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Abstract. We introduce Partitioned Dependency Graphs (PDGs), an ab-

stract framework for the speci�cation and evaluation of arbitrarily nested
alternating �xed points. The generality of PDGs subsumes that of similarly

proposed models of nested �xed-point computation such as Boolean graphs,

Boolean equation systems, and the propositional modal mu-calculus. Our
main result is an e�cient local algorithm for evaluating PDG �xed points.

Our algorithm, which we call LAFP, combines the simplicity of previously

proposed induction-based algorithms (such as Winskel's tableau method for
�-calculus model checking) with the e�ciency of semantics-based algorithms

(such as the bit-vector method of Cleaveland, Klein, and Ste�en for the

equational �-calculus). In particular, LAFP is simply speci�ed, we provide
a completely rigorous proof of its correctness, and the number of �xed-point

iterations required by the algorithm is asymptotically the same as that of

the best existing global algorithms. Moreover, preliminary experimental re-
sults demonstrate that LAFP performs extremely well in practice. To our

knowledge, this makes LAFP the �rst e�cient local algorithm for computing

�xed points of arbitrary alternation depth to appear in the literature.

1 Introduction

Model checking [CE81, QS82, CES86] is a veri�cation technique aimed at determin-
ing whether a system speci�cation possesses a property expressed as a temporal
logic formula. Model checking has enjoyed wide success in verifying, or �nding de-
sign errors in, real-life systems. An interesting account of a number of these success
stories can be found in [CW96].

Model checking has spurred interest in evaluating alternating �xed points as
these are needed to express system properties of practical import, such as those
involving subtle fairness constraints. Probably, the most canonical temporal logic
for expressing alternating �xed points is the modal mu-calculus [Pra81, Koz83],
which makes explicit use of the dual �xed-point operators � (least �xed point) and
� (greatest �xed point). Intuitively, the alternation depth of a modal mu-calculus
formula [EL86] is the level of nontrivial nesting of �xed points in � with adjacent
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�xed points being of di�erent type. The term \alternating �xed point," then, refers
to such adjacent �xed points.

In this paper, we present a very general framework for specifying and evalu-
ating alternating �xed points. In particular, we introduce Partitioned Dependency

Graphs (PDGs), whose generality subsumes that of similarly proposed models of
nested �xed-point computation, such as Boolean graphs [And94], Boolean equa-
tion systems [VL94], the modal mu-calculus, and the equational �-calculus [CKS92,
BC96b]. A PDG is a directed hypergraph G with hyper-edges from vertices to sets
of vertices. A PDG vertex x can be viewed as a kind of disjunctive normal form
(DNF), with each of x's target sets of vertices representing a disjunct (conjunctive
term) of x. Moreover, the vertices of G are partitioned into blocks, each of which is
labeled by � or �, and the ith block represents the ith-most nested �xed point. A
subset A of G's vertices is a proper evaluation of G if it respects the semantics of
DNF (i.e., x is in A if one of its target sets is contained in A), and the semantics of
the block labeling (i.e., the projection of A onto block i is the least �xed point of
an appropriately de�ned function of A if this block is labeled by �, and dually for
�).

Our main result is a new local algorithm for evaluating PDG �xed points. Our
algorithm, which we call LAFP, combines the simplicity of previously proposed
induction-based algorithms (such as Winskel's tableau method for �-calculus model
checking [Win89]), with the e�ciency of semantics-based algorithms (such as the
bit-vector method of Cleaveland, Klein, and Ste�en for equational �-calculus model
checking [CKS92]). LAFP takes as input a PDG G and a vertex x0 of G and deter-
mines, in a need-driven fashion, whether or not x0 is in the solution of G. LAFP
thereby avoids the a priori construction of G. In contrast, global algorithms by
de�nition require the a priori construction of a system's state space, which results
in good worst-case performance but poor performance in many practical situations.
The main features of LAFP are the following:

{ Like the algorithm of [VL94], LAFP constructs a stable and complete search
space|in the sense that PDG vertices belonging to the search space depend
only upon vertices inside the search space|and does so in a need-driven man-
ner. Moreover, it partitions the search space into three blocks I, O, and Q:
those vertices currently considered to be inside the solution, those vertices cur-
rently considered to be outside the solution, and those whose status is currently
unknown, respectively.

