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Abstract. Justification is the process of constructing evidence, in terms
of proof, for the truth or falsity of an answer derived by tabled evalu-
ation. The evidence is most easily constructed by post-processing the
memo tables created during query evaluation. In this paper we intro-
duce online justification, based on program transformation, to efficiently
construct the evidence during query evaluation, while adding little over-
head to the evaluation itself. Apart from its efficiency, online justification
separates evidence generation from exploration thereby providing flexi-
bility in exploring the evidence either declaratively or procedurally. We
present experimental results obtained on examples that construct large
evidences which demonstrate the scalability of online justification.

1 Introduction

Explaining or understanding the results of logic program evaluation, to aid in
debugging or analyzing the program, has been a very active field of research. The
complex machinery used to evaluate tabled logic programs makes the generation
of explanations for query evaluation considerably difficult. Justification [17, 9]
is the process of generating evidence, in terms of a high level proof, based on
the answer tables created during query evaluation. Justification has two impor-
tant advantages over techniques which generate evidence based on execution
traces, viz. (i) it is independent of the evaluation machinery (e.g. the techniques
scheduling goals in a tabled evaluation), and (ii) it enables direct construction of
“meta-evidences”: evidences for proof systems implemented as logic programs.
Justification has played a fundamental role in generating proofs or counter ex-
amples for several problems in automatic verification (e.g., see [15, 16, 1]).

In earlier works [17, 9], we presented justification algorithms for logic pro-
grams by post-processing the memo tables created during query evaluation. Jus-
tification in this post-processing fashion is “non-intrusive” in the sense that it
is completely decoupled from query evaluation process and is done only after
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the evaluation is completed. However, post-processing introduces performance
overheads which affect the scalability of the technique. In this paper we present
an online technique for justification, which generates evidence, whenever possi-
ble, during query evaluation itself. Online justification is presented as a program
transformation, and hence is still independent of the query evaluation machinery.

At a high level, our online justification technique transforms the given pro-
gram in such a way that the query evaluation in the transformed program auto-
matically constructs the evidence. For each literal in the program, we create two
transformed literals: one to generate the evidence for its truth, and the other
for its falsity. Evidence for derivability (truth) of an answer can be easily con-
structed by adding an extra argument in the predicate definitions that captures
the evidence. However, in the presence of tabled evaluation, the extra evidence
argument causes serious performance problems since the number of proofs for
a goal may far exceed the number of steps it takes to compute the goal. For
instance, consider the problem of a parser for an ambiguous grammar[21]: de-
termining whether there is a parse tree can be done in time cubic on the length
of the string whereas there may be exponentially many parse trees. We use a
different transformation scheme for tabled predicates, storing the first evidence
for an answer in a database, and thereby avoid this blow-up (see Section 3).

Generating evidences for false literals is more difficult, since evaluation of
false literal simply fails without providing any information regarding the failure.
We generate evidences for false literals by first constructing a dual program
(based the notion of completed definition [11]) such that of a literal in the dual
program is true if and only if its corresponding literal in the original program
is false. Thus, evidences for false literals are constructed using the evidences for
the corresponding (true) literals in the dual program (see Section 4).

Related Work: Extensive research has been done to help debug, analyze, explain
or understand logic programs. The techniques that have been developed can be
partitioned into three (sometimes overlapping) stages: instrumenting and exe-
cuting the program, collecting data, and analyzing the collected data. Most of
the techniques focus primarily on one of these three stages. For instance, the
works on algorithmic debugging [18], declarative debugging [10, 13], and asser-
tion based debugging [14] can be seen as primarily focussing on instrumenting
the program; works on explanation techniques (e.g.,[12, 4, 19]) focus primarily on
data collection; and works on visualization (e.g. [4, 2]) focus on the data analysis
stage. Justification focusses on the data collection stage.

