
EÆcient Real-Time Model Checking using

Tabled Logic Programming and Constraints?

Giridhar Pemmasani, C.R. Ramakrishnan, and I.V. Ramakrishnan

Department of Computer Science,
State University of New York at Stony Brook

Stony Brook, New York, U.S.A.
E-mail: fgiri,cram,ramg@cs.sunysb.edu

Abstract. Logic programming based tools for real-time model check-
ing are beginning to emerge. In a previous work we had demonstrated
the feasibility of building such a model checker by combining constraint
processing and tabulation. But eÆciency and practicality of such a
model checker were not adequately addressed. In this paper we de-
scribe XMC/dbm, an eÆcient model checker for real-time systems using
tabling. Performance gains in XMC/dbm directly arise from the use of
a lightweight constraint solver combined with tabling. Speci�cally the
timing constraints are represented by di�erence bound matrices which
are encoded as Prolog terms. Operations on these matrices, the domi-
nant component in real-time model checking, are shared using tabling.
We provide experimental evidence that the performance of XMC/dbm
is considerably better than our previous real-time model checker and is
highly competitive to other well known real-time model checkers imple-
mented in C/C++. An important aspect of XMC/dbm is that it can
handle veri�cation of systems consisting of untimed components with
performance comparable to veri�cation systems built speci�cally for un-
timed systems.

1 Introduction

In the recent past several techniques for veri�cation based on logic program-
ming have been developed. For example, constraint logic programming has been
used for the analysis and veri�cation of hybrid and real-time systems [23, 11].
Partial deduction techniques as well as CLP have been used for model check-
ing in�nite-state systems [7, 6, 17, 18]. New logic program transformations have
been devised for verifying parameterized systems [21, 10] and more recent work
includes veri�cation of security protocols [5].

Tools based on these techniques, such as our XMC system are beginning to
emerge. The XMC system is an eÆcient and exible model checker for �nite-state
systems [19] implemented using the XSB tabled logic programming system [24].
The veri�cation environment provided by the XMC system includes system and

? This work was supported in part by NSF grants EIA-9705998, CCR-9876242, and
IIS-0072927.

property speci�cation languages, a simulator, model checker and a justi�er for ex-
plaining the model checking results. The practicality of the XMC model checker
has been demonstrated on several large-scale veri�cation problems [20].

XMC is a model checker for untimed systems. But many reactive systems op-
erate under real-time requirements. Model checking such systems requires con-
straint processing machinery, an observation that was the basis for several CLP
based techniques [11, 7, 6, 18]. In [9] we developed XMC/RT for model checking
real-time systems using CLP with tabulation. It was implemented by adding a
generic constraint solver for linear constraints over the reals to XSB, thereby
deriving a constraint logic programming system with tabulation.

XMC/RT demonstrated the feasibility of building model checkers using logic
programming technologies for real-time systems that can be competitive with
those implemented in other languages such as C/C++. However to make it
as usable a system as XMC, there were performance issues that remained to
be addressed. Most notably, constraint handling in XMC/RT was not tightly
integrated to the XSB system. In particular it used the POLINE polyhedra
package [12], a generic constraint solver library routines (written in C++) for
linear arithmetic constraints over reals. There are several drawbacks with this ap-
proach. First of all, this package had to be interfaced such that the constraints are
stored and manipulated by the constraint solver, but handles to these constraints
may be present on the Prolog side. This made any low-overhead management of
storage for the the combined system diÆcult. Secondly, constraints over linear
arithmetic are more general than those that arise in real-time model checking.
The more general constraint solver imposes additional overheads. Lastly, delegat-
ing all the constraint processing to an external handler (such as POLINE) makes
it diÆcult, if not impossible, to do low-level optimizations on the constraint op-
erations. A tightly integrated light-weight constraint solver would facilitate such
optimizations. It will signi�cantly improve the time as well as memory utiliza-
tion of a real-time model checker and thereby enhance its scalability to handle
large veri�cation problems. Moreover a bene�cial fallout of a tight integration is
that it provides a uni�ed environment for model checking systems consisting of
both timed as well as untimed components.

In this paper we describe the design and implementation of XMC/dbm, a
real-time model checker that eliminates some of the problems in XMC/RT. The
main idea is to use a representation for constraints that can be eÆciently encoded
and manipulated as Prolog terms. In XMC/dbm the timing constraints are rep-
resented using Di�erence Bound Matrices (DBMs) [8], an idea gainfully explored
in Uppaal [16]. Constraints on clocks can be concisely represented in DBMs and
eÆciently manipulated. Most of the expensive computation in real-time model
checking centers around manipulating such constraints. Hence sharing such com-
putations via caching becomes critical for performance. A tabled logic program-
ming system o�ers a natural platform for implementing such a model checker.
Speci�cally, in XMC/dbm the computations over DBMs are tabled. Combin-
ing this with other generic as well as Prolog-speci�c optimizations we obtain
considerable performance gains in time and space. XMC/dbm's performance is

considerably better than XMC/RT and is competitive with other well known
real-time model checkers such as Uppaal [15] and HyTech [13].