{ Like most �xed-point algorithms, LAFP computes PDG �xed points iteratively.
By carefully accounting for the e�ects of moving a vertex x from Q to I or Q
to O on vertices transitively dependent on x, LAFP avoids unnecessary recom-
putation when a �xed point is nested directly within the scope of another �xed
point of the same type. As a result, the number of iterations required by LAFP
to evaluate �xed points in a PDG with vertices V and alternation depth ad

is O((jV j � 1) + ( jV j+ad
ad

)ad). Asymptotically, this matches the iteration com-
plexity of the best existing global algorithms. Moreover, a prototype imple-
mentation of LAFP based on the XMC model checker for the alternation-free
modal mu-calculus [RRR+97] and the smodels stable models generator [NS96]
demonstrates that LAFP performs extremely well in practice.



{ Because of the simplicity/abstractness of the PDG framework, the pseudo-code
for LAFP is clear and concise, and we provide a completely rigorous proof of
the algorithm's correctness.

In terms of related work, LAFP is to our knowledge the �rst e�cient local al-
gorithm for evaluating structures of arbitrary alternation depth to appear in the
literature. Tableau-based local algorithms such as [Win89, Cle90, SW91] su�er an
exponential blowup even when the alternation-depth is �xed. The \semi-local" algo-
rithm of [RS97] is demonstratably less \local" than LAFP, exploring more vertices
than LAFP on certain examples.

Several e�cient local methods for various subsets of the �-calculus have been
proposed, including [And94, VL94, BC96a]. The algorithm of [VL94], which deals
with Boolean Equation Systems of alternation depth 2, is closest to LAFP when
their \restore strategy" no. 4 is used. However, we have found a counterexample
to the algorithm's correctness, the details of which can be found in Appendix A.
It should also be noted that their algorithm, and their proposed generalization of
their algorithm to higher alternation depths, is for a given alternation depth k �xed
in advance. We see no obvious way to extend their algorithm to handle equational
systems of arbitrary alternation depth.

A number of global algorithms have been devised for the full �-calculus, the
most e�cient of which are [CKS92, LBC+94]. The algorithm of [LBC+94] is more
e�cient time-wise (O(nad=2) vs. O(nad) �xed-point iterations) but requires more
space (O(nad=2) vs. O(n)). The LAFP algorithm is inspired by a model checking
algorithm that appeared in [Liu92].

The structure of the rest of the paper is as follows. Section 2 de�nes our parti-
tioned dependency graph framework. Section 3 presents LAFP, our local algorithm
for PDG evaluation, along with an analysis of its correctness and computational
complexity. The XMC-based implementation of LAFP and accompanying experi-
mental results are the topic of Section 4. Finally, Section 5 concludes and identi�es
directions for future work. Because of space limitations, only proof outlines are given
in this extended abstract. Full proofs can be found in http://www.cs.sunysb.edu/
�sas/lafp.ps.

2 Partitioned Dependency Graphs

A partitioned dependency graph (PDG) is a tuple (V;E; V1 : : : Vn; �), where V is a
set of vertices, E � V �}(V ) is a set of hyper-edges, V1 : : : Vn is a �nite sequence of
subsets of V such that fV1; : : : ; Vng is a partition of V , and � : fV1; : : : ; Vng ! f�; �g

is a function that assigns � or � to each block of the partition. Let � 2 f�; �g. We
shall subsequently write �(x) = � if x 2 Vi and �(Vi) = �.

Intuitively, a PDG G represents an equational system (in disjunctive normal
form) having n nested, possibly alternating, blocks of boolean equations. V1 is the
outermost block and Vn is the innermost block. For the reader familiar with nested

boolean equation systems [VL94], a PDG (V;E; V1 : : : Vn; �) can be viewed as a (ar-
bitrarily) nested boolean equation system with equation blocks Vi and each x 2 Vi
having the equation x =

W
(x;S)2E

V
y2S y. Each Vi has the type �(Vi), and they are

nested in the order given by V1; : : : ; Vn.



