Proofs by Program Transformations*

Abhik Roychoudhury, K. Narayan Kumdr?, C.R. Ramakrishndnl.V. Ramakrishnah

! Department of Computer Science 2 Chennai Mathematical Institute
State University of New York at Stony Brook 92 G.N. Chetty Road

Stony Brook, NY 11794, USA Chennai, India
{abhik,kumar,cram,ram }t@cs.sunysb.edu kumar@smi.ernet.in

1 Introduction

Logic program transformation systems are often described as a collectionfaifling folding and goal replacement
transformation rules. Given a prograf) a logic program transformation system derives a sequence of progtams

Py, Py,..., Py, such that for alll < i < N, P,y is obtained fromP; by application of one of the above rules.
Logic program transformation systems are usually proved correct by showing that all programs in the transformation
sequencery, P, ... , Py are equivalent under a suitable semantics, such as the least Herbrand model semantics for
definite programs.

An unfold/fold transformation system for definite logic programs was first described in a seminal paper by Tamaki
and Sato [25]. Since then their system has been substantially extended and expanded [1, 8, 12, 24, 26] and applied to
practical problems of importance (e.g., see [2, 4, 14, 18]). An excellent survey of research on this topic appears in [16].

Unfold/fold logic program transformation systems have been extensively used for program synthesis and program
optimization. However, relatively little work has been done on using such systems for constprotifgy Hsiang and
Srivas [10] extended Prolog’s evaluation with “limited forward chaining” to perform inductive theorem proving. This
limited forward chaining step is in fact a restricted form of folding: only the theorem statement (which is restricted to
be conjunctive) can be used as a folder clause. Kanamori and Fujita [11] used the original Tamaki-Sato unfold/fold
transformation system [25] to facilitate the construction of induction proofs of theorems about the original program.
However, this method perfornt®njunctivefolding using only a single non-recursive clause, and does not perform goal
replacement. Proietti and Pettorossi [19, 17] use Tamaki-Sato style unfolding and folding rules (the extension of [25] to
disjunctive folding, as described in [8]) to prove the equivalence of two atoms. Their motivation is to use these equivalence
proofs for program synthesis.

The need for permitting goal replacement and folding using multiple recursive clauses arises in the construction of
induction proofs for automated verification paArameterizecconcurrent systems. A parameterized system, such as an
m-bit shift register or a token ring aoh processes, constitutes afinite family of finite-state systems, one for each
value ofm. With finite-state model checking [5], a well-known technique used in automated verification, one is limited
to verifying particular instances of such systems (such &8-kit shift register). Techniques for automated (or semi-
automated) construction of explicit induction proofs is central to the verification of parameterized concurrent systems.

In this paper, we examine how unfolding, folding and goal replacement transformations can be used towards automat-
ing the construction of such induction proofs. In [22] we proposed an abstract unfold/fold transformation framework for
definite logic programs. We also constructed SC3Toncrete instance of the framework, that is strictly more powerful
(in terms of transformation sequences permitted) than other unfold/fold transformation systems proposed in the literature.
SCOUT combines the stratification-based Tamaki-Sato system in [26] with the counter-based Kanamori-Fujita system
in [12] thereby obtaining a single system that strictly subsumes either of them. For each clause of any program in a
transformation sequence, the SCOUT system mainggpsoximatecounters thereby allowing disjunctive folding using
recursive clauses (for details, refer [22]).

*The work of Abhik Roychoudhury, C.R. Ramakrishnan and |.V. Ramakrishnan was partially supported by NSF grants CCR-9711386 and EIA-
9705998. The work of K. Narayan Kumar was partially supported by NSF grant CDA-9805735.
1SCOUT stands for Strata and COunter based Unfold/fold Transformations.