Unlike algorithmic debugging, justification only shows those parts of the
computation which led to the success/failure of the query, and unlike declara-
tive debugging, justification does not demand any creative input from the user
regarding the intended model of the program, which can be very hard or even
impossible to do as will be the case in model checking [3]. Among explanation
techniques, [19] proposes a source-to-source transformation technique, which is
very similar to our technique, to transform logic programs in the context of de-
ductive databases. This technique generates evidence in bottom-up evaluation
and is limited non-tabled programs, making it expensive especially in the pres-
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ence of redundant computations. A later work [12] generates explanations by
meta-interpreting intermediate information (traces) computed by the database
engine, and overcomes the problems due to redundancy by caching the results.
However, the explicit cycle checking done when generating explanations imposes
a quadratic time overhead for evidence generation.

Trace-based debuggers (of which Prolog’s 4-port debugger is a primitive ex-
ample) provide only a procedural view of query evaluation. Procedural view
provides information about the proof search, rather than the proof itself. The
complex evaluation techniques used in tabling make this procedural view virtu-
ally unusable. Moreover, in the presence of multiple evaluation strategies and
engines (SLG-WAM [20], Local vs. Batched scheduling [7], DRA [8] etc.), there
is no uniform method to convert a trace of events during a proof search into
a view of the evidence (proof, or its lack thereof) itself. Finally, by delinking
evidence generation from evidence navigation, justification enables a user to
selectively explore parts of the evidence and even re-inspect an explored part
without restarting the debugging process.

Online Justification vs. Post-Processing: We originally presented a technique
for justification of tabled logic programs [17] and later refined the technique to
efficiently handle programs that mixed the evaluation of tabled with nontabled
goals [9]. However, both the techniques post-processed the memo tables to build
evidences. To understand the two main drawbacks of these techniques, consider
the evaluation of query p over the tabled logic program given below:

:- table p/0.

p :- p. p :- q. q.

Post-processing-based justification is done by meta-interpreting the clauses of
the program and the memo tables built during evaluation. For instance, the
evidence for the truth of p is constructed by selecting a clause defining p such
that the definition is true. Note that, in this case, the right hand sides of both
clauses of p are true. For p to be true in the least model, its truth cannot be
derived from itself. Hence the first clause is not an explanation for the truth
of p. The meta-interpreter keeps a history of goals visited as it searches for an
explanation and rejects any goal that will lead to a cyclic explanation. It will
hence reject the first clause. Further, the justifier will produce the explanation
that p is true due to q, which in turn is true since it is a fact.

First of all, note that justification appears to perform the same kind of search
that the initial query evaluation did in the first place to determine the answers.
Worse still, meta-interpretation is considerably slower than the original query
evaluation. Secondly, determining whether a goal has been seen before is exactly
what a tabling engine does well, and one which is tricky to do efficiently in a
meta-interpreter. The justifiers we had built earlier keep the history of goals
as a list (to make backtracking over the history inexpensive), and hence cycle-
checking makes the justifier take time quadratic in the size of the evidence.

In contrast, online justification generates evidence by evaluating a trans-
formed program directly, exploiting the tabling engine’s (optimized) techniques
for cycle detection, and eliminating the meta-interpretation overheads.
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Justification in Practice: We present the justification technique initially for pure
logic programs with a mixture of tabled and nontabled predicates and stratified
negation. The technique can be readily extended to handle programs with builtin
or nonlogical predicates (e.g. var) and aggregation (e.g. findall). Programs in-
volving database updates (e.g. assert) and tabling are very uncommon; never-
theless our technique can be extended to such programs as well (see Section 5).

We have implemented an online justifier in the XSB logic programming sys-
tem [22] and used it to build evidences in a complex application: the XMC model
checking environment [15]. We use the XMC system as the primary example,
since (i) evidences generated for XMC are large and have different structures
based on the system and property being verified, thereby forming a platform
to easily validate the scalability and understand the characteristics of the evi-
dence generation technique; and (ii) counter-example generation was added to
XMC using justification without modifying XMC itself, thereby demonstrating
the flexibility offered by justification. Preliminary performance evaluation indi-
cates that the online justifier for the XMC system adds very little overhead to
the XMC model checker (see Section 6). When the model checker deems that a
property is true, the overhead for justification to collect that proof is less than
8%. When a property is false, generating the evidence for the absence of a proof
the overhead is at most 50%. In contrast, the post-processing based justifier
originally implemented in the XMC system had an overhead of 4 to 10 times the
original evaluation time [9], regardless of the result of the model checking run.