Example 1. Let G = (V;E; V1V2; �) be a PDGwhere V = fx; y; zg, V1 = fx; yg; V2 =
fzg, E = f(x; fyg); (x; fzg); (y; fxg); (y; fzg); (z; fx; yg)g, �(V1) = �; �(V2) = �.

The corresponding nested boolean equation system is the following:

� :

�
x = y _ z

y = x _ z

� :
�
z = x ^ y

Let G = (V;E; V1 : : : Vn; �) be a PDG. To give a formal semantics to PDGs, �rst
notice that G induces two functions g; �g : }(V )! }(V ) such that for A � V ,

g(A) = fx 2 V j 9(x; S) 2 E: S � Ag;

�g(A) = fx 2 V j 8(x; S) 2 E: S \A 6= ;g:

For A � V we write A for V �A. Clearly from the de�nition, for A � V it holds that
g(A) = �g(A). It is also clear from the de�nition that both g and �g are monotonic
functions with respect to set inclusion. In words, a vertex x is in g(A) if x has a
target set of vertices contained in A. Dually, x is in �g(A) if each of x's target sets
has an element in A. Thus, g (�g) allows us to interpret PDG vertices as boolean
equations of disjunctive (conjunctive) normal forms.

We write VG for }(V1)� � � �� }(Vn). De�ne �:VG ! }(V ) to be the attening
function such that for v 2 VG, �(v) =

Sn
i=1 v(i): Clearly � is in one-one correspon-

dence with its inverse �� given by ��(A) = (A \ V1; : : : ; A \ Vn) for A � }(V ).

For v 2 VG, we will write v[x=k] for the updated version of v in which its kth
component is replaced by x, and �v for the componentwise complementation of v.
We will also write ? for (;; : : : ; ;).

With g; �g de�ned as above, a PDG further induces the 2n+ 2 functions

g0; : : : ;gn; �g0; : : : ; �gn : VG ! VG

such that gn = �� � g � �; �gn = �� � �g � �, and for v 2 VG; k 2 f1; : : : ; ng,

gk�1(v) =

�
�u:gk(v[u(k)=k]) �(Vk) = �

�u:gk(v[u(k)=k]) �(Vk) = �
;

�gk�1(v) =

�
�u:�gk(v[u(k)=k]) �(Vk) = �

�u:�gk(v[u(k)=k]) �(Vk) = �
;

where �u:gk(v[u(k)=k]) (�u:gk(v[u(k)=k])) is the maximum (minimum) u 2 VG

such that u = gk(v[u(k)=k]). Following the standard argument, �u:gk(v[u(k)=k]) is
a monotonic function on the complete lattice (}(V1)� : : :�}(Vn);v), with v being
the pointwise inclusion relation. Thus, by the Knaster-Tarski �xed-point theorem,
such u do uniquely exist. The well de�nedness of �gk is guaranteed in the same way.

Intuitively, the expression gk�1(v) computes the �xed point of the kth block in
environment v. Moreover, g0(v) gives the solution to the entire equational system.
Since G is a closed system, the choice of argument to g0 is irrelevant. Given a
distinguished vertex x0 in V , the problem then of locally evaluating G is the one of
determining whether x0 2 �(g0(?)).



3 LAFP: A Local Algorithm for Evaluating PDGs

The pseudo-code for algorithm LAFP is given in Figure 1. LAFP takes as input
a PDG G = (V;E; V1 : : :Vn; �) and a distinguished vertex x0 2 V , and decides
whether x0 2 �(g0(?)); that is, whether x0 is in the solution to G. Before explaining
further the algorithm, we need some additional notation. Let Q+ = fx 2 Q jx 2

Vi and �(Vi) = �g be the vertices in Q de�ned in blocks of type � and, similarly, let
Q� = fx 2 Q jx 2 Vi and �(Vi) = �g be the vertices in Q de�ned in blocks of type
�. By default, vertices of Q+ are assumed to be in the solution to G while vertices
of Q� are not. Also, we write y > x when the index of the block containing vertex y
is greater than the index of the block containing vertex x; i.e., y is in a block more
deeply nested than the block containing x.