In order to use SCOUT as a proof system, a second look at the goal replacement transformation is necessary. Goal
replacement, where semantically equivalent goals are interchanged, creates more opportunities for folding. This enables
one to construct more complex proofs that arise in the verification of parameterized concurrent systems. There are two
immediate problems with integrating goal replacement in an automated proof system. First, the identification of equivalent
goals must be based on some syntactic (or analysis-based) criteria, since semantic equivalence is, in general, undecidable.
Secondly, the conditions under which goal replacement is permitted by the transformation system are usually specified
in terms of uncomputable measures such as the size of the shortest ground proofs of atoms in the original program. We
need to distill these conditions into those that tegtableat transformation time. To this end, we introduggntactic
Goal Replacemena testable goal replacement rule. This enables us to use program transformations for semi-automated
deduction. We illustrate the power of SCOUT and Syntactic Goal Replacement by deriving an induction proof for an
example distilled from verification of parameterized concurrent systems. The example shows the utility of the more
general folding rule of SCOUT as well as the need for Syntactic goal replacement.

2 A Program Transformation System for Constructing Proofs

In this section, we present the transformation rules which will be used to establish induction proofs of universally quanti-
fied formulas. First, let us look at the following example to illustrate the kind of properties we intend to prove. Consider
the progranm¥, given below.

thm(X) :- gen(X), test(X).

gen([]). test(X) :- canon(X).

gen([0]X]) :- gen(X). test(X) :- trans(X,Y), test(Y).
canon([]). trans([0]X], [1[X]).

canon([1|X]) :- canon(X). trans([1|T],[1|T1]) :- trans(T,T1).

Any list consisting of only0’s is generated bgen while thetest predicate checks whether a given list can be
transformed (through finite number of applicationgrahs) into a string consisting of only’s. Thetrans predicate
transforms a string by converting the leftmost occurrence f the string tol. The property that we would like to
establish i/ X gen(X) = test(X)

Now, from the definition ofthm in Py we see that X thm(X) < gen(X) Atest(X) . Thus, if we can establish
thatV X thm(X) < gen(X) then we can conclude that the formiaX gen(X) = test(X) is true. One way to
establishv X thm(X) < gen(X) is to show that the above prograf is equivalent to some prografy in which
the semantic equivalence ifm(X) andgen(X) can be inferred from the syntax of the program. For example, if the
clauses fothm in Py were :

thm([).
thm([0]X]) :- thm(X).

then we would be able to infer thetX thm(X) < gen(X) . Thisis because the clausesgein(X) andthm(X) , even
though not syntactically identical, have identical “recursive structure” (we formalize this notion later in this paper).

We demonstrate the equivalence of two programs by showing that one of them can be transformed into the other by
repeated application of the unfolding, folding and goal replacement transformation rules. In order to use such transforma-
tion rules for automated deduction, the test for applicability and the application of the rules must be automated. Moreover
when more than one transformation rule is applicable (as is typically the case), control strategies are needed to decide
which rule to apply. In this paper we address only the first issue.

2.1 The SCOUT system

We assume that the predicate symbols appearing in a transformation sedyefce .. , Py are a-priori partitioned
into n strata, such that a predicate from stratjis defined in the initial progran®, using only predicates from strata
< j. We also assume that for any twetuples of integers = (vy1,...,7v,) andy’ = (vi,...,7,), we sayy > v

if v is lexicographically greater thayl. Addition and subtraction of-tuples are defined as follows: + v = (v +
Y-+ L) andy &' = (y1 ©91, ... , 7 ©74). We now define

Definition 1 (Characteristic Vector) Let P be a program such that the predicate symbolgPcéire partitioned inton
strata. LetA be any atom in the Herbrand Base Bf Then, the characteristic vector af is ch(A) = (w1, ... ,wy,)
wherew; = 1 if the predicate symbol ot is in stratumj and0 otherwise.

Thus the characteristic vector of an ateims simply an encoding of the stratum in which the predicate symbdl bé-
longs. We now describe the unfolding and folding rules of SCOUT [22]. For any transformation sedyeRce.., Py
each claus€' in programP; is annotated with a pair ditratified counters In other words, every clausg € P; in a
transformation sequence is annotated with a pgir(C),~:.(C)), whereyi (C),~i.(C) € Z™ and~j,(C) > ~j (C).
We assume that every clauSe= A:= A, ..., A in the initial programP, is annotated with the pafeh(A), ch(A)).