2 Evidence for Tabled Logic Programs

In this section, we give the intuition and formal definition of evidence in the
context of tabled logic programs with left-to-right selection rule. By evidence,
we mean the data in a proof, i.e., the subgoals and derivation relation between
the subgoals. Proofs for (non-tabled) logic programs are traditionally represented
by trees, or so-called “proof trees”, where a goal is recursively decomposed to
a set of subgoals until the subgoal indicates the presence or absence of a fact.
In the case of tabled logic programs, however, a proof is not necessarily a tree
because of the fixed-point semantics of tabling, i.e., a tabled predicate may fail
due to circular reasoning. In [17, 9], proof trees are augmented by “ancestor”
nodes or edges to form justifications for tabled programs, essentially indicating
that the derivation relation of the subgoals is potentially a graph with loops.

Formally, we define an evidence (for a tabled logic program) as a graph
whose vertices are literals and their truth values, and edges reflect the derivation
relation between the subgoals represented by the literals. We use succ(v) to
denote the set of successors of a vertex v in a graph.

Definition 1 (Evidence). An evidence for a literal L being true (false) with
respect to a program P, denoted by EP (L), is a directed graph 〈V, E〉 such that:

1. Each vertex v ∈ V is uniquely labeled by a literal of P and a truth value,
denoted by (l(v), τ(v));
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2. There exists a vertex v0 ∈ V such that l(v0) = L, τ(v0) = true(false), and
all other vertices in V are reachable from v0;

3. For each vertex v ∈ V

(a) if τ(v) = true, succ(v) = {v′
1, . . . , v

′
n} if and only if

i. ∃ C ≡ (α :− β1, . . . , βn) ∈ P and a substitution θ :
αθ = l(v) ∧ (β1, . . . , βn)θ = (l(v′

1), . . . , l(v
′
n)).

ii. ∀1 ≤ i < n : τ(v′

i) = true
iii. (v, v) 6∈ E+

(b) if τ(v) = false, succ(v) is the smallest set such that

∀ C ≡ (α :− β1, . . . , βn) ∈ P :
∀ substitution θ : αθ = l(v)θ =⇒
∃ 1 ≤ k ≤ n and {v′

1, . . . , v
′

k} ⊆ succ(v) :
(β1, . . . , βk)θ = (l(v′

1), . . . , l(v
′

k))θ
∧ (∀ 1 ≤ i < k : τ(v′

i) = true)
∧ τ(v′k) = false

Intuitively an evidence carries only the relevant information to establish a
literal’s truth or falsity. It is an AND-graph where each node is supported by
all its successors. For a true literal, only one explanation matching a predicate
definition is needed (Item 3.a.i); for a false literal, it must be shown that ev-
ery possible combination of its predicate definition ultimately fails (Item 3.a.i).
Furthermore only false literals can be in a loop, due to the least fixed-point
semantics obeyed by tabled logic programs (Item 3.a.ii).

Definition 1 is logically equivalent to the definitions of justification in [17, 9]
which define a spanning tree of evidence, where the backward edges are labeled
by “ancestor” and leaves with truth value true and false are labeled by an edge
to node “fact” and “fail” respectively. The benefit of the new definition is that
same result will be generated from different traversal orders. Applying the result
of [17, 9], we establish the usefulness of evidence by the following theorem.

Theorem 1 (Soundness and Completeness). The query of a literal l suc-
ceeds (fails) if and only if there is an evidence for l being true (false).

Hereafter when P is obvious from the context, we abbreviate EP (L) to E(L).
Sometimes we also abbreviate v’s label (l(v), τ(v)) to l(v) or ¬l(v) depending on
whether τ(v) is true or false .

Example 1. Consider the following three programs:

P1: p. P2: p :- q.

q.

P3: :- table p/0.

p :- q.

q :- p.