Like the algorithm of [VL94], LAFP seeks to construct a stable and complete
search space (subset of V ) in the sense that PDG vertices belonging to the search
space depend only upon vertices inside the search space. Moreover, it partitions
the search space into three blocks I, O, and Q. I contains those vertices currently
considered to be inside the solution, O contains those vertices currently considered
to be outside the solution, and Q is the set of vertices that have been explored but
whose status is undetermined.

The algorithm starts with x0 in Q, terminates when Q is empty, and each it-
eration of the while-loop is designed to maintain the invariants given in the proof
sketch of Theorem 1. In particular, a vertex x is chosen from Q from among those
that are most deeply nested (in the block with the largest index). This is to prevent
computation in an outer block (relative to x's block) from proceeding with possibly
erroneous default values.

In case 1, x is a vertex that belongs in I since one of x's target sets of vertices
S is contained in Q+ [ I. In this case, x is moved from Q to I; the fact that S is
only required to be contained in Q+ [ I rather than in I reects the intuition that
vertices from a �-block are assumed to be in the solution set. Subsequently, a check
is performed to see if x is from a �-block. If so, then all nodes in O that transitively
depend on the assumption that x is not in the solution (since x is in a �-block) are
moved from O to Q, a process we refer to as our restore strategy . For this purpose,
we associate with each vertex y 2 I[O an attribute y:T , which is the set of vertices
y transitively depends on for being in I or O. y:T is computed by the procedure
Closure1 upon adding y into I.

Case 2 is dual to case 1: each of x's target sets has an element in Q� [ O. In
case 3, there is not enough information to place x in I or O, so one of its unexplored
successors is added to Q. It is easy to show that case 3 is always executable when
both cases 1 and 2 fail to hold.

In procedure Closure1, the attribute set x:T is constructed. Assume, for the
purposes of discussion, that we are computing x:T for some x which has just been
added into I (the explanation of Closure0 is dual if x has just been added toO). Then
x:T should contain vertices in I and Q+ on which x's membership in I depends.
(Later, we will see that an invariant property of LAFP is that, in this case, x:T �

I [ Q+.) Thus if y 2 x:T and y is from a �-block then y must be in I. Also, if
y 2 x:T and y is from a block more deeply nested than the block containing x,
then also y must be in I (otherwise x would not have been evaluated in the �rst



procedure LAFP(G;x0)
initialize I := ;, O := ;, Q := fx0g
while Q 6= ; do
choose x 2 Q \ Vk where k is the largest k such that Q \ Vk 6= ;
case

1. x 2 g(Q+ [ I):
I := I [ fxg
Q := Q� fxg
choose (x; S) 2 E such that S � Q+ [ I
Closure1(x; S)
if �(x) = � then

Q := Q [ fy j y 2 O; x 2 y:Tg
O := fy 2 O j x 62 y:Tg

2. x 2 �g(Q� [O):
O := O [ fxg
Q := Q� fxg
T := ;
for each (x;S) 2 E do

choose y 2 S \ (Q� [O)
T := T [ fyg

Closure0(x; T )

if �(x) = � then

Q := Q [ fy j y 2 I; x 2 y:Tg
I := fy 2 I j x 62 y:Tg

3. otherwise:
choose y 2

S
fS j (x; S) 2 Eg such that y 62 Q [ I [O

Q := Q [ fyg

procedure Closure1(x;S)

x:T := S

do the following until x:T stops increasing
if y 2 x:T and (�(x) = � or y > x) then x:T := x:T [ y:T

procedure Closure0(x;S)
x:T := S

do the following until x:T stops increasing

if y 2 x:T and (�(x) = � or y > x) then x:T := x:T [ y:T

Fig. 1. Pseudo-code for algorithm LAFP.

place). In these cases, since x 2 I depends on y 2 I which in turn depends on all
the vertices in y:T , y:T must be a subset of x:T .

