
Automated Construction of Web Accessibility Models from
Transaction Click-streams

Jalal Mahmud
∗

Yevgen Borodin I.V. Ramakrishnan C.R. Ramakrishnan

Department of Computer Science
Stony Brook University

Stony Brook, NY 11794, USA
{borodin, ram, cram}@cs.sunysb.edu

ABSTRACT
Screen readers, the dominant assistive technology used by visually
impaired people to access the Web, function by speaking out the
content of the screen serially. Using screen readers for conducting
online transactions can cause considerable information overload,
because transactions, such as shopping and paying bills, typically
involve a number of steps spanning several web pages. One can
combat this overload by using a transaction model for web acces-
sibility that presents only fragments of web pages that are needed
for doing transactions. We can realize such a model by coupling a
process automaton, encoding states of a transaction, with concept
classifiers that identify page fragments “relevant” to a particular
state of the transaction.

In this paper we present a fully automated process that syner-
gistically combines several techniques for transforming unlabeled
click-stream data generated by transactions into a transaction model.
These techniques include web content analysis to partition a web
page into segments consisting of semantically related content, con-
textual analysis of data surrounding clickable objects in a page,
and machine learning methods, such as clustering of page segments
based on contextual analysis, statistical classification, and automata
learning. The use of unlabeled click streams in building transaction
models has important benefits:

(i) visually impaired users do not have to depend on sighted
users for creating manually labeled training data to construct the
models; (ii) it is possible to mine personalized models from unla-
beled transaction click-streams associated with sites that visually
impaired users visit regularly; (iii) since unlabeled data is rela-
tively easy to obtain, it is feasible to scale up the construction of
domain-specific transaction models (e.g., separate models for shop-
ping, airline reservations, bill payments, etc.); (iv) adjusting the
performance of deployed models over time with new training data
is also doable.

We provide preliminary experimental evidence of the practical
effectiveness of both domain-specific, as well as personalized ac-
cessibility transaction models built using our approach. Finally, this
approach is applicable for building transaction models for mobile
devices with limited-size displays, as well as for creating wrappers
for information extraction from web sites.
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1. INTRODUCTION
The Web has evolved into a dominant digital medium for con-

ducting online transactions, a notion that broadly encompasses ac-
tivities such as shopping, paying bills, making travel plans, etc.
Figure 1 is an illustrative example of a web transaction, where the
user selects the SanDisk MP3 player category (pointed to by the
arrow in Figure 1(a)), chooses the first MP3 player from the list
of available players in Figure 1(b), then adds the selected item to
the cart in Figure 1(c) and, finally, does the checkout, as shown in
Figure 1(d).

As can be seen from the above example, web transactions typi-
cally involve a number of steps spanning several web pages. With
graphical web browsers, sighted users can quickly go through the
transaction steps. However, non-visual transactions pose serious
challenges to blind individuals, because screen readers (e.g., JAWS
[1], Windows Eyes [11]), the dominant assistive technology used
by blind users, typically narrate the content of web pages sequen-
tially. Although screen-readers provide shortcuts to move back-
ward and forward within a page, they offer no help in finding rel-
evant information and, thus, expose their users to considerable in-
formation overload.

Given the same aural screen-reader interface, the best way to
facilitate a non-visual web transaction is to give blind users a way
to quickly access page fragments and action-buttons that would be
relevant in the corresponding steps of the transaction. We will refer
to such fragments and buttons as concepts. To illustrate, after a
category is selected in the first step of the transaction in Figure
1(a), the page fragments corresponding to the item list (showing a
taxonomy of items in that category) and the search form (for doing
a new search if needed) are among the most relevant concepts for
the next step of the transaction in step (b) of Figure 1.

In [30] we had developed a transaction model for web accessibil-
ity to identify, extract, and aurally render only the “relevant” page
fragments in each step of a transaction. The use of a transaction
model for improving the accessibility of web transactions under-
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Figure 1: Example Web Transaction in BestBuy.com

lies our previous work in [30] as well as the work reported in this
paper.

The transaction model uses a process automaton, in which each
state represents a step of a transaction. At each step, the user is
presented with a set of concepts relevant to a transaction at that step.
A concept classifier is used to identify such instances of concepts
whenever they are present in web pages.

Figure 2 illustrates a process automaton for online shopping,
where s1 and s5 are the start and accept states respectively. Note that
each edge connecting a pair of states is a possible action/transition
(e.g., select_category, select_item, and submit_searchform in s1).
Each state in the process automaton also specifies the set of transaction-
specific concepts it expects to find in any web page that is given as
the state’s input. For example, to identify the “Item Taxonomy” and
the “Search Form” in Figure 1(a), the start state s1 has to expect the
corresponding concepts. The rest of the content will be filtered out.

The transaction example in Figure 1 can be mapped to the pro-
cess automaton as follows. In s1 the user is prompted to select a
category; choosing SanDisk takes the transaction back to s1 where
all models of SanDisk MP3 players are spoken out. Picking the
first item from the list takes the transaction to s2, where the details
of the item are presented. Adding an item to cart takes the transac-
tion to s4. The checkout action completes the transaction, finishing
in state s5.

