
Symbolic Bisimulation using Tabled Constraint

Logic Programming

Madhavan Mukund, C.R. Ramakrishnan,

I.V. Ramakrishnan, Rakesh Verma

Abstract

Bisimulation equivalence is a standard way of comparing concurrent sys-

tems. Although the problem of checking bisimulation equivalence of �nite-

state systems is well-studied, the situation is not so clear for in�nite-state

systems. Systems with value-passing over in�nite domains are inherently

in�nite-state. Hennessy and Lin have proposed a symbolic representation

which often results in �nite descriptions of value-passing systems. In this pa-

per, we investigate the problem of checking bisimulation for such symbolic

transition systems using tabled constraint logic programming.

Keywords: Bisimulation, value-passing calculi, in�nite-state system, tabled

evaluation, logic programming.

1 Introduction

A tabled logic programming system o�ers an attractive platform for encoding com-
putational problems in the speci�cation and veri�cation of systems. Model checking,

an automatic technique for verifying if a �nite-state concurrent system speci�cation
satis�es a property expressed as a temporal logic formula, constitutes one such im-

portant class. Using the XSB tabled logic-programming system we developed XMC,
a local model checker for a CCS-like value-passing system speci�cation language and

the modal mu-calculus temporal logic [8]. XMC, written in under 200 lines of tabled
Prolog code, has been operational for over a year now. Our experience with using

XMC for speci�cation and veri�cation of industrial-strength protocols strongly sug-

gests that implementing practical model checkers using tabled logic programming is

indeed feasible [9].
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Figure 1: Examples of (a) non-value-passing and (b) symbolicd LTSs

Having established the applicability of tabled LP for model checking we have now
begun investigating its applicability for checking bisimulation equivalence [6] which

is another problem of fundamental importance in veri�cation. Informally, given a
pair M , M 0 of automata we say that they are bisimilar if for every transition in M

there exists a corresponding transition in M 0 and vice versa. Consider the class of
logics expressible in the mu-calculus|all standard modal and temporal logics used
in veri�cation fall into this class. Given a logic L in this class and a structure M , if

M 0 is bisimilar to M then M 0 satis�es exactly the same set of formulas of the logic
L as M . Bisimilar systems play a very useful role in coping with the state explosion
that arises in model checking since one can use a much smaller system M 0 instead
of M for verifying system properties.

There has been a lot of research on eÆcient algorithms for bisimulation testing.

But the focus of this vast body of work has been on �nite-state systems, i.e., one
assumes that M and M 0 are both �nite state. But many practical problems that
arise in veri�cation are often in�nite-state where bothM andM 0 are no longer �nite-
state systems. Hennessy and Lin were the �rst to consider the problem of bisimilarity
testing of in�nite-state systems [2] in the setting of value-passing languages and Lin
has recently expanded their initial work further [5, 4]. Nevertheless research on this

problem remains in a state of infancy.

In this extended abstract we explore the use of logic programming for the above
problem. We show how we can use the power and versatility of tabled logic pro-

gramming augmented with constraints for testing bisimilarity of in�nite-state sys-
tems. Our approach handles all four possible de�nitions of bisimilarity for value-

passing systems obtained by qualifying strong and weak bisimilarity with the notions

early/late.

2 Symbolic Bisimulation

Labeled transition systems (LTSs) are widely used to capture the operational be-
havior of concurrent systems. An LTS over a set of states S and actions A is a �nite

directed graph, with node and edge labels. In the non-value-passing case (e.g., basic
CCS [6]), nodes are labeled with symbols from S and the edges are labeled with



symbols from A. An LTS is usually denoted by L = (S; T ) where S is the set of

nodes (i.e., states) and T � S�A�S is the edge relation (with labels). An example

LTS is given in Figure 1(a).

In the value-passing case, the LTSs are symbolic: a node represents a set of states,

and an edge represents transitions between various subsets of the states denoted by

the source and destination nodes. The node labels are, in general, terms with free

variables. Edge labels are guarded actions such that all free variables in the guard

and action occur free in the source node, and all free variables in the destination

node occur as free variables in the source node, or are bound by the action. An

example of a symbolic LTS (from [2]) is shown in Figure 1(b). In the �gure, we can

go from state p0 to p1(x) after performing an input action c?x. The input action

binds x. From state p11(x) we can go to p111 after doing a f action, provided x = 0

(the guard on the transition). Guards that are always true are usually omitted.