Rule 1 (Unfolding) Let C be a clause i?; and A an atom in the body of'. LetC4, ..., C,, be the clauses i®; whose
heads are unifiable witd with most general unifiers,, ...,o,,. LetC} be the clause that is obtained by replacitwg;

by the body ofC;o; in Co; (1 < j <m).

Then, assigrP;.; = (P; &{C}) U{C},...,C},}. Also, sety, ! (C}) = +/,(C) + 7i,(C;) andy; ' (CF) = 7i,;(C) +

7;:(C;). The annotations of all other clauses/in.; is inherited fromp;. O

Rule 2 (Folding) Let (4, ...,Cp, be clauses irP; of the formC) = A Ay, ..., Ay, Al -, Ay @and Dy, ..., Dy, be
clauses inP; (j < ¢) of the formD; = Bj:& By 1, ..., By 5, satisfying :

1.V1 <1l <m.30;.V1 <k <ny. A1, = By ro; Whereo; is a substitution.

2. B101 = B202 = ...= BmO'm =B

3. D4,..., Dy, are the only clauses iR; whose heads are unifiable with

4.V1 <1 < m oy substitutes the internal variablesof to distinct variables which do not appear{id, B, A}, ..., A}, }

5.V1 <1 <m 77,(D1) < 7,(C1) + Xy <y AL
Then, assigP;;.; = (P; &{C1,...,Cy,}) U{C"} whereC' = A:& B, Aj, ..., A},. Also set

(O = mini<1<m (7, (C1) <:>7ii(Dl)), YO = mazi <1<m (VE;(Cr) <:>'yljo(Dl)). The annotations of all other
clauses inP;, is inherited fromp;. O

The unfolding and folding rules transform a progr&hwith annotated clauses to another prog@&m, with anno-
tated clauses. One key feature of the folding rule is that it permits disjunctive folding of recursive clauses. As discussed
later, such folding is common in the proofs of verification of parameterized concurrent systems.

The goal replacement transformation allows semantically equivalent atoms to be interchanged. To present this rule,
we will need the following definitions. For any conjunction of atomis . . . , A,, we use the notatiotars(Ai, ..., Ay)
to denote the set of variables occurringdn, . .. , 4,,.

Definition 2 (Ground Proof of an Atom) Let7 be a tree, each of whose nodes is labeled with a ground atom. Then
is a ground proof in progran®, if every noded in T" satisfies the condition A:< A, ..., A,, is a ground instance of a
clause inP, whereA, ..., A,, (n > 0) are the only children ofi in the treeT'.

Definition 3 (Weight of a Proof) Let T be a ground proof in progran® of some ground atom € M (P). Then, the
weight of T is w(T') = (w1, . .. , w,) Wherew; is the number of nodes ifi whose predicate symbol is in stratym

Thus the weight of a given ground proof simply accounts for the number of nodes in the proof tree, for each stratum.

Definition 4 (Weight of an Atom) Let P, be the initial program of a transformation sequence ahd= M (F,) be a
ground atom. Then the weight df denotedv(A), is the weight of the lexicographically smallest proofioin Py. Thus,
VA w(A) > ch(A).

Note that when the number of stratalisthe weight of a ground atom denotes simply the size of the shortest ground
proof of A in P,.

Rule 3 (Goal Replacement)Let C be a claused: < A, , ..., A, G in P;, andG' be an atom such thatars(G) =
vars(G') Cwvars(A, Ay,. .., Ar). Suppose
1. for all ground instantiatior® of G, G’ we have
(i) GO < P GO (i) 6 <w(G) sw(G'P) <
2.9,(C) + 0+ 32 < i ch(45) > (0,...,0)

ThenP;, = (P; &{C}) U {C'} whereC" = A= Ay,..., A, G'. Also sety/ ' (C") = ~} (C) + ¢ and
i+l _ Ad !
Yii (C") = 73,(C) + 0. O

Note that although we replace a single at@rhy another atond’ , we can replace conjunctions of atoms using a sequence
of definition, folding, goal replacement and unfolding transformations. However, the above rule allows replacementin the
body ofonly oneclause in progran®;. It would be interesting to study how we can extend this rule to perform multiple
replacements simultaneously i without compromising correctness (as discussed in [3]).