In contrast to our current approach (to be described later on), in
our previous work [30] we built the automata using preprocessed
transaction sequences. In the preprocessing stage every transaction
step in the sequence was assigned a user-defined “semantic” label.
For instance, < select_category, select_item, add_to_cart,
check_out > is one such sequence corresponding to the trans-
action illustrated in Figure 1. Observe that the semantics associ-
ated with labels, select_category, select_item, etc., corresponds
to the operations performed on the concept instances. Assigning
such semantic labels is by and large a manual process. Another
place involving manual effort was in the construction of supervised
concept classifiers. In particular, we manually collected sample
web page fragments corresponding to concept instances from dif-
ferent web sites. Each concept was associated with a user-defined
concept name and their instances were assigned the corresponding
name (e.g., the fragment within the solid rectangle in fig 1(a) is
assigned the concept name: “taxonomy” ). We extracted different
features (e.g.„ words) from such labeled concept instances to train
the concept classifiers.

Having to rely exclusively on user-defined semantic labels and

Figure 2: Process Automaton Example

concept names for supervised construction of transaction models
has serious shortcomings:

• Firstly, blind users will have to depend on sighted users for
such training data, which makes it impractical to create per-
sonalized models for the sites that each individual blind user
visits regularly.

• Secondly, it is not feasible to update and retrain already de-
ployed models with new training data over time.

• Lastly, because such user-defined labeled data is expensive
to obtain, it is not feasible to scale up the construction of
domain-specific transaction models (e.g., shopping, airline
reservations, bill payments, etc.).

Thus, a model construction process that is not dependent on user-
defined labeled training data is highly desirable.

Contributions of this Paper:
In this paper we present such a fully automated model construc-

tion process. Specifically, given a collection of raw (i.e. unlabeled)
click streams associated with transactions, we construct the trans-
action model by synergistically combining several techniques that
include: web content analysis for partitioning a web page into seg-
ments consisting of semantically related content elements, contex-
tual analysis of data surrounding clickable elements in a page, and
machine learning techniques such as clustering of page segments
based on contextual analysis, statistical classification, and automata
learning. Informally, a click-stream is a sequence of browser-generated
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< select_category(145AB2D1), select_item(05F354A1), add_to_cart(731DA231), check_out(873A11F2) >
< select_category(165AC2E1), 06F344A2, add_to_cart(3A1DB241), 47CA13F5 >

< 16AAC2D2, 06F3A4A2, 23AD2232, 8A3111E1 >

Table 1: Click-stream Examples

Figure 3: Example Web Transaction in CircuitCity.com

unique IDs belonging to actionable page elements that were acted
upon by the user during a web transaction. For example, Table 1
shows a set of partially labeled click-streams associated with the
transaction in Figure 1, where a labeled click-stream element is of
the form label(page element’s ID) (e.g., select_item(05F354A1))
whereas the unlabeled page elements only have IDs. Observe that
all elements are labeled in the 1st row, only one is labeled in the 2nd

row, whereas none are labeled in the 3rd row.
A unique aspect of the transformation process – from “raw” clicks

streams to accessibility models – is that the click-streams, that serve
as training data for the learning methods, need not have any user-
defined labels. More generally, the process can operate with par-
tially labeled click-stream data, where some (including all) user-
defined labels could be missing. As a result of using partially la-
beled data for creating concept classes and process automata, some
(including all) classes and state transitions may remain unlabeled.
However, assigning user-defined labels to concepts and transitions,
although useful, is not critical for conducting transactions non-
visually. For example, if the concept class denoting all taxonomies
remains unlabeled, the concept classifier for taxonomies will still
be able to identify the item taxonomy segment in Figure 1 (a) and
read out its content to the user. Not having to rely on (manually)
labeled training data makes our method scalable, facilitates the con-
struction of personalized transaction models, and makes it feasible
to retrain and adjust the already deployed models, so as to improve
their performance over time.

While the focus of this paper is on web accessibility, it is worth-
while pointing out that the transformation process has a broader
application scope. Specifically it can be used to build transaction
models for mobile devices with limited-size displays, as well as for
creating wrappers for information extraction from web sites.

The rest of the paper is organized as follows: Section 2 has the
technical preliminaries needed for the development of our construc-
tion process in Section 3. An envisioned assistive browser with
a transaction model is described in Section 4. Preliminary ex-
perimental evidence of the practical effectiveness of both domain-
specific and personalized transaction models built using our new
framework appears in Section 5; related work is in Section 6 and
we conclude the paper in Section 7.

2. TECHNICAL PRELIMINARIES
We use the term web object to refer to any element in a web page

that has a unique address, e.g., link, button, text elements, etc. We
say that a web object is clickable whenever clicking on the object
results in an action, e.g., clicking on a link results in following the
link to another web page.

Although web pages have a lot of content, only some content is
important in a transaction, e.g., “product description”, “checkout”,
etc. Over time, the web content has evolved into standard cate-
gories, e.g., “taxonomy”, “search result”, etc. We use the notion
of concept class to refer to a category of web content relevant for
conducting web transactions. A concept class has the same mean-
ing across many different web sites, e.g., the Add-to-Cart buttons
in Figures 1 and 3 belong to the same concept class.

We assume that each concept class will have a unique concept
label and an associated concept operation. Table 3 shows some ex-
amples of (user) assigned concept names and their associated oper-
ations for the shopping domain (In general, manually assigned con-
cept names and operations are assumed to be user-defined). Sup-
pose C is the label for a concept and O is the name of the operation
associated with the concept, then the functions Opr(C) will return
O and Opr−1(O) will return C.