Traditionally timed and untimed systems have been viewed as distinct veri�-
cation domains. An important aspect of XMC/dbm (inherited from XMC/RT)
is that it can handle veri�cation of systems consisting of timed as well as untimed
components. It is accomplished without unduly compromising the performance
of model checking untimed systems. Finally it is interesting to note that so far
the superior termination properties of a tabled logic programming system have
been exploited for implementing model checkers. XMC/dbm demonstrates that
the naturalness of caching that \comes for free" in such systems can also play
an equally important role.

In terms of related work, several researchers, as noted earlier, have also used
(constraint) logic programming for the veri�cation of real-time and other in�nite-
state systems. The distinguishing aspect of the current work is that instead of
exploiting the expressiveness of constraint logic programming to expand the set
of systems that can be modeled, our primary emphasis is on building an eÆcient,
usable and uni�ed system that scales to real-world veri�cation problems.

The rest of this paper is organized as follows. In Section 2.1 we present a brief
discussion on timed automata, timed modal mu-calculus and model checking
of timed automata with timed modal mu-calculus. The encoding of DBMs and
related operations as logic programs, as well as optimizations on these operations
are described in Section 3. We present experimental evaluation of XMC/dbm
in Section 4 and the impact of optimizations used in the implementation in
Section 5. Concluding remarks appear in Section 6.

2 Preliminaries

2.1 Timed Automata

Timed safety automata (TSA) [1] model real-time systems by augmenting �nite-
state automata with real-valued clocks. A TSA has a �nite set of control locations
(corresponding to the states in a �nite-state automaton) and a set of transitions
between these locations, and a �nite set of clocks associated with the automaton.
A state of an automaton is characterized by a control location (the \current"
location) and a valuation of clocks. A transition may be annotated with an action
label (drawn from a �nite set of symbols) which is used for synchronization
between multiple TSAs; a guard which is a constraint over clock valuations that
must be satis�ed for that transition to be enabled; and a set of clocks that are
reset to zero when that transition is taken. Each location is associated with
a location invariant, a constraint on clock valuations which must be satis�ed
when an automaton remains at that location. Constraints on clocks (location
invariants and guards) in a TSA are a conjunction of base constraints of the
form x� k and x� y� k, where x and y are clocks, � is one of f<;�; >;�g and
k is an integer constant.

Transitions are instantaneous: no time elapses when a transition is taken;
however, a TSA may choose to remain at a location for an arbitrary period of

time as long as the location invariant is satis�ed. A real-time system is modeled as
a synchronous parallel composition of TSAs. All the clocks in a system progress
at a constant rate. We assume that the real-time system is non-Zeno: the system
does not remain in the same location inde�nitely.

x > 3
ax < 7

Reset x
x < 8

c
x > 9

b
Reset x

b

q2

q1q0

invariant(state(q0,X)) :-

X < 7.

trans(state(q0,X), a, state(q1,X)) :-

X > 3. % Guard

trans(state(q1,X0), b, state(q0,X1)) :-

X0 < 8, X1 = 0. % Guard, Reset

trans(state(q1,X), b, state(q2,X)):-

X > 9. % Guard

trans(state(q2,), c, state(q0,X)) :-

X = 0. % Reset

(a) (b)

Fig. 1. An example Timed Safety Automaton (a) and its representation as a constraint
logic program (b).

TSA can be represented as a constraint logic program by encoding the tran-
sition relation. For instance, the TSA given in Figure 1(a) is represented by the
constraint logic program in Figure 1(b). Each state of the system is encoded
by the term state(l, C) where l denotes the location and C denotes zero or
more clocks. Transitions without guards or resets are represented simply as facts.
For transitions without resets the clock valuations at the source and destination
states remain unchanged.

TSAs can be augmented with discrete variables, which are non-clock, �nite-
domain variables; note that this does not increase the expressive power of TSAs.
When two or more TSAs are composed in parallel, the locations of the composed
system will be tuples, each element of the tuple denoting the location of the
corresponding component TSA. The clocks of the composed TSA will be the
union of the set of clocks in each component TSA. It is useful to consider as a
transition the evolution of a system where it stays in the same location while
time elapses. We call such special transitions as delay transitions.

The constraint-based representation of TSAs permit us to talk uniformly
about a single valuation of clocks (where each clock is mapped to a unique real
number) as well as a set of valuations that show the same behavior. A set of
clock valuations that can be represented by as a conjunction of a �nite number
of clock constraints is called a zone. Note that by de�nition, a zone is a convex
region of the clock valuation space.