Rules 1,2,3 are concrete instances of the transformation rules presented in [22]. Hence, the correctness proof of [22]
directly yields the following correctness result w.r.t. least Herbrand model semantics. For any definite logic gPpgram
let M (P) denote its least Herbrand model.

Theorem 1 [22] Let Py, P, ... , Py be a sequence of definite programs wheye, is obtained fromP; by unfolding
(rule 1), folding (rule 2) or goal replacement (rule 3). Théil < i < N we haveM (FP;) = M (P).

2.2 Syntactic Goal Replacement

Unlike the unfolding and folding rules, applicability of goal replacement rule (rule 3) is not testable. Moreover to apply
this rule, we need to compute suitaldlg’ which are bounds on the difference between the weight of replaced and
replacing atoms. We now formulate a testable version of the goal replacement rule. To do so, we need a nontrivial
computational mechanism to check the semantic equivalence of two given atoms purely based on syntax. We must
also identify testable conditions that imply the untestable restrictions on weights of atoms required by the general goal
replacement rule. The notion of syntactic equivalence described below addresses the first issue, while the definition of the
syntactic goal replacement rule resolves the second issue.

Syntactic Equivalence Consider the following example prografh

pP(X) - r(X). a(X) - s(X).
p(X) - e(XY), p(Y). aX) - e(X,Y), q(y).
r(X) :- b(X). s(X) :- b(X).

r(X) ands(X) are equivalent since the clauses defining them have identical right hand sides. We can now use this
to infer thatq(X) andp(X) are equivalent. Note that even though the clausggXf andq(X) are not syntactically
identical, the “recursive structure” of these clauses is the same. We formalize this notion in the definition given below.

Definition 5 (Syntactic Equivalence of Atoms)Let=2* be an equivalence relation on the set of predicates of a program
P andletA = p(ty,...,tx) and B = ¢(t},... ,t},) be two atoms. Then atordsand B are said to be syntactically
equivalent w.r.t. to the relatio”’, denotedd =¥, B, if we havep =¥ g and(ty,... ,t;) is a variant of(t}, ... , t})

—atom

Definition 6 (Syntactic Equivalence of Predicates)An equivalence relatiogz?” on the set of predicates df is said to
be a syntactic equivalence relation if whenepex! ¢ we have:

1. The predicatep andq belong to the same stratum.

2. Let the clauses of predicatesindq in programP be {C, ... ,Cp} and{Dy, ..., Dy} respectively. Then, for all
1 <i<mwehave:

(i) C; is avariant of D; when all predicate symbols ifi; and D; are replaced with the same predicate.

(i) LetC; andD; be of the formH:< By, ..., B, andH':& B, ..., B;, respectively. Thenforall <1 <k B; =, Bj.

It is easy to see that the family of syntactic equivalence relations is closed under union. Thus there is a largest syntactic
equivalence relatioe=”. The relation="" can be computed as the greatest fixed point of a functional derived from the
conditions of definition 6. In practice, in order to show that? ¢ one often computes a smaller syntactic equivalence
relation. This is becauge="" ¢ if and only if p =¥ ¢ for some syntactic equivalence relati&¥. Also, for two atoms

A andB we sayA Bifandonlyif A =F B for some syntactic equivalence relatie.

—P
—atom —atom

Thus, given two atomd and B and a progran®, we can check whethet =F, B automatically. In the example
program fragmenP given above, the the relatiea’’ = {(p, q), (r, s) }UId, whereld is the identity relation, is a syntactic
equivalence relation. Therefopéx) =P q(X) and hence(X) =L, q(X).