The following notions lay the groundwork for identifying con-
cepts in web pages from click-streams.

A geometric segment is a web page fragment consisting of con-
tent elements that share the same geometric alignment in the page.
e.g., the two solid rectangles enclosing the “Item Taxonomy” and
“Item List” elements in Figure 1 (a-b). Observe how the elements
within them share the same geometric alignment. The alignment
may imply “semantic” relationship between the content elements.
A number of papers have exploited this observation to partition
web pages into geometric segments containing such semantically
related elements (e.g., [22, 34]).

We define the context of a clickable object Obj to be the text
around the Obj that maintains the same topic as the text of the Obj.
To collect the context, a simple topic-detection algorithm based on
cosine similarity is applied to the text surrounding the object within
the geometric segment containing the object, as described in [20].
For example, the dashed boxes in Figures 1 (b) and (c) enclose

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

873



Click-stream Website Name
< select_category(145AB2D1), 05F354A1, 731DA231, 873A11F2 > “BestBuy”

< select_item(01A561E2), 81121F12, 02141F34, 02141F11, 023A21A2 > “CircuitCity”

Table 2: Training Click-streams

the context of the corresponding links pointed to by the arrows.
The page segment enclosed by the dotted rectangle is a Context
Segment.

Typically, two broad classes of concepts arise in transactions:
simple concepts, represented by a single HTML object such as but-
ton or link (e.g., “Log out”), and structured concepts, capturing
more content that often encapsulates other simple concepts (e.g.,
“Item Detail” concept encapsulating the “Add To Cart” concept).
Structured concepts follow certain patterns, e.g., taxonomies, list
of email, list of products, headline news with summary snippets,
search results, etc.

We define a concept segment to be either a context segment or
a geometric segment consisting of a collection of similar context
segments forming a pattern. The former is a simple concept and
the latter is a structured concept.

A concept instance is a concept segment that is classified to a
concept class. In Figure 1 the concept instances are all shown
using solid rectangles. There are four instances of the “Search
Form” concept and single instances of “Item Taxonomy”, “Item
List”, “Add to Cart”, and “Check Out” concepts.

A click-stream is a non-empty sequence of objects that were
clicked during the transaction process. In a partially labeled click-
stream some objects may be labeled with the corresponding con-
cept operation . Table 1 shows examples of partially labeled click-
streams. We call a fully labeled click-stream (e.g., the 1st row in
Table 1) a transaction sequence.

3. BUILDING TRANSACTION MODELS
The overall objective of the construction process is to transform

the set of click-streams into a transaction model. Let us examine
the issues involved in this process.

Recall that each state in the process automaton (Figure 2) spec-
ifies a set of transaction-specific concepts it expects to find in any
web page that is given as the state’s input. This means that we have
to automatically associate a clicked object in a click-stream with
the corresponding concept class and label the object. To solve the
problem, we use the context of an object to identify the concept seg-
ment containing this object. Objects in click-streams may belong to
the same concept class, for example, in Table 1 the clicks on the ob-
jects with IDs 731DA231 and 3A1DB241 correspond to doing an
“add to cart” operation. Hence, the concept segments containing
these two objects should belong to the same “add to cart” concept
class. Our solution for identifying the concept classes associated
with objects is to cluster the segments containing these objects.
Segments with high degree of similarity will belong to the same
cluster. Each such cluster will correspond to a concept class. If any
one of these concept segments has a user-defined label assigned a
priori, the cluster containing those segments is assigned the same
label; by definition a cluster cannot have conflicting labels. Other-
wise, the cluster is assigned a unique machine-generated label and
an operation name. Using these labels we can then transform a
click-stream into a transaction sequence, from which we learn the
process automata. Using a generic set of features from the seg-
ments in a cluster we automatically train a concept classifier. All of
these steps are summarized in Figure 4.

We use the following notations to outline the algorithms that

Concept Name. Operation Name
“Item_List” “select_item”

“Item_Taxonomy” “select_category”

Table 3: Initial Table of User-defined Labels

Concept Name. Operation Name
“Item_List” “select_item”

“Item_Taxonomy” “select_category”

“L1” “l1”
“L2” “l2”

Table 4: Updated Table with Machine Generated Labels

correspond to the steps. Let D denote the set of partially labeled
click-streams of completed transactions, W be the set of web pages
containing the objects in the click-streams and T be a table of user-
defined labels assigned to some concepts and associated concept
operations a priori. Note that T can be empty, corresponding to
unlabeled click-streams. The construction process will add newly
identified concept classes to this table and assign them unique ma-
chine generated labels. We will use getConop(Obj) to get the oper-
ation label on the object Obj in the click-stream. It will return null
if there is no label associated with the Obj.

The input to the process is the triple < D, W, T >. The out-
put is a process automaton and concept classifiers for the concepts
constructed from D.

All the steps in Figure 4 are fully automatic. In Step 1 we par-
tition the web pages into geometric segments and extract their fea-
tures. In Step 2 we identify the concept segments containing the
objects in the click-stream, which requires the context of the object
and the geometric segment containing the segment (see definitions
in Section 2). In this step we also infer the labels of those concept
segments whose corresponding click-stream objects are labeled in
D. Based on the features extracted in Step 1 we cluster the con-
cept segments into concept classes in Step 3. In Step 4 we assign
(machine generated) concept labels to each unlabeled class. The
process splits into two separate branches at this point. In Step 5
we train classifiers for each of the concepts using the clustered seg-
ments as training data. In Step 6 we use the concept labels from
Step 4 to transform the click-stream into a set of transaction se-
quences. In the Step 7 we use the transaction sequences as training
data to learn the process automaton. The technical details of each
of these steps now follows. We will use Table 2 and 3 to illustrate
the steps.