2.1 Bisimilarity in non-value-passing systems

We �rst begin with a brief overview of similarity and bisimilarity in non-value-

passing LTSs. We de�ne these notions in a single LTS; two LTSs can be compared
by computing the similarity relations on their disjoint union.

Given an LTS L = (S; T ), R is a similarity relation over L, denoted by sim(R)
i�

8s1; s2 2 S: (s1Rs2 ) 8(s1; a; t1) 2 T: 9(s2; a; t2) 2 T: t1Rt2)

R is a bisimilarity relation (denoted by bisim(R)) i� R is a similarity relation and is
symmetric, i.e., sim(R) and 8s1; s2: (s1Rs2 , s2Rs1). Among the many bisimilarity
relations, the largest one is of most interest. Using the dual of the de�nition of sim,

we can de�ne the largest bisimilarity relation as follows.

De�nition 1 (Largest Bisimilarity Relation) Given an LTS L = (S; T ), R is

the largest bisimilarity relation i� R is the smallest relation such that

8s1; s2 2 S:
�
s1Rs2 ( 9(s1; a; t1) 2 T: (8t2 2 S: 8(s2; a; t2) 2 T: ) t1Rt2)

�
^

(s1Rs2 , s2Rs1)

Note that the relation R in the above de�nition is de�ned as a least �xed point.
Hence, the relation R can be encoded as a predicate nbisim/2 de�ned as follows:

nbisim(S1, S2) :- trans(S1, A, T1),

no_matching_context(S2, A, T1)).

nbisim(S1, S2) :- nbisim(S2, S1).

In the above encoding, no_matching_context(S2, A, T1) stands for

(8t2 2 S: (s2; a; t2) 2 T ) t1Rt2), and is in turned de�ned as:

no_matching_context(S2, A, T1) :-

not trans(S2, A, _)

; (findall(T2, trans(S2, A, T2), L),

all_nbisim(T1, L)). % T1 is not bisimilar to any T2 in L

all_nbisim(_, []).

all_nbisim(T1, [T2|Ts]) :- nbisim(T1, T2), all_nbisim(T1, Ts).



Using nbisim/2, the largest bisimulation relation can be written as a predicate

bisim/2 de�ned as follows:

bisim(S1, S2) :- not nbisim(S1,S2).

The above encoding can be executed in XSB (after annotating nbisim/2 as a

tabled predicate and converting not in the de�nition of bisim/2 to tnot) to com-

pute the largest bisimilarity relation. Using this executable speci�cation, we can

check for bisimilarity between any two states in an LTS (S; T ) in O(jSj � jT j) as-

suming unit-time table lookups. The quadratic factor in our encoding comes from

checking for bisimulation between (potentially) every pair of states. Considering

table lookup times (for looking up nbisim(S1,S2)) the complexity can be as high

as O(jSj3 � jT j) if tables are organized as a list, or O(jSj � jT j � log jSj) if binary

tree data structures are used. It should be noted that there are faster bisimula-
tion checking algorithms: the Kanellakis-Smolka algorithm [3] runs in O(jSj � jT j);
Paige and Tarjan's algorithm [7] runs in O(jT j� log jSj). These algorithms compute
bisimulation classes bottom up and are thus global. In contrast, the goal-direction
that results in the quadratic factor also makes our encoding \local": we explore

only states needed to prove or disprove the bisimilarity of the two given states. The
most important advantage, however, is that encoding can be extended to symbolic
bisimulation of value-passing systems.

Before we discuss bisimulation for value-passing systems, we present a modi�ed
encoding of no_matching_context/3 which will make the structure of the code more

transparent in the setting of value-passing.

no_matching_context(S2, A, T1) :-

forall(bv(S2,A,T1), fv(T2), trans(S2, A, T2), nbisim(T1, T2)).

The essential di�erence is that we have de�ned a new predicate forall/4 to
eliminate the explicit list-traversal in the original no_matching_context/3. The
predicate forall(BV,FV,g,h) succeeds if the following is true: given the list of

bound variables BV, for all values of the free variables in FV, if g is true then h is

true.

2.2 Bisimilarity in value-passing systems

For value-passing systems, two notions of bisimilarity, namely early and late, have
been identi�ed. Unlike the other actions, input actions in value passing systems can
bind variables. The di�erence between early and late bisimulation arises from this

property.