Note that we can straightforwardfjeneralizeour definition of syntactic equivalence to define syntactic equivalence
of subgoals. Thus, we can then make inferencesp{éx)) = q(X) based on the syntdxThe details appear in [21] and

will be incorporated into the full version of this paper.

2Wwith definitions 5, 6 we can only infes(£(X)) = q(£(X)) if p = q.

We establish the following lemma about ground proofs of syntactically equivalent atoms. Thus, if twoatomnds
G' are syntactically equivalent in prograf then for every ground proof of a ground instancé&ah P there is a ground
proof (of equal weight) of the corresponding ground instanag’ah P.

Lemma 1 (Proofs of syntactically equivalent atoms)For any ground proofl’ of a ground atom&6 in program P if
G =F @', then there is a ground prodf’ of G'pf (where the substitutiop renames the variables @ to the

—atom

corresponding variables @) in P s.t. w(T') = w(T"), i.e. the weights of andT" are equal.

Proof : By induction on the size of prodf. O

We now introduce the notion oélevant clause setf an atom. Intuitively, it is a conservative estimate.(a superset)
of the set of clauses which are used in the proof of some ground instance of the atom.

Definition 7 (Relevant Clause Set)Let A be an atom and® a program. Letreach(A, P) denote the set of predicates
which are reachable from the predicate.4fin the predicate dependency grajpdf P. Then, the relevant clause set6f
in P (denotedel(A, P)) is the set of clauses of the predicatesdach(A, P).

We now define the Syntactic Goal Replacement rule. For any clausd(C') denotes the head atom Gt

Rule 4 (Syntactic Goal Replacement)Let C' be a clause it?; of the formA:< Ay, ..., Ax, G and consider another clause
C' (notin P;) of the form : A:s Ay, ..., A, G’ such that

1. G andG' are syntactically equivalene. G =2, G’, andvars(G) = vars(G') C vars(A, Ay, ... , Ap)

2. The clauses imel(G', Py) are never modified in the transformation sequeRgeP;, ..., P; i.e. rel(G',Fy) =
rel(G', B;).

3. For each claus® € P; v} (D) > ch(hd(D)).

4. LetCl;(G) be the clauses i; whose heads unify with the atoG. We define

§ = minpeci(a) (V,(D) ©ch(hd(D))). We must have;,(C) + 3 + 32, <, ch(4;) > (0,... ,0).

Then, assignP;,; = (P & {C}) U {C’} whereC' is A Ay, ..., Ax, G'. Also, sety/ ' (C") = +}(C) + § and
YH(C") = ~i,(C) + &' whered' = (0,0,...,0). 0

Special case of Goal ReplacementSyntactic Goal Replacement (rule 4) can be proved to be a special case of the Goal
Replacement transformation of rule 3. Note that siGcesl’ =~ G’ andvars(G) = vars(G'), therefore by lemma 1
we havevd P, - G§ & P; - G'f. We also havey (C) + 6 + El<]<k ch(A;) > (0,...,0). Thus, to show that
Syntactic Goal Replacement is a special case of Goal Replacement, it is sufficient to prove that whenever Syntactic Goal
Replacement is applied to clauSeo replaces by G’ we havevd § < w(G) cw(G'8) < §'. Sinced’ = (0,0, ... ,0),
therefored’ is lexicographically greater than the weight of any ground atom; herf¢®) <w(G'6) < ¢'. Finally,
conditions (2) and (3) of the Syntactic Goal Replacement rule ensur&@hatGé) < w(G'0) > §. A formal proof
showing that rule 4 is a special case of rule 3 can be found in [21].