The evidence for p being true in P1 is just a single node labeled by p. The
node has no successor because it is fact hence does not need further explanation.
The evidence for p being true in P2 contains two nodes labeled by p and q
respectively and an edge from p to q, meaning that p is true because q is true.
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Program P3 encodes a circular reasoning, therefore p is false . The evidence of p
being false is a loop from p to q then back to p. Formally,

EP1
(p) = 〈{(p, true)}, ∅〉

EP2
(p) = 〈{(p, true), (q, true)}, {(p → q)}〉

EP3
(¬p) = 〈{(p, false), (q, false)}, {(¬p → ¬q), (¬q → ¬p)}〉

Example 2. In the following logic program, the predicate reach(A, B) defines
the reachability from node A to node B, and arc(From, To) encodes the edge
relation of a graph.

:- table reach/2. arc(a,b).

reach(A,B) :- arc(A,B). arc(b,a).

reach(A,B) :- arc(A,C), reach(C,B). arc(c,a).

The evidences for reach(a, a) being true and reach(a, c) being false are depicted
in Figure 1.

arc(a,b)
true

reach(b,a)
true

reach(a,a)
true

arc(b,a)
true

reach(a,c)
false

arc(a,b)
true

reach(b,c)
false

(b)  reach(a,c) being false(a)  reach(a,a) being true

true
arc(b,a)

false
arc(a,c)

Fig. 1. Two evidence examples in reachability program

3 Evidence Generation for True Literals

The key idea of online evidence generation is to generate the evidence for a literal
while the literal is being evaluated. A simple way to implement this idea is to
extend each clause

α :- β1, . . . , βm.

to
α′ :- β′

1, . . . , β
′

m, store evid(α, [β1, . . . , βm]). (1)

where α′ and β′
i are same as α and βi, respectively, but indicate transformed

predicates. When the query to a literal L = αθ succeeds, the successors of L in
the evidence, [β1θ, . . . , βmθ], are recorded by store evid. Note that store evid

simply records a successful application of a clause and hence does not change
the meaning of the program.
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Unfortunately, this simple technique may generate more information than
necessary for the purpose of evidence. Recall that an evidence carries only the
relevant information to establish a literal’s truth or falsity, therefore a back-
tracked call should not be part of the explanation for the final true answer. But
the above transformation stores evidence for calls to α that are backtracked in
a higher-level call.

Evidence as Explicit Arguments. We solve the above problem by passing the
evidence as an argument of the predicates. We add an argument E to each
atom α to form a new atom α′

E which returns the evidence for α in E. Suppose
α = p(t1, . . . , tn), then α′

E = p′(t1, . . . , tn, E), where p′ is a new name uniquely
selected for p . The clause

p(t1, . . . , tn) :- β1, . . . , βm.

is then transformed to

p′(t1, . . . , tn, E) :- β′

1E1
, . . . , β′

mEm
, E = [(β1, E1), . . . , (βm, Em)]. (2)

where E, E1, . . . , Em are distinct new variables. The last statement in the clause
combines the evidence for the subgoals to form the evidence for the top-level
query, thus effectively building a tree. Similar to the first transformation, the
new predicate p′/(n + 1) executes the same trace as the original predicate p/n.
Since the evidence is now returned as an argument, backtracked predicates no
longer generate unnecessary information.

Evidence for Tabled Predicates as Implicit Arguments. The situation becomes
complicated when tabled predicates are present. Because all successful calls to
tabled predicates are stored in tables, the space is not reclaimed when the pred-
icates are backtracked. Furthermore, additional arguments for tabled predicates
can increase the table space explosively [21]. Therefore there is no saving in
passing evidence as an argument in tabled predicates.

To avoid the overhead, we do not pass evidence as arguments in tabled pred-
icates. Instead, we use the store evid method in Clause (1) to store a segment
of evidence in database, where the evidence for a tabled subgoal βi is recorded
as ref (βi) pointing to βi’s record in the database, and the evidence for a tabled
subgoal is the same as in Clause (2).