Algorithm IdentifyConceptSegment
Input: Obj: a WebObject in a Web Page
Output: ConceptSegment: A Concept Segment
1. GeometricSegment← Geometric Segment Containing the

WebObject
2. Extract Features from the GeometricSegment
3. Identify if any pattern is repeated in the GeometricSegment
4. if GeometricSegment has Repeated Context Pattern
5. then ConceptSegment← GeometricSegment
6. else ConceptSegment←Context Segment Containing the

WebObject
7. operationLabel← getConop(Obj)
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Figure 4: From Click-streams to Models: Transformation Process

Figure 5: Initial Clusters Containing Labeled and Unlabeled
Concept Segments

8. conceptLabel← Opr−1(operationLabel)
9. if conceptLabel �= NULL
10. then ConceptSegment.ConceptLabel← conceptLabel
11. else ConceptSegment. ConceptLabel← NULL
12. return ConceptSegment

Step 1: Partitioning and Feature Extraction:
This step begins by partitioning every web page in W into geo-

metric segments. Three kinds of features are extracted from each
of the segments: Word Features are words in the text appearing
in the segment. Linguistic Features are bigrams, trigrams, and
their stemmed [26] counterparts in the segment’s text. Pattern
Features are features representing the visual presentation of the
content in the segment. e.g: in Figure 1 (a), some of the pattern
features extracted from the geometric segment are “text”, “link”,
“text(link)+”, etc. Note that the features computed from concept
segment are domain independent and hence generic.

Step 2: Identifying Concept Segments:
In this step the concept segments containing the objects in the

click-stream are identified. Algorithm IdentifyConceptSegment is a
high-level sketch of this process which essentially is an implemen-
tation of the definition of a concept segment based on the idea of
context of objects. Specifically lines 6 and 5 correspond to simple
and structured concepts respectively. To recognize them as such we
make use of the pattern features extracted from the segments in the
previous step. e.g.,in Figures 1, 3 the sections enclosed by the solid
rectangle correspond to concept segments identified in this step.

In line 7, we invoke the function getConop on an object Obj in
the click-stream in order to infer its operation label. If it is non-null
then we retrieve its associated concept name in line 8 from T and
assign it to the segment; otherwise the segment remains unlabeled.

Running the algorithm on the streams in Table 2 will result in la-
beling two concept segments, namely, ‘Item Taxonomy” and “Item
List” in Figure 5. The others remain unlabeled.

Step 3: Clustering Concept Segments:
In this step we cluster the concept segments. At the end of this

step all the concept segments in a single cluster are said to belong
to the same concept class. Towards this goal we use the well known
notion of Jaccard’s similarity [15] and the notions of intra-cluster,
inter-cluster similarity and quality metrics for clusters developed in
[29].

Jaccard similarity computes the similarity between any pair of
concept segments. Let Si and Sj be two such segments with fea-
ture sets F (Si) and F (Sj) respectively. This similarity, denoted
J(Si, Sj), is defined as:

J(Si, Sj) =
|F (Si) ∩ F (Sj)|
|F (Si) ∪ F (Sj)| (1)

Intra-Cluster Similarity computes the measure of similarity of
the concept segments in a cluster. Let C be a cluster with concept
segments S1, S2, ..., Sn. Then Intra(C), the intra-cluster similar-
ity value for C is defined to be:

Intra(C) =
1

(n− 1) · n
∑

i

∑

j

J(Si, Sj) (2)

Inter-Cluster Similarity computes the measure of similarity be-
tween two clusters. Let Ci, Cj be two clusters and Si1 , Si2 , ...,
Sini

be the concept segments in cluster Ci, and Sj1 , Sj2 , ..., Sjnj

be the concept segments in cluster Cj . Then Inter(Ci, Cj), the
inter-cluster similarity value for this cluster pair is defined to be:

Inter(Ci, Cj) =
1

ni · nj

∑

m

∑

n

J(S(im), S(jn)) (3)

We say that a cluster is trivial if it has only one concept segment.
We do not fix the total number of clusters a priori. Instead, we
use a quality metric to measure the goodness of clustering before
merging the most similar clusters and return the set of clusters that
yields the highest quality value. Formally, suppose there are n con-
cept segments and C1, C2, ...., Ck are k non-trivial clusters. Fur-
thermore, ∀i, j let Intra(Ci) and Inter(Cj , Cj) denote respectively
intra- and inter-cluster similarity for Ci and the pair (Ci, Cj). Then
quality of clustering, denoted φQ, is defined as: [29]:

φQ = 1−
∑k

i=1
ni

n−ni

∑
j∈{1,...,i−1,i+1,...,k} nj .Inter(Ci, Cj)

∑k
i=1 Intra(Ci)

(4)
For trivial clusters this quality metric is undefined. ClusterCon-

ceptSegments is a sketch of the clustering algorithm. Lines 1-3 are
the initialization steps: Line 1 builds the initial clusters from the
set of concept segments. If the concept segment is already labeled
in Step 2 with a concept name then the concept segment is added
to the cluster with the same label. Otherwise a new cluster is cre-
ated and the concept segment is added to the new cluster. Figure 5
shows the initial clusters. The initial clusters form the best cluster
to start with.