Applicability of rule 4 is testable and the clause annotations of the new clausan be effectively computed
since we have conservatively estimated the valug & Note that in rule 4 we have sétto (c0,0,...,0). This will
prevent the new claus@’ from being used as a folder later in the transformation sequence. However, our chéice of
satisfiesy > (0, ... ,0) and therefore we will always havg™" (C") >~} (C). Thus,C’ can participate in future folding
transformations as one of the folded clauses. Also, note that a tighter valuis bfrd to obtain. This is because we need
to satisfyw(G6) ©w(G'8) < §' for any ground substitutiof. The proof sizes of76 andG’# could be monotonic on the
instantiation of some variable 6¢f, G’ and# could be constructed to instantiate that variable to larger and larger ground
terms, thereby ruling out a tighter value®f

From the correctness of the unfolding, folding and goal replacement rules (theorem 1), we obtain the following
correctness result.

Theorem 2 (Correctness of Unfolding, Folding, Syntactic Goal Replacementlet Py, Py, ... , Py be a sequence of
definite logic programs whe®, , ; is obtained fronP; by unfolding (rule 1), folding (rule 2) or syntactic goal replacement
(rule 4). Therv 0 < i < N we haveM (P;) = M (Fp).

3The predicate dependency graph of a progfaimas the predicate symbols Bfas its vertices, and there is an edge from predipatepredicatey
if g occurs in the body of a clause pfn programpP.

“Note thatoo is only a notational convenience. It represents a value that exceeds the weights of all atoms. Formally, this is achieved by extending
the clause annotations by one extra stratum.

3 An Induction Proof

We now illustrate the use of our program transformation rules by transforming the generate-test program described at
the beginning of Section 2 to the desired form. The progfanis given below. InP,, all predicates are in the same
stratum and the lower and upper clause measures are set to 1 for all clauses. In the following, the clause annotations
(v (C),~},(C)) for any clauseC € P; are shown in parentheses beside claliseRecall that we want to prove the
universally quantified formulsl X gen(X) = test(X)

thm(X) :- gen(X), test(X) (1,1)

gen([])- (1,1) test(X) :- canon(X). (1,2)
gen([0|X]) :- gen(X). (1,1) test(X) :- trans(X,Y), test(Y). (1,2)
canon([]). (2,1) trans([O|X], [1]X]). (1,2)
canon([1|X]) :- canon(X). (1,1) trans([1|T],[1]|T1]) :- trans(T,T1). (1,2
Unfolding the only clause adhm/1 several times we obtain :
thm([]). (4,4)
thm([0]X]) :- gen(X), canon(X). (6,6)

thm([0]X]) :- gen(X), trans(X,Y), test([1|Y]). (6,6)
We now introduce the definition :
testl(Y) :- test([1]Y]). (1,1)

and fold the occurrence oést([1]Y]) in the last clause ahm/1 to obtain :
thm([]). (4.4)
thm([0|X]) :- gen(X), canon(X). (6,6)

thm([0|X]) :- gen(X), trans(X,Y), testl(Y). (5,5)

Unfolding the definition clause d@éstl/1 several times and then folding (using the definition claugestfl/1
as the folder) we get :

test1(Y) :- canon(Y). 3,3)
testl(Y) :- trans(Y,Z), testl(Z). (2,2)

Note thattest1(Y) andtest(Y) are syntactically equivalent, since the clausetesf/ll are:

test(X) :- canon(X). (1,2
test(X) :- trans(X,Y), testl(Y). (1,1)

We therefore appl@gyntactic Goal Replacemantthe last clause ahm/1 to obtain the following :

thm([]). (4.4)
thm([0|X]) :- gen(X), canon(X). (6,6)
thm([0|X]) :- gen(X), trans(X,Y), test(Y). (6,00)

We can now fold the above clausestbin/1 using the clauses @ést/1 as the folder. Note that we are folding
usingmultiple recursive clauses as the fold@hus, we obtain :

thm([]). (4.4)
thm([0]X]) :- gen(X), test(X). (5,00)

Finally, we fold using the clause ¢fim/1 in P, as folder to obtain the prografy;,q;

thm([]). (4,4)

thm([0|X]) :- thm(X). (4,00)

gen([])- (1,1) test(X) :- canon(X). (1,2)
gen([0|X]) :- gen(X). (1,1) test(X) :- trans(X,Y), test(Y). (1,2)
canon([]). (2,1) trans([O|T1,[2]TD). (1,1)
canon([1|X]) :- canon(X). (1,1) trans([1|T], [1|T1]) :- trans(T,T1). (1,1)