2.2 Timed Modal Mu-Calculus

Timed modal mu-calculus [22] adds time modalities h�i and [�] and resettable
clocks to the modal mu-calculus. We use the following syntax for timed modal
mu-calculus formulas (from [9]):

F --> tt | ff | atomic(C)

| and(F, F) | or(F, F) | neg(F)

| diam(A, F) | box(A, F)

| epsdiam(F) | epsbox(F) | reset(Z, F)

| form(X)

where tt and ff denote constants true and false respectively; atomic(C) is a
base formula where C is an atomic proposition or a constraint over system and
formula clocks; and, or and not are standard logical connectives; diam(A, F)

and box(A, F) are dual modal operators from classical modal mu-calculus
(diam(A,F) asserts that there exists a transition labeled A after which F holds;
box(A,F) asserts that F holds after every transition labeled A); epsdiam(F) (af-
ter some delay F holds) and epsbox(F) (after every delay F holds) are dual time
modalities; reset(Z,F) de�nes a new clock Z local to formula F; and form(X)

refers to a mu-calculus variable X de�ned using �xed point equations of the form
X += F (least �xed point) or X -= F (greatest �xed point).
For example, consider the TSA in Figure 1 in location q1 with clock

X = 7 (denoted by state(q1, 7)). A b transition is possible in this state,
and hence the formula diam(action(b), tt) holds at state(q1, 7). It follows
that epsdiam(diam(action(b), tt)) also holds at state(q1, 7) (i.e., with
zero delay). Now consider state(q1, 8). The formula diam(action(b), tt)

no longer holds, but epsdiam(diam(action(b), tt)) holds at state(q1, 8)

since a b transition is possible after a delay of > 1 second. It also follows that
epsbox(diam(action(b), tt)) does not hold at state(q1, 8).

The model of a timed modal mu-calculus formula is de�ned with respect to
structures called dense labeled transition systems that can be derived from TSAs.
The model of a formula is a set of states in the given structure where the formula
holds, and is de�ned inductively based on the syntax of the formula. Following
XMC and XMC/RT we encode these inductive rules as a tabled logic program to
derive a model checker. In XMC, the states are represented as Herbrand terms.
In case of real-time systems, we choose an appropriate constraint representation
to denote a set of states. In XMC/RT, we chose to use the POLINE polyhedra
package to represent and manipulate constraints. In this paper, we use Di�erence
Bound Matrices (DBMs), which are themselves represented as Prolog terms, to
denote sets of states, and construct an eÆcient solver for DBMs.

2.3 Model Checking the Timed Modal Mu-Calculus

We use the formulation of real-time model checking presented in [9] and recalled
in Figure 2. In that model checker, we de�ned a predicate models(R, F, Rs)
that, given a zone R �nds the largest (�nite) set of zones Rs that model F

models(SS, F, SR) :- union(R, models1(SS, F, R), SR).

models1(SS, neg(F), SR) :- % negation (due to greatest fixed points)

models(SS, F, NegSR), diff(SS, NegSR, SR).

models1(SS, box(Act, F), SR) :- % universal transition modality

split(SS, Act, LSS),

member(S, LSS),

findall(TS, trans(S, Act, TS), TSS),

all_models(TSS, F, S, Act, SR).

all_models([], _, _, _, []).

all_models([SS0|Rest], F, S, Act, SR) :-

models(SS0, F, SR0),

inverse_trans(SR0, Act, S, SR1),

all_models(Rest, F, S, Act, SR2),

conjunction(SR1, SR2, SR).

models1(SS, epsbox(F), SR) :- % universal time modality

univ_elim(D, (trans(SS, e(D), TS),

models(TS, F, TR),

inverse_trans(TR, e(D), SS, SRD)

), SRD, SR).

Fig. 2. Encoding of the XMC/RT model checker (from [9]).

and are contained in R. Note that, for a real-time system made up of a parallel
composition of TSAs each zone is a tuple of locations (each element of the
tuple denoting the location the corresponding TSA is in) and a conjunction of
clock constraints. As explained in [9], this formulation di�ers signi�cantly from
the �nite-state model checker in XMC [20] where the binary models predicate
simply checks if a given system state is in the model of a formula. The �rst
argument to models/3 in the real-time checker represents a set of states, not
all of which may model the given formula (the second argument). We could
assume that when the goal succeeds, the �rst argument will be narrowed to a
set of states that do model the formula. However, for eliminating the universal
quanti�er over time delays that is introduced by the universal time modality we
need the (complete) set of all states that model a given formula. We accomplish
this by aggregating such a set (the third argument) using a constraint operation
union.

Apart from union we use two basic constraint operations to manipulate zones
in the de�nition of models/3: diff/3which computes the di�erence between two
constraints and conjunction that computes the intersection of two constraints;
a derived constraint operation univ_elim which is used to eliminate a univer-
sally quanti�ed delay variable, implemented by using di�erence and projection
operations on constraints; and two operations on constraints based on transitions

of a timed automata: split which splits a given zone according to a transition
label, and inverse_trans which �nds the subset of a source zone that takes the
automaton into a given target zone.