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

875



Figure 6: Clusters Returned by the Algorithm

Lines 4 to 19 make up the main clustering loop. In each iter-
ation inter-cluster similarity values are computed and the pair of
clusters with the highest inter-cluster similarity value is identified
(line 5). For merge to take place at least one of the two clusters in
the pair must be unlabeled (line 6). This will ensure that we do not
merge two clusters with different labels (e.g. “add to cart” cluster
with “check out”). Lines 7-11 does the merge. If one of the clus-
ter is labeled then its label becomes the label of the merged cluster
otherwise it remains unlabeled. The quality value of the resulting
updated cluster set following the merge is recomputed (line 12). If
it is an improvement over the previous best then this cluster set be-
comes the current best. The algorithm continues until all the clus-
ters are merged into a single cluster or there is no unlabeled cluster
(line 19). The algorithm returns the clusters (BestClusters) with
the highest quality value (line 20). Figure 6 shows the final clusters
returned by our algorithm.

Algorithm ClusterConceptSegments
Input: Segments: A Set of Concept Segments
Output: Clusters: A Set of Clusters Containing Concept Segments
1. Clusters← Build Initial Clusters from Segments
2. Quality← Compute Quality of Clustering from Clusters
3. BestClusters← Clusters
4. repeat
5. Identify the pair of clusters (Cluster1, Cluster2) with

highest inter-cluster similarity
6. if (Cluster1.Label = NULL or Cluster2.Label = NULL)
7. Insert segments from Cluster2 into Cluster1

8. if (Cluster1.label = NULL)
9. then Cluster1.label← Cluster2.label
10. Remove Cluster2 from Clusters
11. Clusters.size← Clusters.size -1
12. CurrentQuality← Compute quality of updated

Clusters
13. if (Quality = UNDEFINED and
14. CurrentQuality �= UNDEFINED)
15. or (CurrentQuality > Quality)
16. then Quality←CurrentQuality
17. BestClusters←Clusters
18. NumUnlabeled←No. of Unlabeled Clusters in Clusters
19. until Clusters.Size = 1 or NumUnlabeled = 0
20. return BestClusters

From the best cluster set we remove spurious clusters: trivial
clusters and those with low intra-cluster similarity values. The
threshold is set a priori from experimentation. Of course one can
also automatically learn it using validation sets.

Step 4: Labeling of Unlabeled Clusters (Unsupervised):
Each cluster in the final set returned by the algorithm in the pre-

vious step is a distinct concept class. These are the concept classes

that are generated from completed transaction click-streams. Some
or all of the clusters in the final set may be unlabeled. In this step
we assign a distinct machine generated concept label to each un-
labeled cluster. We add these new labels to the table T and also
generate an operation label to be uniquely associated with each of
these concept label.

For example, at the end of step 4, the unlabeled clusters in Fig-
ure 6 are automatically assigned the labels “L1” and “L2”. The
associated concept operation names are “l1” and “l2” respectively.
Table T is updated with these machine generated labels as shown
in Table 4. Every segment in a cluster is assigned the concept label
of its cluster.

Step 5: Learning Concept Classifiers (Unsupervised):
In the previous step all the concept classes relevant for transac-

tions were mined and labeled. In this step we automatically learn
SVM-based classifiers [33] for each concept class. The segments in
a concept class serve as the labeled training examples. Recall that
their features were extracted in Step 1. Note that the labels for the
concept segments were either inferred in Step 2 or automatically
generated in the previous step.

Step 6: Generating Transaction Sequences:
Recall that in Step 2 the concept segments in web pages con-

taining the click-stream objects in D were all identified and in Step
4 they were all assigned concept names. In this step we label the
objects in D with concept operations and thereby transform them
into transaction sequences. To label an unlabeled object in a click
stream, we apply the function Opr whose parameter is the label
of the concept segment containing the object. This will retrieve the
corresponding operation name from updated T with which we label
the object. Table 5 shows the transaction sequences resulting from
applying this step to Table 2.

Step 7: Learning Process Automaton (Unsupervised):
In this step we learn the process automaton from the transac-

tion sequences generated in the previous step. In general, DFA
learning requires sizable number of negative examples which are
relatively more difficult to obtain especially from logs of user ac-
tivities (see [23]). Instead, we propose a simple learning algorithm
from positive examples only, in particular the completed transac-
tion sequences generated in the previous step. It is motivated by
the following observation:

If a substring of operations in a completed transaction repeats
consecutively then either deleting or inserting one or more of the
repeats will also result in a completed transaction sequence. For
example, deleting the repeat of select_category.
select_item from select_category.select_item.select_category.
select_item.add_to_cart.check_out or inserting additional re-
peats of select_category.select_item to
select_category.select_item.select_category.
select_item.add_to_cart.check_out will also represent completed
transaction. So given a set of completed transaction sequences the
aforementioned insert and delete operations allow a limited degree
of generalization. We will learn a process automation to accept
these kinds of generalized sequences from a training set T of com-
pleted transaction sequences. The details are as follows:

DEFINITION 1 (LANGUAGE OF TRANSACTION SEQUENCES).
Given a training set T , the language of transaction sequences, de-
noted by A(T ) is the smallest set such that:

• T ⊆ A(T ), and

• for all x ∈ A(T ) such that x = pmms (p is the prefix,

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

876



s the suffix and m the repeated middle, all possibly empty),
pmks ∈ A(T ) for every k > 0.