Example 2. Consider PDG G of Example 1. If we want to determine whether x 2

g0(?), we run LAFP with Q = fxg initially. There are many possible runs of the

algorithm on this instance. One of these is as follows: y is added into Q (case 3 on

x); x is moved from Q to I (case 1 on x); y is moved from Q to I (case 1 on y);

terminate with I = fx; yg; O = ;; Q = ;.



Another possible run is as follows: z is added into Q (case 3 on x); y is added

into Q (case 3 on z); z is moved from Q to I (case 1 on z); y is moved from Q

to I (case 1 on y); x is moved from Q to I (case 1 on x); terminate with I =
fx; y; zg; O = ;; Q = ;.

The above example shows that in some cases LAFP may terminate without
exploring all the vertices, a characteristic of local algorithms. The next example
illustrates LAFP's restore strategy.

Example 3. LetG = (V;E; V1V2; �) be a PDGwhere V = fx; y; zg, V1 = fx; yg; V2 =
fzg, E = f(y; fxg); (y; fzg); (z; fxg); (zfyg)g, �(V1) = �; �(V2) = �. The corre-

sponding nested boolean equation system is the following:

� :

�
x = 0
y = x _ z

� :
�
z = x _ y

If we want to determine whether z 2 g0(?), we run the algorithm with Q = fzg

initially, and the following is a possible execution: x is added into Q (case 3 on

z); z is moved from Q to I with z:T = fxg (case 1 on z); x is moved from Q to

O with x:T = ;, and z is moved from I back to Q since x 2 z:T (case 2 on x);

y is added into Q (case 3 on z); z is moved from Q to I with z:T = fyg (case 1

on z); y is moved from Q to I with y:T = fy; zg (case 1 on y); terminate with

I = fz; yg; O = fxg; Q = ;.

The (partial) correctness of LAFP is guaranteed by the following theorem.

Theorem1. When algorithmLAFP terminates, whenever x 2 I then x 2 �(g0(?)),
and whenever x 2 O then x 2 �(g0(?)).

Proof sketch The proof depends on the following key invariants of the while-loop:

1. if x 2 I then x 2 g(x:T ) and x:T � I [Q+,
2. if x 2 O then x 2 �g(x:T ) and x:T � O [Q�,
3. if x 2 I \ Vk and �(Vk) = � then x 2 gk(�

�(x:T ))(k),
4. if x 2 I \ Vk and �(Vk) = � then x 2 gk�1(�

�(x:T ))(k),
5. if x 2 O \ Vk and �(Vk) = � then x 2 �gk(�

�(x:T ))(k),
6. if x 2 O \ Vk and �(Vk) = � then x 2 �gk�1(�

�(x:T ))(k).

Now suppose after LAFP terminates x 2 I. Clearly x 2 g(x:T ) � g(I [ Q+)
by the above invariants. When LAFP terminates Q = ;, thus x 2 g(I), that is
x 2 �(gn(�

�(I))). Note that g0(�
�(I)) = g0(?). To conclude x 2 g0(?) we will

show that at termination it holds that gk(�
�(I)) v gk�1(�

�(I)) for k = 1; : : : ; n.
To see this we need to consider two cases. The �rst is that Vk is a �-block. In this
case for all y 2 ��(I)(k) it holds that y 2 gk�1(�

�(y:T ))(k) � gk�1(�
�(I))(k), by

invariants 4 and 1. Now gk(�
�(I)) v gk(�

�(I)[gk�1(�
�(I))(k)=k]) = gk�1(�

�(I)).
The second case is that Vk is a �-block. In this case for all y 2 ��(I)(k) it holds
that y 2 gk(�

�(y:T ))(k) � gk(�
�(I))(k), by invariants 3 and 1. So gk(�

�(I)) v
gk(�

�(I)[gk(�
�(I))(k)=k]). This inequality shows that gk(�

�(I)) is a pre-�xed
point of �u:gk(�

�(I)[u(k)=k]), thus gk(�
�(I)) v �u:gk(�

�(I)[u(k)=k]) = gk�1(�
�(I)).