In addition to these operations used directly by the models/3 predicate, the
real-time model checker also uses a number of constraint operations to construct
zones and compute global transitions from the given timed-automata speci�-
cations. Instead of directly using a constraint logic programming system, the
formulation in [9] presents the model checker in terms of a tabled logic program
with explicit references to constraint solving operations. This design decision
was made due to two orthogonal reasons. First, tabled resolution is central to
the high-level implementation of the model checker and there is (as yet) no sin-
gle system that integrates constraint solving over reals with tabled resolution.
Secondly, encoding delay transitions in a constraint language can introduce sig-
ni�cant overheads due to introduction of the delay variable D and its subsequent
elimination. In contrast, since all clocks move at the same rate, the e�ect of delay
transitions on clock valuations can be realized by direct constraint manipulation.
In this paper, we follow the overall design of [9] and describe a DBM-based rep-
resentation and manipulation of clock constraints.

3 Di�erence Bounds Matrices

Timed safety automata restrict clock constraints to those of the form x1�x2 � c
and x1 � c, where x1 and x2 are clocks, c is an integer constant and � is one
of f<;�g . These constraints can be represented in a matrix form, called a
di�erence bound matrix (DBM) [8] with the rows and columns labeled by clocks.
We assume that clocks are named x1; x2; : : :. Each element Mi;j in a DBM is
a pair (b;�) representing the constraint xi � xj � b: i.e., an upper bound on
the di�erence between xi and xj . To represent constraints of the form xi � c,
we use a special 0th \clock" x0 whose value is �xed at 0; thus xi � c, which is
equivalent to xi � x0 � c is represented by entry Mi;0 and constraint c � xj ,
which is equivalent to x0� xj � �c is represented by entry M0;j . When there is
no upper bound on xi � xj , then the entry Mi;j is set to (1; <).

Consider a timed automata with two clocks x1 and x2 with constraints
x1 � 6; x1 < 9. A DBM representing these constraints is give in Figure 3(a).
In DBM 3(a), since x1 < 9 and 0 � x2, we can infer that x1 � x2 < 9: i.e.,
the entry M1;2 can be changed from (1; <) to (9; <), in e�ect tightening the
upper bound on x1 � x2. This yields DBM in Figure 3(b). No further nontrivial
inferences are possible in DBM 3(b). A DBM where each entry is the tightest
possible constraint that can be inferred from that DBM is said to be in canonical
form.

When a DBM is in canonical form, the e�ect of each entry has been have
been fully propagated through the DBM. Hence entries in a canonical DBM
can be manipulated independently. Consider adding constraints 3 � x2 � 7 to
the DBM in Figure 3(b). The resulting DBM appears in Figure 4(a), and its
canonical form is in Figure 4(b).

0
@

(0;�) (�6;�) (0;�)
(9; <) (0;�) (1; <)
(1; <) (1; <) (0;�)

1
A

0
@

(0;�) (�6;�) (0;�)
(9; <) (0;�) (9; <)
(1; <) (1;<) (0;�)

1
A

(a) (b)

Fig. 3. DBMs for constraints 6 � x1 < 9; DBM (b) is the canonical form of DBM (a).

0
@
(0;�) (�6;�) (�3;�)
(9; <) (0;�) (9; <)
(7;�) (1;<) (0;�)

1
A
0
@
(0;�) (�6;�) (�3;�)
(9; <) (0;�) (6; <)
(7;�) (1;�) (0;�)

1
A
0
@

(0;�) (�6;�) (�3;�)
(1; <) (0;�) (6; <)
(1; <) (1;�) (0;�)

1
A

(a) (b) (c)

Fig. 4. (a) DBM for constraints 6 � x1 < 9 ^ 3 � x2 � 7; (b) is the canonical form of
DBM (a); DBM (c) represents the clock values after an arbitrary passage of time.

Canonical forms enable eÆcient implementation of several constraint opera-
tions such as delays. For instance, consider the set of clock valuations that can
be reached after an arbitrary delay from a given zone. The passage of time elim-
inates the upper bounds on the clocks, but the relationship between any two
clocks is preserved (since all clocks progress uniformly). If a DBM is in canoni-
cal form, this delay operation can be performed by simply eliminating the upper
bounds on individual clocks (i.e., the 0-th column). An arbitrary passage of time
from DBMs in Figures 4(a) and (b) results in the DBM is in Figure 4(c).

3.1 Constraint Operations with DBMs

We de�ne the following constraint operations over DBMs:

{ add_constraints(Pi1, Constraints, Pi2): Given a DBM Pi1, generates
a new DBM Pi2 by adding further constraints on the clocks, speci�ed by
the list Constraints. This operation is implemented by iterating through
each element of the DBM, and replacing a DBM entry if there is a tighter
bound on that value given in Constraints. The operation neither expects,
nor generates, DBMs in canonical form.