Note thatA(T ) generalizes T , and is the language we seek to learn
from T . In particular, we generalize T such that any consecutively
repeating substring in T is now permitted to repeat an arbitrary
number of times. The language A(T ) has an important property:
it is closed with respect to training sets in the sense that adding
any string in the language to the training set does not change the
language. Formally,

THEOREM 1 (CLOSURE). Let T be a given training set and
A(T ) be the corresponding language of transaction sequences.
Then, for all S such that T ⊆ S ⊆ A(T ),A(S) = A(T ).

The proof of this property follows from the monotonicity of A:
i.e. if T ⊆ S then A(T ) ⊆ A(S). The property of closure in-
dicates “stability” of the learned language since no string in the
language could have been added to the original training set to con-
struct a different (more general) language.

The definition of A is does not directly give a procedure to con-
struct an automaton that accepts A(T ). We now outline such a
procedure.

DEFINITION 2. LetR(T ) be the set of regular expressions over
the alphabet of T , defined as follows:

• T ⊆ R(T )

• ∀x ∈ T such that x = pmms, pm+s∈ R(T ).

Note that R(T ) is a finite set of regular expressions (REs); in
particular, if the largest sequence in T is of length k, then |R(T )| =
O(k2|T |), and the largest regular expression in R(T ) is of length
k2 or less.

Let L(r) denote the language of a regular expression r. The lan-
guage of a set of regular expressions is the union of the languages
of each of its elements: i.e. if R is a set of regular expressions, then
L(R) = ∪r∈RL(r).

The language of regular expressions R(T ) constructed from the
training set is identical to A(T ), the language of transaction se-
quences learned from T , as formally stated below.

THEOREM 2. For all sets of training sequences T , A(T ) =
L(R(T )).

The above theorem can be proved by considering the usual least
fixed point (iterative) construction of A(T ), and showing that the
least fixed point computation will converge in two steps toL(R(T )).

Note that R(T ) gives us an effective procedure for constructing
the transaction automaton. For each regular expression in R(T )
we construct the corresponding nondeterministic finite automaton
(NDFA) using Thomson’s construction [13]. The automaton for
L(R(T )) is simply the union of all the individual automata. Based
on the argument above on the size of R(T ) and Thomson’s con-
struction, it follows that if k is the length of the longest sequence
in T , then the automaton for A(T ) thus constructed is of size
O(k4|T |), and can be constructed in time O(k4|T |). Finding more
efficient construction algorithms and building smaller automata are
topics of future research.

Running this algorithm on Table 5 results in the REs shown in
Table 6. Figure 7 is the automaton for these REs. Either the NDFA
constructed from the REs or its equivalent DFA can be used at run-
time to guide the transaction. Use of a NDFA will increase the
information overload since concept instances corresponding to a
set of states will be presented. This can be avoided with a DFA but
constructing it from a NDFA can be computationally expensive.

Figure 7: Learned Automata from Sequences in Table 5

< select_category, select_item, l1, l2 >
< select_item, l1, select_item, l1, l2 >

Table 5: Training Transaction Sequences

4. INTEGRATED ASSISTIVE BROWSER
We have developed HearSay, a context-directed non-visual browser,

which identifies and presents relevant information to the users as
they navigate from one page to another [20]. The modular design of
the HearSay system accommodates plugging in components such
as the transaction processing component described in this paper.
With this add-on HearSay will transparently identify the concepts
in web pages and map them to the most similar state of the process
automaton, where appropriate. At any time, HearSay users will be
able to turn on the transaction support layer, and, in this way, attain
quick access to the concept instances that may be present in their
currently opened web pages. It will allow them to navigate be-
tween and within concepts using the regular navigation shortcuts.
Just as easily, users will be able to return to the original browsing
mode and explore the content around the concepts. If the trans-
action model fails to classify some concept instances or they are
labeled with random machine-generated labels, the users will still
be able to proceed with the transaction since HearSay reads out
the actual contents of the segment. To access the content that is
not associated with any operations, e.g., “Item Detail” (detailed de-
scription of an item in a web page), which is not represented in
our model, the transaction support layer can be combined with the
context-browsing layer, which helps identify such segments [21].

Coming back to the example displayed in Figure 1 (a), the trans-
action support module will match the web page to S0, the begin-
ning state of the learned process automaton (a fragment of which is
shown in Figure 7). The corresponding interface layer will contain
the “Item Taxonomy” and the “Search Form” concept instances.
The user will then be able to press a special shortcut to navigate
between the concepts, or simply use regular navigation shortcuts
to skip to and follow the link of interest, indicated by the arrow.
On the next page, in Figure 1 (b), the process automaton will go
to state S4 as a result of the select_category operation; and, thanks
to context-directed browsing module, HearSay will start reading
the “Item List”. With both context-directed browsing and transac-
tion support layers turned on, the user will be able to access both
“Search Form” and “Item List” concept instances.

