was a folder lause.The work of Kanamori and Fujita [Kanamori and Fujita 1986℄ is loser to ours.They proved ertain �rst order theorems about the Least Herbrand Model of ade�nite logi program via indution. In partiular, they observed that the least�xed point semantis of logi programs ould be exploited to employ �xpoint in-dution. Our usage of the transformations is similar. Given a program P we intendto prove p � q in the Least Herbrand Model of P . To do this proof by indution,we transform p and q to obtain a program P 0. If the transformed de�nitions of pand q in P 0 are \syntatially equivalent" (De�nition 10) then our proof is �nished.Note that this equivalene hek is in fat an appliation of �xpoint indution. Itallows us to show p � q in M(P 0) (the least Herbrand model of P 0). Furthermore,sine M(P 0) = M(P ) this amounts to showing p � q in program P . Thus, in ourwork prediates are transformed to failitate the onstrut of indution shemes (forproving prediate equivalene). [Kanamori and Fujita 1986℄ also exploits transfor-mations for similar purposes. However, their method performs onjuntive foldingusing only a single non-reursive lause. Apart from the restrition in their foldingrule, they also do not employ goal replaement in their indution proofs. Conse-quently, nested indution proofs annot be onstruted (the example worked out inSetion 5 is a nested indution proof).The idea of using logi program transformations for proving goal equivaleneswas explored in [Pettorossi and Proietti 1999; 2000℄. These works employ morerestrited Tamaki-Sato style unfold/fold transformations, whih are not suitable ingeneral for onstruting indution proofs of temporal properties. This is beausetemporal properties employ �xed point operators, and are typially enoded usingmultiple reursive lauses. A simple reahability property EFp (whih spei�esthat a state in whih proposition p holds is reahable) [Clarke et al. 1999℄ will beenoded as a logi program as follows:ef(X) :- p(X).ef(X) :- trans(X,Y), ef(Y).where the prediate trans aptures the transtion relation of the system being ver-i�ed, and p(X) is true if the proposition p holds in state X. This enoding ontainstwo lauses one of whih is reursive. Our work relaxes restritions on the appli-ability of the transformation rules thereby enabling their use in proving temporalproperties.The reader might notie similarities between a proof system based on unfold/foldtransformations a proof systems based on tabled resolution [Tamaki and Sato 1986b;Chen and Warren 1996℄. Tabled resolution ombines resolution proofs with mem-oing of alls and answers. Sine folding orresponds to remembering the originalde�nition of prediates, there is some orrespondene between folding and memo-ing. However, folding an remember onjuntions and/or disjuntions of atoms asthe de�nition of a prediate. This is not possible in tabled resolution. Furthermore,in tabled resolution when a tabled all C is enountered, the answers produed sofar for C are used to produe new answers for C. In folding, when the lause bodiesin old de�nition of a prediate is enountered, it is simply replaed by the lausehead.



Unfold/fold Transformations for De�nite Logi Programs � 33The unfold/fold transformation based proof tehnique for onstruting indutionproofs also di�ers substantially from many existing indutive theorem proving teh-niques [Boyer and Moore 1990; Bundy et al. 1990℄. These provers take in an expliitindution shema and try to dispense the proof obligation in eah of these ases.In ontrast, the transformation based proof tehnique does not input any indutionshema. The shema is onstruted gradually via unfolding of the program predi-ates. This idea has similarities to the \reursion analysis" tehnique employed inthe Boyer-Moore prover [Boyer and Moore 1975; 1990℄. Given some funtions, theseworks exploit the reursive struture of these funtions to prove theorems aboutthem. Note that, if the neessary indution shema annot be derived via unfold-ing, our transformation based proof tehnique annot �nd a proof. However, thisrestrition leads to inreased automation in the onstrution of indution proofs,and fewer ases in the indution shema onstruted (see [Royhoudhury 2000℄ fora detailed example).In onlusion, we would like to note that onstruting indution proofs via un-fold/fold transformations is di�erent from onsisteny based proof tehnqiues suhas indutionless indution [Comon and Nieuwenhuis 2000℄. These tehniques donot employ any indution shema at all. To prove a prediate equivalene p � qour proof tehnique uses an indution shema obtained from the struture of thetransformed de�nitions of p, q. However, this shema is not given a-priori butgradually onstruted via program transformations.7. DISCUSSIONSThe development of a parameterized framework for unfold/fold transformations hasseveral important impliations. It enables us to ompare existing transformationsystems and modify them without redoing the orretness proofs (e.g., extendingmeasures for goal replaement in Setion 3). It also failitates the developmentof new transformations systems. For instane, we derived SCOUT whih permitsfolding using multiple reursive lauses.Motivation. The development of our transformation framework is motivated byits appliation in onstruting indution proofs. As desribed in Setion 5, ourtransformation framework an be used for indutively proving prediate equiva-lenes. In these proofs, the unfolding transformation helps prove the base aseand the �nite part of the indution step. The folding transformation is useful forunovering the indution hypothesis. Finally, the goal replaement transformationis used for onstruting nested indution proofs (semanti equivalene of the goalsinterhnaged in a goal replaement step are also proved by program transforma-tions).Extensions. In [Royhoudhury et al. 2002℄, we have extended the work reportedin this paper to obtain generalized unfold/fold transformation systems for normallogi programs. Aravindan and Dung [1995℄ developed an approah to parameterizethe orretness proofs of the original Tamaki-Sato system with respet to varioussemantis based on the notion of semanti kernels. Inorporating the idea of se-manti kernel into our framework yields a framework that is parameterized withrespet to the measure strutures as well as semantis.