The complete transformation rule for true literals is shown in Figure 2.
Note that store evid always succeeds, therefore adding it to the original

predicate does not change the program’s semantics. And by induction on the
size of evidence, we have:

Proposition 1. Let E be a fresh variable. For any literal L ∈ P

– the query L′
E succeeds if and only if L succeeds

– if the query L′
E succeeds, then E returns an evidence for L being true.

Example 3. The program in Example 2 is transformed as follows.
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For each clause p(t1, . . . , tn) :- β1, . . . , βm.

– If p/n is non-tabled, transform the clause to

p′(t1, . . . , tn, E) :- β′

1E1
, . . . , β′

mEm
,

E = [(β1, E1), . . . , (βm, Em)].

– If p/n is tabled, transform the clause to

p′(t1, . . . , tn) :- β′

1E1
, . . . , β′

mEm
,

store evid(p(t1, . . . , tn), [(β1, E1), . . . , (βm, Em)]).

where E, E1, . . . , Em are distinct new variables, and
for each β = q(u1, . . . , ul),

β′

E
=



q′(u1, . . . , ul, E) if β is a non-tabled predicate
(q′(u1, . . . , ul), E = ref (β)) if β is a tabled predicate

Fig. 2. Transformation Rules for True Literals

:- table reach_t/2.

reach_t(A,B) :- arc_t(A,B,E),

store_evid(reach(A,B), [((arc(A,B),true),E)]).

reach_t(A,B) :- arc_t(A,C,E1), reach_t(C,B),

store_evid(reach(A,B),

[((arc(A,C),true),E1),

((reach(C,B),true),ref(reach(C,B)))]).

arc_t(a,b,[]). arc_t(b,a,[]). arc_t(c,a,[]).

The query reach t(a,a)will succeed with the evidence stored in two records:

reach(a, a) → [((arc(a, b), true), []), ((reach(b, a), true), ref (reach(b, a)))]

reach(b, a) → [((arc(b, a), true), [])]

4 Evidence Generation for False Literals

Evidence generation for false literals is more difficult than that of true literals,
because when the extended predicates fail, they do not return any tracing in-
formation. We solve this problem by justifying the negation of false literals. We
present the solution in two steps. In the first step, for each literal L, we compute
a dual literal L which is equivalent to ¬L. In the second step, we apply the
transformation rule for the true literals to L.

Dual Predicates. Let p/n be a predicate, where p is the predicate name and n is
the arity of p. We say that the predicate p/n is the dual predicate of p if p and
p return complementary answers for the same input, i.e. for any literal instance
p(t1, . . . , tn), where t1, . . . , tn are terms, p(t1, . . . , tn) = ¬p(t1, . . . , tn).
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Recall from the definition of evidence (Definition 1) that a literal L is false if
for every clause α : −β1, . . . , βn such that L unifies with α, under any substitu-
tion θ, there is some j ≤ n such that βlθ is false and for all 1 ≤ i < j, βiθ is true.
This directly leads to the following definition of dual predicates. For the sake of
simplicity, let p be defined using k clauses in the form of p(ti) :- βi,1, βi,2. Then,

p(x) :- p1(x), ..., pk(x)

where pi captures the failure of the i-th clause of p. Now each i-th clause fails if
either the arguments of p do not match with the arguments of pi, or βi,1 fails,
or for every answer of βi,1, βi,2 fails. This is captured by the following rule:

pi(x) :- x 6= ti

pi(ti) :- βi,1 ; forall(βi,1, βi,2)

where the predicate forall(β1, β2) encodes ∀θ : β1θ =⇒ β2θ.