Value-passing systems over in�nite domains are inherently in�nite. To repre-

sent them in a �nite fashion, we use symbolic labelled transition systems, as pro-

posed by Hennessy and Lin [2]. In a symbolic LTS, each transition is annotated

with a condition, indicating when it can occur. For instance, in Figure 1(b), the
transition (p11(x); f; p111) is guarded by the condition x = 0. Transitions such as

(p12(x); h; p121) which are not annotated by any condition are implicitly assumed to



be guarded by the condition true. In general, a transition in a symbolic LTS is a

4-tuple (s; a; g; t), where s and t are the source and target states, a is the action,

and g is the condition guarding the transition.

Let s1; s2 be two states such that (s1; c?x; g1; t1), (s2; c?x; g2; t2) and (s2; c?x; g3; t3)

are transitions in a symbolic LTS. Recall that the states themselves are terms, and

the variable x may occur free in states t1; t2 and t3. We say that s1 early-simulates

s2 as long as for each substitution to x which satis�es g1, either x satis�es g2 and t1
early-simulates t2 or x satis�es g3 and t1 early-simulates t3. Note that the choice of

t2 or t3 can be made on a per-substitution basis.

We say that s1 late-simulates s2 only if one of the following hold:

� Every substitution of x which satis�es g1 also satis�es g2 and t1 late-simulates

t2 under this substitution.

� Every substitution of x which satis�es g1 also satis�es g3 and t1 late-simulates

t3 under this substitution.

In other words, the simulation must uniformly choose between t2 and t3 for all
substitutions which satisfy g1. Thus the di�erence between the two notions of bisim-
ulation is the nesting order in which transitions and substitutions are quanti�ed
(existential and universal, respectively). Instead of explicitly manipulating substi-

tutions, we can encode early and late bisimulations such that the substitutions are
maintained and propagated by the logic programming engine, as explained below.

Early Bisimulation: Given a transition (s1; a; g1; t1), there is no matching con-
text if there is one substitution such that either (1) there is no matching transition
(s2; a; g2; ) on that substitution, or (2) for every matching transition (s2; a; g2; t2) the
destination states t1 and t2 are not bisimilar. Let (s2; b1; g21; t21); (s2; b2; g22; t22); : : : ;
(s2; bk; g2k; t2k) be all transitions from s2 such that each g2i subsumes g1 and each

bi subsumes a: i.e., 9�i such that g21�i = gi and bi�i = a for i 2 f1; 2; : : : ; kg.
Let �i be the substitution under which states t1 and t2i are not bisimilar. Let �

denote the composition of substitutions. Then, � = �1�i�k(�i�i) is a substitution

which establishes that there is no matching context. We compute this substitution
� implicitly in XSB using the following encoding. Observe that we represent the
extended transition relation of a symbolic LTS by a 4-ary relation strans/4.



nbisim(S1, S2) :-

strans(S1, A1, G1, T1), G1,

no_matching_context(S1, A1, T1, S2).

nbisim(S1, S2) :-

nbisim(S2, S1).

no_matching_context(S1, A1, T1, S2) :-

forall(bv(S1,A1,T1,S2), fv(A2,G2,T2),

strans(S2, A2, G2, T2),

nsimulate).

nsimulate(bv(_,A1,T1,_), fv(A2,G2,T2)) :-

(G2,

( subsumes(A2,A1), nbisim(T1, T2))

; not(subsumes(A2,A1))

)

; not(G2).

If we compare this with our second encoding of nbisim/2 for non-value-passing
systems, the essential di�erence is that the call to nbisim/2 within forall/4 has
been replaced by a more complex relation, nsimulate/2. The relation nsimulate

ensures that if the guard G2 is \compatible" with the guard G1 and the action A2

is \compatible" with the action A1 in the current context, then T1 and T2 are in
nbisim/2.

Observe that the nested call to nbisim/2 inherits a new set of constraints from
G1 and G2. In our encoding, the current context in which nbisim/2 is evaluated

is maintained implicitly. This is a useful simpli�cation as compared to the original
algorithm of Hennessy and Lin [2], where the context in which the value-passing
bisimulation has to be evaluated is maintained explicitly. The Hennessy-Lin algo-
rithm returns the most general context under which the two processes are bisimilar.
In a similar vein, when our encoding detects that two processes are not bisimilar, we

can retrieve the context which witnesses the nonbisimilarity of the two processes.