{ delay(Pi1, Pi2): Given a DBM Pi1, computes the DBM Pi2 reachable
from Pi1 by incrementing all clocks by an arbitrary amount (arbitrary de-
lay). This operation is implemented by setting the upper bounds on all clocks,
speci�ed in the 0-th column, to in�nity. The argument Pi1 must be in canon-
ical form; the output, Pi2, will also in canonical form.

{ canonical_form(Pi1, Pi2): Canonical form of a DBM over n clocks can
be found in O(n3) time by adapting an all-pairs shortest path algorithm.
We use a modi�ed version of the Floyd-Warshall algorithm [4], reordering
an inner loop to work eÆciently over the list-of-lists representation of DBMs.

{ apply_resets(Pi1, Clocks, Pi2): Given a DBM Pi1, generates a new
DBM Pi2 obtained by resetting the values of clocks speci�ed in the list
Clocks to zero. This operation assumes that the given argument Pi1 is in
canonical form. Reset can be done by setting the 0-th column and 0-th row
entries of the given clocks to 0, but the result may not be in canonical form.
It is easy to \adjust" the result to its canonical form as follows. For each
clock xi reset by this operation, we copy the 0-th column of the DBM to the
i-th column, and the 0-th row to the i-th row. The resulting DBM will be
in canonical form [25].

{ check_invariants(Constraints, Pi): Check if Pi ^ Constraints is sat-
is�able. This operation exploits the fact that invariant constraints specify
only upper bounds of individual clocks and have no constraints that relate
di�erent clock values. If Pi is in canonical form, these upper bound con-
straints can be checked by simply verifying that the lower bounds speci�ed
by the DBM of Pi is consistent with the given upper bounds.

{ conjunction(Pi1, Pi2, PL): Given two DBMs Pi1 and Pi2, computes
their conjunction Pi3. Conjunction of two DBMs M and M 0 is a DBM M 00

such that M 00

i;j contains the tighter of the two bounds speci�ed by Mi;j and
M 0

i;j . Hence conjunction is analogous to matrix addition, and can be done

in O(n2) time where n is the number of clocks represented in the DBM.
{ diff(Pi1, Pi2, PL): Given a DBM Pi1 and a DBM Pi2, computes the set
of DBMs PL containing points in Pi1 that are not in Pi2.

{ union(V, Goal, PL): Given a goal Goal that contains a variable V, PL is
the canonical representation of all states s such that Goal[s=V];

{ univ_elim(D, Goal, ZD, PL): Given ZD, a disjunction of constraints over
Vars [fDg representing the set of all solutions to Goal, PL is a disjunction
of constraints over Vars such that 8v 2 R (ZD ^ D = v), PL.

3.2 Using DBM Operations

The constraint operations described above are used in the models/3 predicate, as
well as to generate transitions from the speci�cations of timed safety automata.
We assume that, given the transition relation of each TSA, global_trans/5
gives the transition relation of the parallel composition of the TSAs. The global
transition relation speci�es the source and destination locations (each is a tuple
with components representing local locations), the action label, guards and resets
on the transition. Neither the local nor the global transition relations manipulate
constraints. The constraints are constructed, manipulated and interpreted by
de�ning the trans/3 relation used by the model checker as shown in Figure 5.

The goal trans((L1,Pi1), A, (L2,Pi2)), given the set of clock valuations
at the source location L1 in Pi1, gives a transition label A and the set of clock
valuations at entry to the destination location L2. Both Pi1 and Pi2 are repre-
sented as DBMs. We assume that the DBM Pi1 is in canonical form whenever
trans/3 is invoked. The precondition for the delay operation is that Pi1 be in
canonical form. Hence we obtain the canonical form requirement as a precon-
dition for trans/3. The goal invariants(L1,Inv1) simply picks up the loca-

trans((L1, Pi1), A, (L2, Pi2)):-

global_trans(L1, A, L2, Guards, Resets),

delay(Pi1, Pi3), % Let all clocks progress

invariants(L1, Inv1), % as long as the

add_constraints(Pi3, Inv1, Pi4), % state invariants hold.

add_constraints(Pi4, Guards, Pi5), % Enfirce the guards and

canonical_form(Pi5, Pi6), % reduce to Canonical Form

apply_resets(Pi6, Resets, Pi2), % before resetting clocks.

invariants(L2, Inv2), % Impose invariants on the

check_invariants(Pi2, Inv2). % destination state.

Fig. 5. Computing the transition relation using DBM operations.

tion invariants at L1. The invariants of the source location are enforced, using
add_constraints before checking the guards on the transition.

Note that the DBM Pi4 at this point may not be canonical, and the op-
eration to enforce the guards does not need Pi4 to be in canonical form. The
resulting DBM Pi5 obtained may not be in canonical form either. However, the
next operation, to reset clocks speci�ed on the transition, needs the DBM to
be in canonical form. Therefore we explicitly reduce the DBM Pi5 to canonical
form. The operation apply_resets sets the output DBM, Pi2 in canonical form,
which simpli�es the last operation check_invariants. Moreover, we obtain the
following pre- and post-conditions for computing trans: the input DBM must in
canonical form, and the output DBM will be in canonical form. We can show by
induction on derivations that if the DBM in the initial model checking query is
in canonical form, the preconditions for every application of trans will be met.