Dual Definitions for Tabled Predicates. For a tabled predicate involving recursive
definitions, however, the dual predicates defined in the above scheme is incorrect
in general. We can view the above definition of the dual as being obtained from
the completion of a logic program [11]. It is well known that completion has
unsatisfactory semantics for negation. This impacts our justification algorithm.
Consider the simple propositional program p :- p, where p/0 is tabled. The dual
predicate produced by the above transformation rule is p_f :- p_f. Because
there is a loop in the definition of p f, if p f is not tabled, the query does not
terminate; if it is tabled, it will give the answer false . However, since p fails, p f

should succeed.
To break the loops in dual predicates, we use the explicit negation of the

tabled predicates instead of their duals in the definitions. In XSB, that a tabled
predicate α has no answer, i.e. ¬∃θ : αθ, is encoded by sk not(α). In other
tabled LP systems such as TALS and B-Prolog, the operator for tabled negation
is the same as for non-tabled cases. Here we use table not to represent this
negation operator for all tabled systems. For the above example, we replace p f

in the body of of dual for p by table not(p). Now the dual predicate becomes
p_f :- table_not(p), so the query p f correctly succeeds.

The benefit of using table not for tabled predicate in the dual definitions
is that there are no recursive calls to the duals of tabled predicates, hence the
duals need not be tabled. This not only avoids cycle checking but also enables
us to implement the justifier as a zero-storage producer, as the evidence does
not consume permanent space when being passed as an argument.

Generating Evidence for the Dual Predicates. We apply the transformation rule
for true literals presented in Section 3 to the dual predicates, so that for each
predicate α, we generate an extended dual predicate α′

E that returns the evidence
for ¬α in the variable E.

The two predicates introduced during dualization, forall and table not,
need special treatment in the transformation.
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– We implement a predicate all evid((β′
1E1

, E1), (β
′
2E2

, E2), E) to computes the
evidence of forall(β1, β2):

E(forall(β1, β2)) =
⋃

∀θ:β1θ

{(β1θ, E(β1θ)), (β2θ, E(β2θ))}

where E1, E2, and E hold the evidences of β1θ, β2θ, and forall(β1, β2) re-
spectively.

– To extend the predicate table not(β), we apply the same technique used
for true tabled predicates, i.e. to store only a pointer to the evidence for ¬β,
denoted by ref (β). Similar to the evidences for true literals, the evidences
for false tabled literals are stored in segments. The evidence segment for ¬β

can be generated by calling β
′

E
, which can be done at any time, giving us an

algorithm of generating partial evidence on demand. The evidence is fully
generated when the evidence segments to all referred literals are computed.

The complete transformation rule for false literals is in Figure 3. A special
case of this transformation is that when a predicate p/n has no definition (thus p
trivially fails), a fact p′(X1, . . . , Xn, []). is generated according to Step 1, meaning
p′ trivially succeeds.

Based on the definition of dual predicates and Proposition 1, we can establish
the consistency of the transformed predicate. Also by induction on the size of
evidence, we have:

Proposition 2. Let E be a fresh variable. For any literal L ∈ P ,

– the query L
′

E succeeds if and only if L fails
– if the query L

′

E succeeds then E returns an evidence for L being false.

Example 4. The program in Example 2 is transformed as follows.

reach_f(A,B,E) :- reach_f1(A,B,E1),reach_f2(A,B,E2),concat([E1,E2],E).

reach_f1(A,B,E) :- arc_f(A,B,E).

reach_f2(A,B,E) :- arc_f(A,C,E).

reach_f2(A,B,E) :- all_evid((arc_t(A,C,E1),E1),

(reach_f(C,B),E2=ref(reach(C,B))), E).

arc_f(A,B,E) :- arc_f1(A,B,E1), arc_f2(A,B,E2), arc_f3(A,B,E3),

concat([E1,E2,E3],E).

arc_f1(A,B,[]) :- (A,B) \= (a,b).

arc_f2(A,B,[]) :- (A,B) \= (b,a).

arc_f3(A,B,[]) :- (A,B) \= (c,a).

The query reach f(a,c,E) will succeed, returning one evidence segment:

reach(a, c) → [((arc(a, c), false), []), ((arc(a, b), true), []),

((reach(b, c), false), ref (reach(b, c)))]

To produce the evidence segment for reach(b, c), we call reach f(b,c,E), which
returns

reach(b, c) → [((arc(b, a), true), []), ((reach(a, c), false), ref (reach(a, c)))]

Now since all referred literals have been visited, the evidence is fully generated.
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For each predicate p/n whose definition is composed of k clauses in the form of

p(ti,1, . . . , ti,n) :- βi,1, . . . , βi,mi
.

where 1 ≤ i ≤ k, the extended dual predicate p′ is defined in two parts:

1. The top-level predicate is

p′(X1, . . . , Xn, E) :- p′

1
(X1, . . . , Xn, E1), . . . , p

′

k(X1, . . . , Xn, Ek),

concat([E1, . . . , Ek], E).

where concat([E1, . . . , Ek], E) is a predicate that concatenates E1, . . . , Ek to-
gether to a single list E.