Late bisimulation: Given a transition (s1; a; g1; t1), there is no matching context

if either (1) there is no matching transition (s2; a; g2; ) on any substitution, or (2)

for every matching transition (s2; a; g2; t2), there is a substitution under which the
destination states t1 and t2 are not bisimilar. This condition can be tested by

simply ensuring that the di�erent transitions from s2 are standardized apart before
checking for matching contexts. Standardization can be done via copy_term/2

which generates a copy of a term with fresh variables. Late bisimulation can thus

be derived from the encoding of early bisimulation by modifying nsimulate/2 in
no_matching_context/4 as follows:



nsimulate(bv(_,A1,T1,_), fv(A2,G2,T2)) :-

(G2,

copy_term((A1,T1,A2,T2), (B1,U1,B2,U2)),

( subsumes(B2,B1), nbisim(U1, U2)

; not(subsumes(B2,B1))

)

; not(G2).

This ensures that each transition from s2 is evaluated in a separate environment, as

required by late bisimulation.

Implementation: We have presented a complete encoding for late and early

bisimulation checking for value-passing systems. The encoding can be directly ex-

ecuted in XSB as long as the e�ect of guards on transitions can be represented
�nitely using equality (term-uni�cation) constraints. For instance, if the guards test
for evenness or oddness, their e�ect can be simply modeled by facts of the form

even(e(_)) and odd(o(_)), and term-equality constraints are suÆcient. However,
if the guards contain arithmetic inequalities, then the underlying evaluation mecha-
nism should be able to handle constraints. In e�ect, the above encoding is directly
executable in a tabled constraint logic programming (CLP) system that can handle
constraint domains where the guards in the given LTS can be �nitely represented.

Moreover, the complexity of the evaluation is O(jSj � jT j) assuming unit-time table
lookup and constraint manipulation, which is same as Hennessy and Lin's proce-
dural algorithm [2]. Furthermore, the encoding (and its implementation) clearly
separate the logical aspects of bisimulation from its representational aspects.

We have implemented a metainterpreter for constraint solving that runs over

XSB. The metainterpeter maintains the constraint store and simpli�es the con-
straints as they are propagated, thus simulating a tabled CLP environment. Our
preliminary experience suggests that one can construct practical systems for check-
ing symbolic bisimulation in a tabled CLP framework.

2.3 Strong- and Weak- Bisimulation

The di�erence between strong and weak bisimulation arises from the treatment of

transitions labeled with internal (� ) actions. Strong bisimulation is de�ned over

the usual transition relation T and treats � actions as any other. The bisimulation
relations we have considered thus far are strong.

Weak bisimulation treats � actions as unobservable, and does not distinguish
between a single � action and a sequence of � actions. Weak bisimulation can

be de�ned as follows. Let R�� � S � S such that (s1; s2) 2 R�� if s1 = s2 or

9t such that (s1; �; t) 2 T and (t; s2) 2 R��; R�� is called the � -closure relation.
Let TW � S � A � S such that (s1; a; s2) 2 TW if a 6= � and (s1; a; s2) 2 T , or

(s1; t1) 2 R��; (t1; a; t2) 2 T and (t2; s2) 2 R��; and (s1; �; s1) 2 TW if (s1; �; s2) 2 T

and (s2; s1) 2 R��. Weak bisimulation is a bisimulation where the transition relation

T is replaced by the relation TW . Clearly, the computation of relations R�� and TW
can be readily encoded and evaluated using tabled resolution. Replacing strans

in the encoding of early and late bisimulation with the predicate corresponding to



TW yields weak-early and weak-late bisimulations respectively. Computing weak

bisimulations adds the cost of computing R�� which, in an XSB encoding, will take

O(jSj � jT j) time assuming unit-time table lookups.

3 Conclusions

In this abstract we demonstrated how the power and versatility of tabled logic

programming can be used for testing bisimilarity of in�nite-state systems in a natural

way. Our implementation is goal-directed, i.e., we explore only states needed to

prove or disprove the bisimilarity of the given states, and it can handle both early

and late versions of strong as well as weak bisimilarity. Furthermore, the complexity

of this implementation matches that of Hennessy and Lin's algorithm modulo table-

lookup time. A detailed performance analysis and extensions to subsequent works
of Lin and other researchers are some interesting directions for the future.

Another interesting extension of this work would be to pursue the connection

between checking bisimulation for value-passing systems and bisimulation for timed
systems. When we represent a value-passing system as a �nite symbolic LTS, we are
e�ectively quotienting the in�nite state-space of the underlying system into a �nite
set of equivalence classes. The well-known region construction for timed systems,
introduced by Alur and Dill [1], is also based on similar intuition. It seems likely,

therefore, that the techniques developed for checking bisimulation for value-passing
systems should also be applicable to timed systems.
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