In this sequence of DBM manipulations, we avoid unnecessary canonical form
reductions, as observed in [25]. In previous implementations of real-time model
checkers using DBM data structure, certain operations (such as apply_resets)
were de�ned so that they preserve canonical forms. Computation of canonical
form is a very expensive operation and avoiding them wherever possible will
accrue gains in performance. What is novel in our implementation is that we not
only deploy the above techniques to avoid unnecessary canonical form reductions,
but also tolerate DBMs that are not in canonical form whenever possible. (See
Avoiding canonical form computation in Section 5.)

3.3 Optimization of Constraint Operations

Among the constraint operations described above, canonical_form is the most
expensive. We have already seen how the sequence of constraint operations can
be carefully crafted so as to minimize the number of times canonical forms are
explicitly constructed. Complementing this reduction, we lower the overheads for
canonical form computation by exploiting the memo tables: by simply tabling
canonical_form. As the performance �gures presented in Section 4 show, the
sharing of canonical form computations signi�cantly reduces model checking
time. (See Sharing canonical form computation in Section 5.)

We observed that the same DBMs occur in multiple calls to models but with
di�erent locations. Hence each occurrence is separately tabled. After tabling the
canonical form reduction, DBMs may be stored in multiple tables, and in call
as well as answer tries. Since the terms representing DBMs are often large, and
since DBMs contain no logical variables, we maintain a separate dictionary of
DBMs, assigning each DBM a unique index, and use this index in all the tables.
The time performance worsens by about 10% due to the indirection involved in
accessing a DBM. However the space reductions are signi�cant enough that it is
worth the trade-o� in time. (See Dictionary representation in Section 5.)

4 Experimental Results

In this section, we report on the comparative performance of XMC/dbm in two
broad categories: (i) with respect to other real-time model checkers (XMC/RT,
Uppaal and HyTech) to measure the e�ectiveness of XMC/dbm in practice; and
(ii) with respect to XMC for model checking untimed systems to measure the
overheads due to the constraint operations.

4.1 Real-Time Model Checking with XMC/dbm

We use as benchmarks two example systems, namely, Fischer's mutual exclusion
protocol and the bridge-crossing system. (Details can be found in [9].) Table 1
presents the time (in seconds) taken by XMC/dbm, XMC/RT and HyTech for
verifying several properties of the two benchmark programs. The measurements
were done on a Sun Enterprise 4000 running Solaris 5.2.6 with 2GB of memory.

We veri�ed safety, possibility and liveness properties. The �rst two are spec-
i�ed using timed modal mu-calculus and the much simpler reachability formula
(denoted \mu-calc" and \reach" respectively, in the table) whereas liveness can
only be speci�ed in mu calculus. An entry \-" in the table means either that the
property cannot be speci�ed in that veri�cation system (e.g., liveness properties
with the reachability checker) or that the results could not be collected (e.g.,
possibility property for any of the systems for 6-processor Fischer's protocol).
Observe that not only is XMC/dbm faster (by up to a factor of three) over
XMC/RT, it also scales better. Moreover, XMC/dbm is competitive to HyTech.

We also measured the performance of Uppaal version 3.2.4 for verifying the
safety property of Fischer's protocol on Intel Xeon 1.7GHz system with 1GB
memory running Linux Mandrake 8.0. We measured the CPU time given by
the operating system since the tool does not provide timing information. For 6
process Fischer, Uppaal takes 121 seconds whereas XMC/dbm takes 73 seconds.

In XMC/RT, the loose coupling of the POLINE constraint solver with XSB
precluded it from any reasonable memory management. Hence we do not com-
pare its memory usage with XMC/dbm. For 4,5 and 6 process Fisher XMC/dbm
requires 3.8, 28 and 386 MB respectively. HyTech needs 11, 93 and 678 MB re-
spectively. Uppaal shows much better memory performance: e.g. for 6 processes

System Property XMC/dbm XMC/RT HyTech
mu-calc reach mu-calc reach

Fischer Safety 0.61 0.49 0.84 0.46 0.99
3 proc Possibility 3.7 3.1 4.13 4.08 -

Liveness 0.68 - 1.54 - -

Fischer Safety 5.2 4.27 11.4 9.0 8.7
4 proc Possibility 62.1 36.8 105 201 -

Liveness 11.8 - 33.4 - -

Fischer Safety 46 39.7 - - 74.62
5 proc Possibility 681.1 412.6 - - -

Liveness 211.3 - - - -

Fischer Safety 468.8 407.8 - - 562.27
6 proc Possibility - - - - -

Liveness - - - - -

Bridge Safety 0.07 0.06 0.19 0.17 0.14
Crossing Bounded Liveness 2.1 0.4 7.0 1.19 1.19

Liveness 0.2 - 0.8 - -

Table 1. Comparative performance of XMC/dbm on real-time systems.

it takes only 58 MB. Reducing the memory usage by using alternative encodings
of DBMs is a topic of current study.