2. For each 1 ≤ i ≤ k, the predicate p′

i/(n + 1) is defined by two clauses:

p′

i(X1, . . . , Xn, []) :- not((X1, . . . , Xn) = (ti1, . . . , tin)).

p′

i(ti,1, . . . , ti,n, E) :- fevid([βi,1, . . . , βi,mi
], E).

where fevid is a macro recursively defined as

fevid([], E)
def
= fail

fevid([β1|B], E)
def
= (β1

′

E
f

1

-> E = [((β1, false), Ef1)]

; all evid((β′

1Et
1

, Et1), (fevid(B, Ef2), E
f

2), E).

and E,Ef1,E
t

1, and Ef2 are distinct new variables. For each atom β = q(u1, . . . , ul)
appearing in the body of a clause, its extended dual expression is defined as

β
′

E
=



(table not(q′(u1, . . . , ul)), E = ref (β)) (if β is a tabled predicate)
q′(u1, . . . , ul, E) (otherwise)

Fig. 3. Transformation Rules for False Literals

5 Practical Aspects

In Sections 3 and 4, we described general transformation rules for pure logic
programs. In practice, however, most programs have non-logical constructs (such
as assert, retract) and meta-operators (such as var, nonvar). To make online
justification practical, below we describe transformation techniques necessary to
handle such programs. In addition, we show how online justification can be used
as a flexible evidence explorer.

Meta-operators. Since we transform predicate names into different names using
p′ and p′, literal call(P) in the original program has to be transformed so
that it calls the appropriate transformed literal during execution. If P is a non-
variable, then it is transformed using the general transformation rules; otherwise,

it is transformed into call′(P ) or call
′

(P ), depending on whether call is being
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transformed as true literal or false literal, respectively. call′(P ) and call
′

(P ) are
part of run-time support for the justifier, which transforms P during execution
and call the resulting predicate.

XMC model checker uses predicate forall(Vars, Antecedent, Consequent)

which is defined as

forall(_Variables, Antecedent, Consequent) :-

findall(Consequent, Antecedent, AllConsequents),

all_true(AllConsequents).

all_true([]).

all_true([C|Cs]) :- call(C), all_true(Cs).

If forall is transformed using the general transformation rules, then all true

generates quadratic amount of evidence. The transformed predicates for forall
should first collect evidence for antecedent from findall, evidence for conse-
quents from all true and then assemble both to generate the evidence for
forall. There is no general technique to handle this behavior; hence we im-
plemented these transformed predicates by hand.

Controlling Evidence. As can be seen in Section 6, the transformed program
has very little time overhead, but in some cases, the space overheads may be
high; e.g., justification of non-tabled predicates such as append take exponen-
tial amount of space to store the evidence due to recursive definitions. To avoid
generating evidence for such predicates, we provide a mechanism to specify the
predicates the user intends to justify and transform only those predicate defini-
tions. Limiting the amount of evidence not only results in reducing the overheads,
but also helps the user explore the evidence easily.

Constructs with Side-effects. Pure logic predicates have no side-effects, hence
can be executed many times, without changing the semantics of the program.
However, assert and retract cannot be executed more than once, as they
change the semantics of the program. For true literals, the evidence is generated
during the evaluation of the program, which can be retrieved without executing
the literal any more. The dual definitions for the literals, on the other hand,
should not call assert and retract, as the original program wouldn’t have
executed them. To avoid changing the database during execution of false literals,
the predicates with assert/retract can be transformed in such a way that
they first make a copy of the current database into another database, during the
execution change only the copy and at the end delete the copied database. Thus,
executing the dual definition doesn’t change the database.