The atomghm(X) andgen(X) are now syntactically equivalent (refer definition 6). ThAE,Py;,q;) = V X thm(X)

& gen(X) . SinceM (Pyina) = M (Py) thereforeM (By) |= V X thm(X) < gen(X) .By definition ofthm(X) in P,

this means that/ (Fy) =V X gen(X) = test(X) .Thus, by using SCOUT and Syntactic Goal Replacement, we have
constructed a nontrivial induction proof.

Verification of Parameterized Concurrent Systems The above proof is illustrative since it is structurally similar to

the proofs that arise in the verification of concurrent systems. In fact, using the transformation rules of SCOUT and
the Syntactic Goal Replacement rule in a similar fashion we verified properties like livenesa-titsshift register,
correctness of a-bit carry-lookahead adder etc. Thus, in the problem of verification of livenesswbd shift register

: the predicatgen represents the encoding of thebit shift register while the predicatest represents the encoding

of the liveness property that we verify. To accomplish the proof of liveness forrgnye perform a folding step using

test as the folder similar to the above example. Moreover, as in the above example, the proof of liveness also involves
application of the Syntactic Goal Replacement rule to replace a specialized vertésh af This corresponds to proving

that the liveness property holds in a proc€sif the property holds in a sub-process@f The verification examples are

not shown here due to space considerations. Some of them are available in [23], and they will be incorporated in the full
version of this paper.

Interestingly, recent advances in logic programming based model-checking [7] open up the possibility of using logic
program transformations for the verification of parameterized concurrent systems. The XMC model-checker [20], built
on top of the XSB tabled logic programming system [27], can verify finite-state systems specified using value-passing
CCS [15] and formulas expressed in modal mu-calculus [13]. XMC's space and time performance is competitive with
hand-coded (in C/C++) model checkers such as the Concurrency Factory [6] and SPIN [9] from Bell Labs. Essentially, the
XMC model-checker performs verification of finite-state concurrent systems through controlled and efficient unfolding.
By using meta-programming facilities of logic programming, one can implement deductive techniques (achieved through
folding and goal replacement transformations) and thereby integrate them tightly with algorithmic model checking (which
is done by applying unfolding). This indicates that a unfold/fold logic program transformation framework holds promise
as a framework for integration of algorithmic and deductive verification in general, and verification of parameterized
concurrent systems in particular.

References

[1] C. Aravindan and P.M. Dung. On the correctness of unfold/fold transformations of normal and extended logic
programs.Journal of Logic Programmingpages 295-322, 1995.

[2] A. Bossi, N. Cocco, and S. Dulli. A method of specializing logic progra&kGM TOPLASpages 253-302, 1990.

[3] A. Bossi, N. Cocco, and S. Etalle. Simultaneous replacement in normal progdamsal of Logic and Computa-
tion, 6(1):79-120, February 1996.

[4] D. Boulanger and M. Bruynooghe. Deriving unfold/fold transformations of logic programs using extended OLDT-
based abstract interpretatiafournal of Symbolic Computatippages 495-521, 1993.

[5] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent systems using temporal
logic specificationsACM TOPLAS8(2), 1986.

[6] R. Cleaveland, P. M. Lewis, S. A. Smolka, and O. Sokolsky. The Concurrency Factory: A development environment
for concurrent systems. IRroceedings of the Seventh International Conference on Computer Aided Verification
(CAV '96),\ol. 1102 ofLecture Notes in Computer Scienpages 398-401. Springer-Verlag, 1996.

[7] B. Cui, Y. Dong, X. Du, K. Narayan Kumar, C.R. Ramakrishnan, I.V. Ramakrishnan, A. Roychoudhury, S.A.
Smolka, and D.S. Warren. Logic programming and model checkin@réceedings of PLILP/ALP, LNCS 1490
pages 1-20, 1998.