For x 2 O, we can similarly show that after termination x 2 �(�g0(?)). Thus in
this case x 2 �(g0(?)) since �g0(?) = g0(?). ut

In analyzing the computational complexity of LAFP, the concept of alternation
depth plays an important role. Let G = (V;E; V1 : : : Vn,�) be a PDG. For x 2 V ,
let succ(x) be the set of vertices that are related to x by the transitive closure
of G's hyper-edge relation. More precisely succ(x) is the smallest set such that if
(x; S) 2 E then S � succ(x) and if y 2 succ(x) and (y; T ) 2 E then T � succ(x).
For x 2 Vk, its alternation depth, ad (x), is de�ned by

ad (x) = 1 + maxfad (y) j y 2

k�1[
i=1

Vi; y 2 succ(x); �(x) 6= �(y)g:

We adopt the convention that max; = 0. Thus clearly for x 2 V1, ad(x) = 1.
Then for the PDG G its alternation depth is the maximumalternation depth of the
vertices.

The following theorem gives the �xed-point iteration complexity of LAFP.

Theorem2. Let G = (V;E; V1 : : :Vn; �) be a PDG with x0 a distinguished vertex

in V . Then the number of iterations taken by the while-loop of LAFP to decide if

x0 2 �(g0(?)) is bounded by

(jV j � 1) +

�
jV j+ ad

ad

�ad

where ad is the alternation depth of G.

Proof sketch Elements of the set I [O can be partitioned into the following two
subsets:

A = fx j x 2 I ^ �(x) = �g [ fx j x 2 O ^ �(x) = �g;

B = fx j x 2 I ^ �(x) = �g [ fx j x 2 O ^ �(x) = �g;

and elements of A and of B are said to be alternating and straight , respectively. A
can be further partitioned into A1; : : : ; Aad , where Ad = fx 2 A j ad (x) = dg. The
key to the complexity analysis is the pattern by which vertices move among these
sets during the execution of LAFP. The pattern is characterized by the following
observations:

1. if case 1 or 2 is executed, the size of the set I [O[Q does not change, whereas
if case 3 is executed it increases by 1;

2. if case 3 is executed all A1; : : : ; Aad ; B remain unchanged;
3. if case 1 or 2 is executed, then a new element x is added into I [O either as an

alternating or as a straight element. If x becomes a straight element of I[O then
jBj increases by 1 and all A1; : : : ; Aad remain unchanged, and if x becomes an
alternating element of I [O then jAdj increases by 1 and Ai remains unchanged
for i < d, where d = ad (x).

With these observations, the lexicon order of the array (jA1j; : : : ; jAad�1j; jI [ O [

Qj+jB[Aad j) increases at least by 1 after each iteration. Routine calculation shows
that this order is bounded by

(jV j � 1) +

�
jV j+ ad

ad

�ad

:



ut

A careful amortized analysis of the total execution time of LAFP (in which the
time taken during iterations of the while-loop is taken into account) introduces a
factor of jV j2 into the bound of Theorem 2. This additional factor is mainly due to
the computation performed by procedure Closure, and is the price we pay for being
able to perform local model checking on structures of arbitrary alternation depth.
However, the complexity of LAFP does not appear to be an issue in practice, as the
algorithm performs extremely well on published benchmarks, in particular, those
involving formulas of alternation depth 2 (see Section 4).

It is not di�cult to see that in the worst case LAFP requires space quadratic
in the size of the explored state space; this is due to the maintenance of the y:T
attribute sets, each of which can potentially grow to size O(jV j) after performing
the Closure operation. In contrast, most existing model checking algorithms for the
modal mu-calculus need only linear space. However, we strongly conjecture that
there exists a version of LAFP in which the Closure operation is avoided and PDG
�xed-points are still computed correctly. Moreover, it should be possible to do so
without a�ecting LAFP's iteration complexity. This would yield the desired linear
space complexity bound.