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Unfold/fold Transformations for De�nite Logi Programs � 37APPENDIXIn this appendix, we briey outline the transformation systems of [Kanamori andFujita 1987℄ and [Tamaki and Sato 1986a℄ for the onveniene of the reader. Wethen prove that SCOUT is a more powerful transformation sequene (in terms ofallowed transformation sequenes).A. TRANSFORMATION SYSTEM OF KANAMORI-FUJITAIn this work [Kanamori and Fujita 1987℄, eah lause of any program Pi in a trans-formation sequene P0; P1; : : : is annotated with an integer ounter. The ounterof eah lause in the initial program P0 is set to 1. The unfolding and folding rulesare as follows.Rule 8. Unfolding Let C be a de�nite lause in program Pi with ounter and A be an atom in the body of C. Let C1; : : : ; Cm be all the lauses in Pi whoseheads are uni�able with A with m.g.u �1; : : : ; �m. Let the ounters of C1; : : : ; Cmbe 1; : : : ; m. Let C 0j be the lause that is obtained by replaing A�j by the body ofCj�j in C�j (1 � j � m). Assign (Pi�fCg)[fC 01; : : : ; C 0mg to Pi+1. The ounterof C 0j is  + j for all 1 � j � m.Rule 9. Folding Let C be a de�nite lause in Pi of the form A:� A1; : : : ; Anwith ounter  and let D be a lause in Pj (j � i) of the form B:� B1; : : : ; Bm withounter Æ. There is no other lause in Pj whose head is uni�able with B. Supposethere is a substitution � and atoms A1; : : : ; Am (m � n) in the body of C s.t.|Aj = Bj� for j = 1; : : : ;m|� substitutes distint variables for the internal variables of D and moreover thosevariables do not our in fA;Am+1; : : : ; Ang.|m+ Æ < n+ De�ne a lause C 0 as A:� B�;Am+1; : : : ; An, and assign Pi �fCg [ fC 0g to Pi+1.The ounter of C 0 is  � Æ.As an extension, [Kanamori and Fujita 1987℄ mentions that the prediate symbolsof the program P0 an be partitioned into strata. Folding an then be allowed evenif m + Æ = n + . This extension an also be aptured by our transformationframework. Furthermore, [Kanamori and Fujita 1987℄ mentions that the ountersof the lauses produed by unfolding (folding) at Pi are given as above, unless thislause is already present in Pi with a lower ounter.B. EXTENDED TAMAKI-SATO SYSTEMThis work [Tamaki and Sato 1986a℄ starts with a \layered" program P0 where theprediate symbols are partitioned into n strata or desent levels. The strati�ationshould be suh that every prediate symbol in the body of a lause C has a levlnot greater than the level of the perdiate at the head of C. The level of a lausein P0 is the level of its head prediate.The transformation rules are given as in [Kanamori and Fujita 1987℄. The onlydi�erene is that eah lause of program Pi in a transformation sequene P0; P1; : : :is annotated with a desent level (instead of an integer ounter). The desent levelof a lause C is:



38 � Royhoudhury, Kumar, Ramakrishnan, Ramakrishnan|if C 2 P0 then the desent level of C is the desent level of the prediate symbolin its head.|if C 2 Pi+1 is introdued by unfolding C 0 2 Pi at atom A, then the desentlevel of C is tge minimum of the desent level of C 0 and the desent level of theprediate symbol in A.|if C 2 Pi+1 is introdued by folding/goal replaement of lause C 0 2 Pi, then thedesent level of C is the desent level of C 0.