We measured the relative performance of XMC/dbm on the Philips audio
control protocol, a real-life problem also widely reported in the literature [3]. The
protocol speci�es communication between devices over an interface bus without
a central controller. We veri�ed two prperties of the protocol in XMC/dbm.
The safety property that the receiver never enters error state was veri�ed by
XMC/dbm in 18.4 seconds using 23 MB of memory. The other correctness prop-
erty that the receiver receives entire message was veri�ed in 35.3 seconds using
42 MB of memory. Both measurements were made on an Intel Xeon 1.7GHz
system with 1GB memory running Linux Mandrake 8.0.

4.2 Veri�cation of untimed systems

For measuring the overheads incurred by XMC/dbm when model checking un-
timed systems we use examples drawn from XMC's benchmark suite: leader
which is a distributed leader election protocol, and sieve which implements a
concurrent Sieve of Eratosthenes, were originally from the SPIN [14] example
suite; and metalock is a protocol used to control access to object lock queues in
Java, originally veri�ed in XMC [2]. Table 2 shows the performance of XMC/dbm
and XMC on these three examples. In the table the column \Time" shows run-
ning time in seconds and the column \Space" shows memory usage in MB. The
performance measurements were done on an Intel Xeon 1.7MHz system with
1GB memory running Linux Mandrake 8.0.

System Property Size Time Space
XMC XMC/dbm XMC XMC/dbm

5 1.8 2.2 2.0 3.1
Leader one leader 6 10.2 12.4 5.6 8.8

7 55.2 69.7 21.2 34.1

(6,7,41) 0.9 1.1 1.7 2.6
Sieve ae �nish (6,8,43) 0.9 1.2 1.7 2.6

(6,9,47) 1.0 1.3 1.8 2.7

(1,4) 2.5 3.1 2.1 3.4
Metalock mutex (3,1) 1.6 2.2 2.5 3.9

(2,2) 2.4 3.0 2.4 3.7

Table 2. Comparative performance of XMC/dbm on untimed systems.

In terms of time, XMC/dbm incurs an overhead of at most 30% for model
checking untimed systems. The memory used by XMC/dbm is about 60% more
than that of XMC. This is due to the models/3 predicate in XMC/dbm where
every state gets recorded twice for each formula: once as the �rst argument (in
the query), and once as the third argument (in the answer). In contrast, using
models/2 in XMC, a state is saved only once for each formula, in the call table
alone. In XMC, a query to models simply succeeds or fails, and hence nothing
is stored in the answer tables.

5 Impact of Optimizations: Experimental Evaluation

Here we present the e�ect of optimizations described in Section 3:

Sharing Expensive Computations: Recall that computing canonical forms
dominates the cost of model checking real-time systems. Therefore caching is
critical for improving the performance. A unique aspect of XMC/dbm is to use
XSB's tables for caching the results of canonical form computation. This has
improved the performance of XMC/dbm by a factor of 2.5. For example, when
caching of canonical form computation is verifying the reachability formula in
for Fischer's protocol with 3{6 processors takes 0.49, 4.27, 39.7 and 407.8s resp.,
while it takes 0.76, 9.11, 103 and 1174 resp. when the optimization is disabled.

Avoiding Canonical Form Computation: Recall that a unique aspect of our
implementation is that we can avoid canonical form computation immediately
after applying the invariants at the source state. This optimization is e�ective
whenever there are location invariants in the transition system. Fischer's proto-
col has only one location with an invariant, and the e�ect of this optimization is
not measurable. In contrast, the Philips audio protocol speci�es several location
invariants, and the optimization improves veri�cation times by a factor of nearly
2.5: 18.2s and 35.3s for the safety and correctness properties resp. with the op-
timization turned on, compared to 45.2s and 92.1s, resp., without optimization.

Dictionary of DBMs: Recall from Section 5 that storing DBMs in a dictio-
nary structure can improve memory usage. With this optimization, we observe
total memory usage of 1.6, 9.5 and 76 MB for verifying the safety property (by
reachability) for Fischer's protocol with 4, 5 and 6 processes respectively. In
contrast, without this optimization, the memory usage was 3.8, 28 and 386 MB
respectively. Hence the dictionary structure reduces space requirement by more
than a factor of three.

6 Conclusions

We have shown how a lightweight constraint solver combined with tabling and
carefully optimized, can yield an eÆcient model checker for real-time systems.
We showed, via experimental evaluation, that it is possible to implement such a
model checker (XMC/dbm) without unduly degrading the performance of model
checking untimed systems. Such a model checker forms a basis for creating an
uniform environment to verify timed as well as untimed systems. The use of
model checkers such as XMC/dbm will become important for verifying embed-
ded systems which contain both real-time and non-real-time components. The
application of XMC/dbm to such problems is the topic of future work.