After following the link to the page shown in Figure 1 (c), HearSay
will start reading from the product description, while the underly-
ing process automaton takes the state transition from S4 to S5 on
“select_item” operation. Since the training data did not contain a

< select_category, select_item, l1, l2 >
< (select_item, l1)+, l2 >

Table 6: Regular Expressions from Table 5
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user-defined label for the “Add To Cart” concept, the concept clas-
sifier automatically assigned “l1” to the “add to cart” button. But
note that the user will have no problem understanding the meaning
of the button, because HearSay always reads out the actual button
captions. Finally, by pressing the “add to cart’ button’, the user
shifts the process automaton to state S6. Figure 1 (d) shows the
last page of the transaction, in which HearSay’s context-directed
browsing algorithm helps find the section containing the content
of the cart, and the process automaton helps identify the “Search
Form” and the “Check Out” concept instances. Having reached
the “Submit” button and having realized that the shipping option is
not accessible through the combination of context and transaction
layers, the user can momentarily return to the original view and ex-
amine the content around the submit button to find and choose the
shipping option, and successfully complete the transaction quite
quickly.

5. EXPERIMENTAL EVALUATION
Since we had done user studies on the efficiency of transaction

models in [30], the evaluation here only focuses on the quantitative
performance of the clustering algorithms and the models, namely,
concept classifiers and process automaton. Towards that we man-
ually collected and labeled over 300 click-streams from 36 online
shopping web sites for books, electronics, and office supplies.

Performance of Clustering
For evaluating the clustering algorithm, we generated 10 data

sets T0, T10, . . . , T100, where the subscript indicates the percent-
age of manual labels, i.e., dataset T0 was completely unlabeled,
while concept segments in dataset T100 were fully labeled. Clus-
ters constructed from T100 were used as the validation set to com-
pare the performance of clustering over the other nine data sets.
Let Clusteruser denote this labeled cluster set constructed from
T100 (This is straightforward.). We construct all possible pairs of
concept segments in Clusteruser (N · (N−1)/2, N is the total
number of segments).
Let Mtotal be the total number of segment pairs in Clusteruser

where both of the segments in the pair belong to the same cluster.
Now we do the following for each test data set: Let Clusteralgo

denote the clusters constructed for a test data set by our algorithm.
Let Mcorrect denote the total number of pairs where both segments
appear in the same cluster in both Clusteruser and Clusteralgo.
Let Mincorrect denote the total number of pairs where a pair ap-
pears in the same cluster in Clusteralgo, but in different clus-
ters in Clusteruser. Then, the recall of the clustering algorithm
is Mcorrect / Mtotal, and the precision is Mcorrect/ (Mcorrect +
Mincorrect). F-measure is calculated by taking the harmonic mean
of the recall and precision. Figure 8 shows the F-measure variation
for the data sets.

Performance of Transaction Models
We evaluated the performance of the process automaton and con-

cept classifiers created for each data set. We divided each of them
into training (90%) and testing (10%) sets and did a standard 10-
fold cross validation. Let Ntotal denote the total number of com-
pleted transaction sequences, Ncorrect denote the number of com-
pleted transactions accepted by the automaton, Nincorrect denote
the number of incomplete transactions accepted by the automa-
ton Then, the recall of the process automata learning algorithm
is Ncorrect / Ntotal, and the precision is Ncorrect/ (Ncorrect +
Nincorrect).

Let Ci
total denote the actual number of segments which are in-

stances of concept i, Ci
correct denote the number of correctly la-

Figure 8: Performance of Clustering

Figure 9: Performance of Process Automata Learning

beled concept segments for that concept, Ci
incorrect denote the

number of segments labeled erroneously as instances of that con-
cept, Then, the recall of the concept classifier for concept i is Ci

correct

/ Ci
total, and the precision is Ci

correct/ (Ci
correct + Ci

incorrect).
These values are averaged over each concept to get overall recall/precision.

Figure 9 and 10 show the obtained F-measures (harmonic mean
of recall/precision) for each of the data set.

Performance of Personalized Transaction Models
We constructed personalized transaction models separately for

each of “Amazon.com”, “OfficeMax.com”, and “BN.com” web sites.
By repeating the same procedures to determine the performance of
clustering and transaction models, we consistently observed 10%
improvement (over generalized models) in the performance of clus-
tering algorithm (starting with 84.5% for unlabeled data), 12.5%
improvement (over generalized models) of process model learn-
ing (starting with 88.5% for unlabeled data), and 9% improvement
(over generalized models) of concept identification (starting with
82% for unlabeled data).
Discussion of the Experimental Results

Observe from Figure 8 that with no labeled data at all, the ac-
curacy of clustering was already above 70%. And the performance
steadily improved when manually labeled data became available,
e.g., 90% accuracy with 40% of labeled data. This is because such
labels prevented merging of the cluster containing a segment man-
ually labeled as “add to cart” with another cluster that had a labeled

Figure 10: Performance of Concept Classifiers
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segment “checkout”. Similar trend is seen in Figures 9 and 10 and
this was due to improvements in clustering (hence, more accurately
labeled concept segments and click-streams) resulting from more
user-labeled data. Finally, the performance improvement of per-
sonalized transaction models can be ascribed to the low degree of
variability in captions and presentation patterns in a single Web
site.

6. RELATED WORK
The work described in this paper has broad connections to a

number of research areas.

Web Accessibility Research-
Extent assistive technologies, such as screen-readers and non-

visual browsers (e.g., JAWS [1], IBM’s Home Page Reader [5],
Windows Eyes [11], BrookesTalk [35], etc.) provide shortcuts or
summaries as a way to combat information overload in a single
page. In contrast, our transaction model uses a global view of the
content in a set of pages to determine what should be filtered in a
state. Process automaton can also be used to rank different concepts
occurring in a page.
End User Programming-

The research on end-user programming relating to our work in-
cludes programming by demonstration [9, 16], agent learning [3],
query from demonstrations [31], etc.