|Finally, a lause C 2 Pi an be folded using a lause D as folder provided thedesent level of C is smaller than the desent level of D.C. SCOUT IS A MORE POWERFUL TRANSFORMATION SYSTEMIn this setion, we prove that SCOUT allows more transformation sequenes thanthe ounter based transformation system of Kanamori Fujita [1987℄ as well as thestrati�ation based transformation system of Tamaki-Sato [1986a℄.Kanamori-Fujita system [1987℄. This system is speial ase of SCOUT wherefolding is onjuntive and all the prediate symbols of the initial program are plaedin a single stratum.Extended Tamaki-Sato system. For proving that SCOUT overs any transforma-tion sequene P0; P1; P2; : : : whih is allowed by the fold/unfold/goal replaementsystem of [Tamaki and Sato 1986a℄, we de�ne the invariants given below. Reallthat in [Tamaki and Sato 1986a℄ eah lause in any Pi is assoiated with a stratanumber, also alled the desent level. Folding of a lause C (folded lause) using alause D (folder lause) is allowed if: desent level of C < desent level of D. Also,sine [Tamaki and Sato 1986a℄ handles only onjuntive folding, any fold/unfoldtransformation sequene of [Tamaki and Sato 1986a℄, if exeutable in SCOUT, willalways produe lauses with ounters of the form (; ); in other words, the twoounters of any lause will always be equal.We now onsider the following invariants :|J1(Pi) � Any fold/unfold/goal replaement transformation in Pi whih is al-lowed by the extended Tamaki-Sato system [1986a℄ is allowed by SCOUT (withn strata).|J2(Pi) � Let C be any lause in program Pi with strata number (i.e. desentlevel in the terminology of [Tamaki and Sato 1986a℄) j. Then, in SCOUT (withn strata), ilo(C) = ihi(C) = h1; : : : ; ni where j > 0 ^ (81 � k < j k = 0)To prove that any unfold/fold/goal replaement transformation sequene overedby [Tamaki and Sato 1986a℄ is also overed by SCOUT, it is suÆient to prove thatJ1(Pi) is an invariant.Theorem 5. Let P0; P1; P2; : : : be an unfold/fold/goal replaement transforma-tion sequene of the extended Tamaki-Sato system [1986a℄. Then, 8i � 0: J1(Pi)^J2(Pi)Proof. The proof follows by indution on i. J1(P0) is trivially true by the de�-nition of the fold/unfold transformations in [Tamaki and Sato 1986a℄ and SCOUT.Also, if a lause C in P0 has desent level j, then olo(C) = ohi(C) = h1; : : : ; ni



Unfold/fold Transformations for De�nite Logi Programs � 39where j = 1 and l = 0 when l 6= j. Clearly then J2(P0) is also true. Thus, wehave established the basis for the indution.Now assume that 8i � m: J1(Pi) ^ J2(Pi). We now show that J1(Pm+1) ^J2(Pm+1) holds.First we prove J2(Pm+1). Let C be any lause in Pm+1. We show that theproperty mentioned in J2 is true for C.Case 1: C is inherited from PmThe result holds sine J2(Pm) is true by indution hypothesis.Case 2: C is obtained by unfolding C 0 using C 00Sine, 8i � m: J1(Pi), the sequene P0; P1; : : : ; Pm; Pm+1 an be onstruted usingSCOUT. Then, m+1lo (C) = m+1hi (C) = mlo (C 0)�mlo (C 00) = mhi(C 0)�mhi(C 00). Alsolet the desent level of C, C 0 and C 00 be k,k0 and k00 respetively. Then, by [Tamakiand Sato 1986a℄, k = min(k0; k00). By the indution hypothesis, the property in J2is true for both C 0 and C 00. Hene if mlo (C 0) = mhi(C 0) = h01; : : : ; 0ni and mlo (C 00) =mhi(C 00) = h001 ; : : : ; 00ni, then 01 = � � � = 0k�1 = 0, 001 = � � � = 00k�1 = 0. Also sinek is the minimum of k0 and k00, we have either 0k = 0^ 00k > 0, or 0k > 0^ 00k = 0or 0k > 0 ^ 00k > 0. Now, m+1lo (C) = m+1hi (C) = mlo (C 0)� mlo (C 00) = h1; : : : ; niwhere 81 � l � n l = 0l + 00l . Hene 1 = � � � = k�1 = 0 and k > 0. Thus theproperty in J2 holds for C.Case 3: C is obtained by folding C 0 using D0Sine 8i � m: J1(Pi), the transformation sequene P0; P1; : : : ; Pm; Pm+1 an beonstruted