One possible way of achieving this space complexity is by storing S and T in
x:T instead of their \closure," in cases 1 and 2 of procedure LAFP, respectively. If
these changes are made, then care must be taken to ensure that the restore strategy
properly propagates the e�ect of moving a node from O to Q or from I to Q. To
clarify, consider an example. Suppose x is a node in a � block and y; z 2 O with
y:T = fxg; z:T = fyg. Then, if x turns out to be in I, the restore strategy should
not only move y from O back to Q (since x 2 y:T ), but also z since z:T = fyg

implies that z 2 O depends on y 2 O.

4 Experimental Results

We describe a prototype implementation of LAFP based on the XMC model checker
[RRR+97] and the smodels stable models generator [NS96]. XMC is an e�cient
model checker for value-passing CCS and the alternation-free fragment of the modal
mu-calculus, implemented using the XSB logic programming system [XSB97]. XSB
implements tabled (SLG) resolution which e�ectively computes minimal models
of bounded term-depth programs (which include Datalog programs). Furthermore,
XSB's evaluation strategy is goal-directed, which enables us to directly implement
local model checking algorithms. For normal logic programs (i.e., programs with
negated literals on the right-hand side of clauses), XSB computes the well-founded
model : a three-valued model where each literal is given one of the three truth as-
signments true, false or unknown. For instance, consider the program:

p :- q, s.

q :- : r.

r :- : q.

s.

The well-founded model for the above program is such that p, q and r are unknown
and s is true. While evaluating the well-founded model XSB computes a residual



program that represents the dependencies between literals with unknown values.
For the above program, XSB computes the dependencies as

p :- q.

q :- : r.

r :- : q.

XMC was constructed starting with a straightforward encoding in Horn clauses
of the structural operational semantics of value-passing CCS and the natural se-
mantics of the modal mu-calculus. These rules were then subjected to a series of
optimizing transformations, yielding a logic program. The XSB system is then used
to e�ciently evaluate the resulting logic program, over a database of facts repre-
senting the process and formula de�nitions for the given model-checking instance.

In XMC, the ability of XSB to compute minimal models is exploited directly to
compute least �xed-point formulas. Formulas with greatest �xed-point operators are
transformed using the well known equivalence �X:F (X) � :�X::F (:X). For an
alternation-free formula, the resultant XSB program is dynamically strati�ed (i.e.,
there are no loops through negation in the dynamic call graph), and the well-founded
model computed by XSB has no unknown values [SSW96]. The literals encountered
while evaluating the XSB program correspond directly to the vertices of the PDG
representing the model-checking problem. For formulas without alternation, XSB
assigns unique truth values to the vertices of the PDG as and when the PDG is
constructed.

For formulas with alternation, however, the resultant evaluation is not dynam-
ically strati�ed, and hence the well-founded model contains literals with unknown
values. That is, while XSB-based evaluation constructs the PDG, it does not label
every vertex in the PDG as true or false. For such formulas, the residual program
produced by XSB's evaluation captures the subgraph of the PDG induced by ver-
tices that do not have assigned truth values.

We compute the truth values of these remaining vertices by invoking the stable
model generator smodels [NS96] on the residual program. The algorithm used in
smodels recursively assigns truth values to literals until all literals have been as-
signed values, or an assignment is inconsistent with the program rules. When an
inconsistency is detected, it backtracks and tries alternate truth assignments for pre-
viously encountered literals. By appropriately choosing the order in which literals
are assigned values, and the default values, we obtain an algorithm that corresponds
to the LAFP algorithm with a naive restore operation. A full implementation of the
LAFP algorithm in this framework is currently underway.

In order to gauge the performance of our implementation of LAFP, we compared
it to the Fixpoint Analysis Machine (FAM) [SCK+95] and a \conventional model
checker" (CMC) on a benchmark described in [SCK+95]. The conventional model
checker in question is an implementation of the [CKS92] model checking algorithm.
The processes and formula comprising the benchmark are shown in Figure 2, along
with the corresponding execution times of the three model checking systems. Per-
formance �gures for CMC and FAM are from [SCK+95]; these results as well as
those for LAFP were obtained on a SUN Sparc-20.