References

1. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183{235, 1994.

2. S. Basu, S. A. Smolka, and O. R. Ward. Model checking the Java Meta-Locking
algorithm. In Proceedings of 7th IEEE International Conference and Workshop on
the Engineering of Computer Based Systems (ECBS 2000), Edinburgh, Scotland,
April 2000.

3. J. Bengtsson, W. O. D. GriÆoen, K. J. Kristo�ersen, K. G. Larsen, F. Larsson, P.
Pettersson, and W. Yi. Veri�cation of an audio protocol with bus collision using
Uppaal. In Proceedings of the 8th International Conference on Computer-Aided
Veri�cation, volume 1102 of LNCS, pages 244{256, New Brunswick, New Jersey,
USA, 1996. Springer-Verlag.

4. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The
MIT Press, 1999.

5. G. Delzanno and S. Etalle. Transforming a proof system into prolog for verifying
security protocols. In International Workshop on Logic-based Program Synthesis
and Transformation, November 2001.

6. G. Delzanno, S. Mukhopadhyay, and A. Podelski. Constraint-based model checking
for timed systems with accurate widenings. Technical Report, Max-Planck-Institut
f�ur Informatik, 1999.

7. G. Delzanno and A. Podelski. Model checking in CLP. In Proceedings of the Fifth
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS '99), LNCS, volume 1579, pages 223{239, Amsterdam,
March 1999.

8. D. L. Dill. Timing assumptions and veri�cation of �nite-state concurrent systems.
In Proceedings of CAV'89. LNCS 407, 1989.

9. X. Du, C. R. Ramakrishnan, and S. A. Smolka. Tabled resolution + constraints: a
recipe for model checking real-time systems. In Proceedings of the IEEE Real-Time
Systems Symposium. IEEE Computer Society Press, 2000.

10. F. Fioravanti, A. Pettorossi, and M. Proietti. Veri�cation of sets of in�nite state
processes using program transofmration. In International Workshop on Logic-based
Program Synthesis and Transformation, November 2001.

11. G. Gupta and E. Pontelli. A Constraint Based Approach for Speci�cation and
Veri�cation of Real-Time Systems. In Proceedings of the IEEE Real-Time Systems
Symposium, December 1997.

12. N. Halbwachs, Y. E. Proy, and P. Roumano�. Veri�cation of real-time systems
using linear relation analysis. Formal Methods in System Design, 11(2):157{185,
August 1997.

13. T. A. Henzinger, P. H. Ho, and H. Wong-Toi. \HyTech: A model checker for
hybrid systems". International Journal on Software Tools for Technology Transfer,
1(2):110{122, October 1997.

14. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279{295, May 1997.

15. K. G. Larsen, P. Pettersson, and W. Yi. Model checking for real-time systems. In
Proc. of Fundamentals of Computation Theory, number 965 in LNCS, pages 62{88,
August 1995.

16. K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. International
Journal on Software Tools for Technology Transfer, 1:134{152, 1997.

17. M. Leuschel and S. Gruner. Abstract partial deduction using regular types and its
application to model checking. In International Workshop on Logic-based Program
Synthesis and Transformation, November 2001.

18. U. Nilsson and J. Lubcke. Constraint logic programming for local and symbolic
model-checking. In In Proc. of the Int'l Conf. on Computational Logic (CL2000),
volume 1861. Springer-Verlag, 2000.

19. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, T.
Swift, and D. S. Warren. EÆcient model checking using tabled resolution. In
Proceedings of the 9th International Conference on Computer-Aided Veri�cation
(CAV '97), volume 1254 of LNCS, pages 143{154, Haifa, Israel, July 1997. Springer-
Verlag.

20. C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, Y. Dong, X. Du, A. Roy-
choudhury, and V. N. Venkatakrishnan. XMC: A logic-programming-based veri�-
cation toolset. In Proceedings of the 12th International Conference on Computer-
Aided Veri�cation (CAV '00), pages 576{580. Springer-Verlag, 2000.

21. A. Roychoudhury and I. V. Ramakrishnan. Automated inductive veri�cation of
parameterized protocols. In Proceedings of the 13th International Conference on
Computer-Aided Veri�cation (CAV '01), volume 2102 of LNCS. Springer-Verlag,
2001.

22. O. Sokolsky and S. A. Smolka. Local model checking for real-time systems. In
Proceedings of the 7th International Conference on Computer-Aided Veri�cation,
volume 939 of LNCS. American Mathematical Society, 1995.

23. L. Urbina. Analysis of hybrid systems in CLP(R). In Constraint Programming
(CP'96), volume LNCS 1102. Springer-Verlag, 1996.

24. XSB. The XSB logic programming system. Available at
www.cs.sunysb.edu/�sbprolog.

25. S. Yovine. Model checking timed automata. In European Educational Forum:
School on Embedded Systems, pages 114{152, 1996.