[8] M. Gergatsoulis and M. Katzouraki. Unfold/fold transformations for definite clause progranfroteedings of
PLILP, LNCS 844pages 340-354, 1994.

[9] G. J. Holzmann and D. Peled. The state of SPIN. Pmceedings of the Seventh International Conference on
Computer Aided Verification (CAV '96Ypl. 1102 ofLecture Notes in Computer Scienpages 385—-389. Springer-
Verlag, 1996.

[10] J. Hsiang and M. Srivas. Automatic inductive theorem proving using Prdlbgoretical Computer Scien¢&4:3—
28, 1987.

[11] T. Kanamori and H. Fujita. Formulation of Induction Formulas in Verification of Prolog ProgrRneseedings of
International Conference on Automated Deduction (CADages 281-299, 1986.

[12] T. Kanamori and H. Fujita. Unfold/fold transformation of logic programs with countertl9A-Japan Seminar on
Logics of Programs1987.

[13] D. Kozen. Results on the propositionatalculus.Theoretical Computer Scienc27:333-354, 1983.

[14] M. Leuschel, D. De Schreye, and A. De Waal. A conceptual embedding of folding into partial deduction : Towards
a maximal integration. Idoint International Conference and Symposium on Logic Programmiages 319-332,
1996.

[15] R. Milner. Communication and Concurrencinternational Series in Computer Science. Prentice Hall, 1989.

[16] A. Pettorossi and M. Proietti. Transformation of logic programssolume 5 ofHandbook of Logic in Atrtificial
Intelligence pages 697-787. Oxford University Press, 1998.

[17] A. Pettorossi and M. Proietti. Synthesis and transformation of logic programs using unfold/fold plowrfisal of
Logic Programming, to appeaf999.

[18] A. Pettorossi, M. Proietti, and S. Renault. Reducing nondeterminism while specializing logic progr&msded-
ings of POPL pages 414-427,1997.

[19] M. Proietti and A. Pettorossi. Synthesis of programs from unfold/fold proof®réceedings of Logic Program
Synthesis and Transformatigmages 141-158. Springer-Verlag, 1994.

[20] Y.S. Ramakrishna, C.R. Ramakrishnan, .V. Ramakrishnan, Terrance Swift, S.A. Smolka, and D. S. Warren. Efficient
model-checking using tabled resolutidProceedings of Computer Aided Verification (CAI997.

[21] A. Roychoudhury, K. Narayan Kumar, C.R. Ramakrishnan, and I.V. Ramakrishnan. A generalized unfold/fold
transformation system for definite logic programs. Technical Report 98/37, Dept. of Computer Science, SUNY
Stony Brook, 1998.

[22] A. Roychoudhury, K. Narayan Kumar, C.R. Ramakrishnan, and 1.V. Ramakrishnan. A parameterized unfold/fold
transformation framework for definite logic program3o appear in proocedings of Principles and Practice of
Declarative Programming (PPDR1999.

[23] A. Roychoudhury, C.R. Ramakrishnan, I.V. Ramakrishnan, and S.A. Smolka. Automated verification of parame-
terized systems by extending tabled resolution. Technical report, Department of Computer Science, SUNY Stony
Brook, Available athttp://www.cs.sunysb.edu/ ~abhik/transform/papers.html ,1998.

[24] H. Seki. Unfold/fold transformation of general logic programs for well-founded semaritic§ournal of Logic
Programming pages 5-23, 1993.

[25] H. Tamaki and T. Sato. Unfold/fold transformations of logic program$rbteedings of International Conference
on Logic Programmingpages 127-138, 1984.

[26] H. Tamaki and T. Sato. A generalized correctness proof of the unfold/ fold logic program transformation. Technical
report, Ibaraki University, Japan, 1986.

[27] XSB. The XSB logic programming system v1.8, 1998. Available from
http://www.cs.sunysb.edu/ ~sbprolog