Flexible Evidence Generation and Exploration. The segments of evidence gener-
ated during query evaluation in online justification can then be used to generate
the full evidence graph. So online justification can be used as a tool to debug
programs. However, it has a few fundamental differences with the traditional
trace-based debuggers. Justification gives a declarative view of the logic pro-
gram, displaying sufficient and necessary information to establish the truth or
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falsity of a query, whereas debuggers provide only the procedural view of the
execution. Online justification gives flexibility in both generating and exploring
the evidence generated during evaluation by allowing the user to explore the
evidence as and when necessary, skipping over uninteresting portions and even
revisiting the skipped portions later without restarting the debugging process.

6 Experimental Results

One of the primary goals of our work is to implement a practical tool for justifi-
cation of tabled logic programs. To measure the overheads of time and space on
such programs, we have used the justifier to automatically transform the XMC
model checker[15] to construct the evidence for model checking. The entire im-
plementation of the model checker consists of about 150 lines of XSB, most of
which are definitions for the non-tabled predicate models(S,F), which checks if
state S models the µ-calculus formula F, and one definition for a tabled predi-
cate rec models(S,F), which checks if state S models formula definition of F. A
fragment of this model checker is given below:

:- table rec_models/2.

rec_models(State_s, X) :- fDef(X, Y), models(State_s, Y).

models(_State_s, tt).

models(State_s, fAnd(X_1, X_2)) :-

models(State_s, X_1), models(State_s, X_2).

models(State_s, fOr(X_1, X_2)) :-

models(State_s, X_1) ; models(State_s, X_2).

models(State_s, fDiam(Act_a, X)) :-

transition(State_s, Act_a, State_t), models(State_t, X).

Since models(S,F) is a non-tabled predicate, the justifier transforms it into
two predicates: models t(S,F,E), corresponding to the true-literal justification
and models f(S,F,E), corresponding to the false-literal justification, where E

is the evidence. The rec models is transformed so that the evidence of the
definition and the evidence from models/2 are stored in the evidence database.
The transformed model checker is then used on some examples from XMC test
suite [5] with various system sizes: Iprotocol, Leader election, Java meta-lock
and Sieve. The system sizes that we have tried are very large (requiring upto
1GB of system memory). Here we report the time and space performance of this
model checker along with the original XMC model checker.

All the tests were performed on Intel Xeon 1.7GHz machine with 2GB RAM
running RedHat Linux 7.2 and XSB version 2.5 (optimal mode, slg-wam with
local scheduling) with the garbage collector turned off.

Figure 6(a) compares the query evaluation time of the original XMC (without
justification) with the transformed XMC (with justification). In our experiments,
the transformed program took at most 50% (and on average 23%) longer time
compared to the original program. Note that all the graphs are drawn in loga-
rithmic scale, with performance of XMC without justification on X-axis and the
performance of transformed XMC with justification on Y-axis.
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Fig. 4. Time and Space Performance of XMC with and without Justifier

Figure 6(b) shows the space overhead due to evidence generation. In our ex-
periments, the transformed program has maximum overhead of 11 times when ev-
idence is generated for every state along every path in the model (due to forall)
in the case of Leader election protocol, and on average about 3.5 times the over-
head. The comprehensive details about time and space performance of the online
justifier tool can be found at http://www.lmc.cs.sunysb.edu/~lmc/justifier.

7 Conclusions

In this paper, we presented a new justification scheme using program transfor-
mation. In this scheme, a logic program is automatically translated such that
the translated program builds evidence during query evaluation. The evidence
so generated can be presented later to the user using an interactive interface.
The extra overhead due to the evidence generation is so little that the tool we
implemented using this scheme has been used in practice to generate evidence
for model checking practical systems. We plan to extend our scheme to handle
logic programs with side effects, and to integrate our implementation with the
Evidence Explorer [6], so that the user can easily navigate the evidence.

References

1. S. Basu, D. Saha, Y.-J. Lin, and S. A. Smolka. Generation of all counter-examples
for push-down systems. In FORTE, 2003.
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