Programming by demonstration allows users to construct a pro-
gram by simply performing actions in the user interface, with which
they are already familiar. CoScripter [19] uses this approach to
build a collaborative scripting environment for recording, automat-
ing, and sharing web-based processes. Other browser recording and
playback tools, e.g.,iMacros (www.iopus.com/imacros), also use
this approach. However, these scripts are page-specific, whereas
our transaction model is not, because it is scalable across different
web sites that share similar content semantics.

PLOW [3] is a collaborative task learning system that learns task
models by demonstration, explanation, and dialog. Knoblock et al.
describe Karma [31], which allows users to easily build services
that integrate information from multiple data sources. All of these
enable the user to complete a task without knowing how to pro-
gram; however, these approaches can be broadly categorized as su-
pervised, requiring user interactions. Some other research projects
(e.g.,[3]) also use domain knowledge to learn a task model. In con-
trast, our construction process is fully automated.
Automatic Information Extraction-

There are several works describing automatic information ex-
traction (e.g. [18, 8]). [18] describes automatic labeling of web
service data using a classifier. However, the classifier has to be
trained a priori using labeled data. In contrast, we do not depend on
user supplied labeled data. The RoadRunner system [8] automati-
cally extracts data from web sites by exploiting similarities in page
layouts. It learns the underlying template of Web sites from sam-
ple pages and uses it to automatically extract data from Web sites.
However, the use of templates will not suffice for constructing a
transaction model. Dong et al. [10] describes Woogle, a search
engine that supports similarity search for web services through a
process of clustering. In our construction process, clustering is just
one of several steps.
Click-stream Analysis-

Building Web accessibility models from transaction click-streams
is related to research in click-stream analysis and mining [25, 6, 17,
24, 7]. Click-stream data are mined to create user profiles [24], sug-
gest context-aware query [7], predicting the next request of the user
as s/he visits the same Web site [25], etc. Clustering and catego-

rizing Web users based on pattern analysis of their click-streams
is discussed in [6]. Our work departs from the above-mentioned
research in both scope and approach. The construction of our ac-
cessibility models requires deeper content analysis based on con-
text and segmentation. Our models are used to combat information
overload when performing web transaction non-visually.
Process Automata Learning-

Constructing the transaction model is also related to research
in mining workflow process models [27, 12, 28] (see [32] for a
survey). However, our definition of a transaction is simpler than
the traditional notions of workflows (e.g.,we do not use sophisti-
cated synchronization primitives). Hence, we are able to model
our transactions as finite state automata instead of workflows and
learn them from example sequences. Learning automata is a thor-
oughly researched topic (see [23] for a comprehensive survey).
However, automata learning requires a sizable number of negative
examples, which are relatively difficult to obtain. In our work, we
learned a simple process automata from positive examples, which
are completed transaction sequences. Specifically the automata ac-
cepts strings from a simple, less expressive language for represent-
ing transaction sequences.
Contextual Analysis-

The notion of context has been used in different areas of com-
puter science research. For example, [14] defines the context of a
web page as a collection of text, gathered around the links in other
pages that are pointing to that web page. The context is then used to
obtain a summary of the page. Summarization using context is also
explored by the InCommonSense system [4], where search engine
results are summarized to generate text snippets.

All of these works define the context of the link as an ad-hoc col-
lection of words surrounding it. In contrast, our notion of context,
used in our earlier paper [20], is based on topic similarity of words
around the link. We identify context with a simple topic boundary
detection method [2], confined to geometric segments that have se-
mantically related content. Our earlier paper on context-directed
browsing [20] used this notion of context to identify the most rele-
vant segment on the next page after following a link [20]. In con-
trast, here we use the context of a clicked web object to identify
the concept segment containing the object in the same page. The
concept segments are later clustered to label the click-streams and
learn concept classifiers.

7. CONCLUSION
In this paper we described a fully automated algorithmic process

for constructing transaction models from partially labeled click-
streams. A model is comprised of a process automaton and con-
cept classifiers, and has the objective of reducing the information
overload experienced by blind users, who use the web for paying
bills, shopping online, etc. Our approach reduces (and can even
eliminate) reliance on sighted users in constructing such models,
thereby bridging the web accessibility divide and further increas-
ing the independence of blind users.

The construction process is even broader in its scope of applica-
bility. The idea of using transaction models for fetching relevant
information can be very useful for mobile devices with limited dis-
plays. Another application area is content extraction from web sites
using wrappers. Our construction process in principle can auto-
matically create such wrappers from click-streams obtained from
example runs of content extraction.

There are several avenues for future research. So far, we have
focused on the construction of domain-specific transaction mod-
els, in particular, for the shopping domain. We have observed that
our techniques readily apply to other domains (such as online bill
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payments and banking). In our work, the process automaton was
constructed to accept a simple language that we defined for rep-
resenting limited generalizations of training transaction sequences.
Defining more expressive languages for transactions is a problem
that merits further exploration. While the focus of this paper was on
eliminating the exclusive dependency on manually labeled data in
constructing the models, the tight integration of these models with
our HearSay assistive browser is work in progress.
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