The formula F is a modal mu-calculus formula of alternation depth 2 expressing
the property that an a-transition is enabled in�nitely often along all in�nite paths.
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Benchmark Tool Time (sec)

M500; F CMC 33.84

FAM 2.88

LAFP 1.61

M1000; F CMC 138.51

FAM 11.64

LAFP 2.76

M1500; F CMC 312.10

FAM 26.61

LAFP 4.08

(c) Summary of Execution Times

Fig. 2. Experimental evaluation of LAFP.

It is true for state v of process Mk and false for all other states ofMk. Although the
example is fairly simple in structure, it is essentially the only published benchmark
for the alternation-depth-n fragment of the modal mu-calculus, n � 2, of which we
are aware.

Note that the CMC and FAM �gures reect the performance of global algo-
rithms. Hence, for purposes of comparison, the LAFP results were obtained as the
sum of run times for verifying the given formula on each state in the process. For
the above examples, the residual programs created by the �rst phase of XMC-based
model checker are relatively small. Therefore, the more expensive (potentially expo-
nential) computation is performed on a very small portion of the state space. This
is reected in the performance of LAFP, which exhibits much slower growth in run
times with increase in the size of the system veri�ed, compared to those of the other
implementations. We are currently performing a more comprehensive evaluation of
the performance of the LAFP algorithm and its implementation.

5 Conclusions

We have presented an abstract model of nested, alternating �xed-point computation,
and an algorithm for evaluating PDG �xed points. Careful design of LAFP has



resulted in a local algorithm whose asymptotic �xed-point iteration complexity
matches that of the best existing global algorithms. Moreover, LAFP has a simple
correctness proof and performs extremely well in practice.

It is interesting to note that algorithm LAFP correctly evaluates the input PDG
for any I, O, and Q satisfying the invariants of given in the proof sketch of The-
orem 1. This suggests an incremental approach, along the lines of [SS94], for the
local computation of alternating �xed points. The incremental version of LAFP
would be invoked after LAFP is run on a PDG that subsequently undergoes a set
� of changes, where a change is an inserted or deleted PDG edge. After accounting
for the immediate e�ects of � on I, O, and Q, the local �xed-point computation
would be restarted. The bene�t of this approach is that, in certain cases, the incre-
mental algorithm will terminate much more quickly compared to restarting LAFP
from scratch, thereby avoiding signi�cant redundant recomputation. Working out
the details of such an incremental algorithm is an important direction for future
work, especially in the context of interactive design environments for concurrent
systems.

A Counterexample to the Correctness of [VL94] Restore

Strategy No. 4

As mentioned in the Introduction, we have found a counterexample to the correct-
ness of the local model checking algorithm of [VL94], when their \restore strategy"
no. 4 is used. The details of the counterexample are as follows; please refer to [VL94]
for a description of the algorithm. When procedure AltSolve is used in conjunction
with Restore strategy no. 4, it may give an incorrect answer for the following boolean
equation system:

� :

�
x = u _ v

y = 1

� :

�
u = v ^ y

v = u ^ y

This is an alternating equation system with a minimumouter block and a maximum
inner block, and it is not di�cult to see that the solution should be 1 for every
variable. If AltSolve is run with Restore (4) on this example starting with x, the
following computation sequence may occur:

{ x is set to 0 (default value for a min variable)

{ u is set to 1 (as a result of Expand1, default value for a max variable)

{ v is set to 1 (Expand
2
, default value for a max variable)

{ y is set to 0 (Expand2, default value for a min variable)

{ u is set to 0 (Update
2
)

{ v is set to 0 (Update2)

{ y is set to 1 (Update
1
, here Restore (4) does not change u; v since the right-hand

sides of their equations still give value 0 even with y being 1).

AltSolve now terminates with y = 1; x = u = v = 0:
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