using SCOUT. Let C 0 and D0 have desent levels k and l respetively.Then by [Tamaki and Sato 1986a℄, the desent level of C is also k and k < l. ButD0 2 P0, so 0lo(D0) = 0hi(D0) = hÆ01; : : : ; Æ0ni where Æ0l = 1 and Æ0j = 0 when j 6= l.Let mlo (C 0) = mhi(C 0) = h01; : : : ; 0ni. As the property in J2 is true for C 0, we have01 = � � � = 0k�1 = 0 and 0k > 0. Now, m+1lo (C) = m+1hi (C) = mlo (C 0)	 0hi(D0) =h1; : : : ; ni where 81 � j � n j = 0j�Æj . Sine k < l, therefore Æ01 = � � � = Æ0k = 0.Thus, 1 = � � � = k�1 = 0 and k = 0k > 0. Hene the property in J2 holds for C.Case 4: C is obtained by goal replaement from lause C 0 2 Pm.Again, sine 8i � m: J1(Pi), the transformation sequene P0; : : : ; Pm; Pm+1 an beonstruted using SCOUT. Let C 0 have desent level k. then, by [Tamaki and Sato1986a℄, the lause C 2 Pm+1 also has desent level k. Let mlo (C 0) = mhi(C 0) =h01; : : : ; 0ni and m+1lo (C) = m+1hi (C) = h1; : : : ; ni Sine property J2 is truefor C 0 therefore 01 = � � � = 0k�1 = 0 and 0k > 0. Let C be obtained from C 0by replaing goal G with G0. Now, from the de�nition of goal replaement in[Tamaki and Sato 1986a℄, for any ground instantiation � we have �(G�)	�(G0�) �Æ = h0; 0; : : : ; 0i The lause measure of lause C will be m+1lo (C) = m+1hi (C) =mlo (C 0) = mhi(C 0) Therfore, learly property J2 holds for lause C as well.Thus, mlo (C 0)� Æ�P1�l�k �min(A0l) � 0 where A01; : : : ; A0k are the body atomsother than G in lause C 0 (this holds beause mlo (C 0) � 0, Æ = 0 and �min(A) � 0for any atom A. Furthermore,We now show that J2(Pm+1)) J1(Pm+1). Sine the unfolding transformation isindependent of any ondition on the strati�ed ounter (or desent level) in SCOUT



40 � Royhoudhury, Kumar, Ramakrishnan, Ramakrishnanor [Tamaki and Sato 1986a℄, therefore any unfolding allowed by [Tamaki and Sato1986a℄ in Pm+1 is also allowed by SCOUT.For folding, let C 2 Pm+1 be folded using the folder D 2 P0 in the systemof [Tamaki and Sato 1986a℄. Let the desent levels of C and D be be k and lrespetively. Then, k < l (by [Tamaki and Sato 1986a℄) and the property of J2is true for both C and D (sine J2(Pm+1) holds). So, if m+1lo (C) = m+1hi (C) =h1; : : : ; ni and 0lo(D) = 0hi(D) = hÆ1; : : : ; Æni we have 1 = ::: = k�1 = 0,k > 0, Æ1 = ::: = Æl�1 = 0. As k < l, this means Æ1 = ::: = Æk = 0. Clearly thenm+1lo (C) is lexiographially greater than 0hi(D). Hene C an be folded using Das folder in SCOUT.For goal replaement, let C 2 Pm+1 be of the form A:� G;A01; : : : ; A0k andlet it be replaed in [Tamaki and Sato 1986a℄ system to produe lause C 0 �A:� G0; A01; : : : ; A0k. Let the desent level of C be k. Then, the desent level oflause C 0 is also k. By setting Æ = h0; : : : ; 0 we have �(G�) 	 �(G0�) � Æ =h0; 0; : : : ; 0i. We also require m+1lo (C) � Æ �P1�l�k �min(A0l) � 0 for this goalreplaement to be appliable in SCOUT. Sine property J2 holds for lause Ctherefore m+1lo (C) � 0. Furthermore, Æ = 0 and �min(A) � 0 for any atom A.Therefore, m+1lo (C) � Æ �P1�l�k �min(A0l) � 0 and the goal replaement trans-formation is appliable in SCOUT. This ompletes the proof.Thus, we have proved that SCOUT allows all unfold/fold transformation se-quenes allowed by [Tamaki and Sato 1986a℄. To prove that it is stritly morepowerful, we need to give an example transformation sequene whih is allowed bySCOUT, but not by [Tamaki and Sato 1986a℄. Any example requiring disjun-tive folding serves this purpose. Hene we onlude that SCOUT is stritly morepowerful than [Tamaki and Sato 1986a℄.


