
Evaluating inlining techniques

Owen Kaser a, C.R. Ramakrishnanb

aDepartment of Mathematics, Statistics, and Computer Science, University of New Brunswick, Saint John, N.B.,
Canada, E2L 4L5

bDepartment of Computer Science, SUNY at Stony Brook, Stony Brook, NY, 11794, USA

Received 31 March 1997; received in revised form 10 March 1998

Abstract

For e�ciency and ease of implementation, many compilers implicitly impose an ``inlining policy'' to
restrict the conditions under which a procedure may be inlined. An inlining technique consists of an
inlining policy and a strategy for choosing a sequence of inlining operations that is consistent with the
policy. The e�ectiveness of an inlining technique is a�ected by the restrictiveness of the inlining policy as
well as the e�ectiveness of the (heuristic) inlining strategy. The focus of this paper is on the comparison
of inlining policies and techniques, and the notions of power and ¯exibility are introduced. As a major
case study, we identify and compare policies based on the version of the inlined procedure that is used.
1998 Elsevier Science Ltd. All rights reserved.

Keywords: Inline; Version; Optimization; Comparison

Categories and subject descriptors: D.3.4 [Programming Languages]: ProcessorsÐoptimization

1. Introduction

Procedure inlining is widely used by optimizing compilers for imperative and declarative
languages [1±7]. Inlining permits a trade-o� between code size and execution speed. The goal
of inlining has traditionally been to reduce the execution time with a limited expansion of code
space. The gain in execution speed may be due to direct e�ects, such as the reduction in the
number of call and return instructions executed or due to indirect e�ects, such as cache and
virtual memory behavior and in-context optimizations permitted on the inlined code [8±10].
Inlining has also been used to convert as much indirect recursion to direct recursion as
possible [11], and to minimize the control stack usage when the program is run with a given
input [12].

Computer Languages 24 (1998) 55±72

0096-0551/98/$19.00 # 1998 Elsevier Science Ltd. All rights reserved.
PII: S0096-0551(98)00003-4

PERGAMON

For e�ciency and ease of implementation, many compilers restrict the conditions under
which a procedure may be inlined. For instance, a compiler may inline only leaf procedures, or
only those that are explicitly declared as inlineable by the user. In some compilers (e.g., [4]),
the calls that may be inlined depend on the order in which the procedures are declared. Several
diverse heuristics are used to restrict inlining of recursive procedures. We call the restrictions
imposed on inlining the inlining policy. An inlining technique consists of an inlining policy and
a strategy for choosing a sequence of inlining operations that is consistent with the policy.
Given a policy and a goal, it is often di�cult to ®nd an e�cient strategy. For instance,
maximising the reduction in dynamic function calls, given a limited code space expansion, is
NP-hard [6]. Thus, most strategies are based on heuristics, and a greedy strategy is often
chosen. Clearly, the e�ectiveness of an inlining technique is a�ected by the restrictions imposed
by the inlining policy as well as the e�ectiveness of the (heuristic) inlining strategy. The focus
of many previous studies has been to show that some restricted inlining techniques still
achieves good practical results. However, there has been no attempt to clearly separate the
limitations imposed by the policy and the strategy.

The focus of this paper is on the comparison of inlining policies and techniques. First, we
formalize the power and ¯exibility of inlining policies (see Section 3). We then identify policies
based on the version of the inlined procedure that is used, as described below. Finally, using
the greedy strategy with di�erent version-based policies, we obtain various techniques that are
then compared experimentally.

The version issue: There may be many versions of each procedure during inlining, but only
one version will be used at a particular step. For instance, suppose a call site within the body
of procedure P is inlined. After inlining, we have a new version of P, say P', which is
semantically equivalent to the version of P before inlining. Now, if a call to P is subsequently
inlined, it is equally valid to substitute P' (in fact, any version of P) in place of the call.
However, the two versions may have important operational di�erences: for instance,
substituting with P' may result in fewer function calls but may consume more code space.
Thus, the choice of the version to inline may impact the e�ectiveness of the inlining technique.
Although some inliners have such restricted policies that the version issue is unimportant, the
less restricted inliners described in the literature implicitly use a policy based on version. For
instance, the inliners described in [3, 4, 6] use the current version of a procedure, i.e., the most
recent version available when the call is inlined. We show that any policy based exclusively on
inlining current versions is inherently less powerful than a policy that allows any version to be
inlined. In contrast, we describe a policy based exclusively on inlining original versions of
procedures (the version before any inlining was performed), which is as powerful as a policy
that allows any version to be inlined. We also show, in Section 3.3, that the version issue is
important only in the context of recursive programs.

We then consider greedy strategies with limited lookahead and propose a method for
estimating the e�ect of one inlining step (see Section 4). We show that the lookahead-based
strategy naturally generalizes the special-purpose greedy strategies used in previous inliners.
For instance, we demonstrate that our strategy specializes to Schei¯er's inliner when Schei¯er's
inlining policy [6] is used; if our less-restrictive policy is used, we obtain a new ``hybrid
inliner''. We present experimental results (in Section 4.4) that show that the hybrid inliner

O. Kaser, C. Ramakrishnan / Computer Languages 24 (1998) 55±7256

performs uniformly better when compared with Schei¯er's inliner, and with the inliners
described in [4] and [7].

2. Preliminaries

We assume a C-like language with block structures, and without nested procedure
declarations. A program P is composed of a collection of n procedures P1 , P2, . . . ,Pn. The
locations in Pi from which calls are made to statically known procedures are the call sites of
Pi. For convenience, all call sites in a program are uniquely numbered.1 There may be other
locations where calls are made to procedures that are known only at run-time (as in C, via
function pointers), but this article does not consider these locations to be call sites. A call
graph provides an abstract of this program information.
Call graph: A call graph for a program P is a labeled, directed multigraph with a node for

each procedure Pi. There is an arc (Pi, Pj) labeled a in the call graph if and only if a is a call
site in Pi (the caller) at which Pj (the callee) is invoked. The notation caller(a) and callee(a) is
used to indicate the caller and callee of arc a. (We may also refer to a as the ath call site in the
program.) Following [4], we add an extra node, SYSTEM, to the call graph. It re¯ects the
interaction of the program with its environment, especially the operating system. The call
graph contains an arc from SYSTEM to every other node, since the operating system can
potentially invoke any procedure. Since we need not consider arcs from other procedures to
SYSTEM, we omit them from the call graphs. We say that a program is recursive if its call
graph contains a circuit; otherwise, it is said to be nonrecursive.
An inlining operation replaces a single call site, for instance a call from Pi to Pj, with the

code of Pj, nesting this new code within Pi as a new block. Minor adjustments to the code may
be required to preserve the semantics of PiÐfor instance, parameter passing must be simulated.
Note that only one replacement is done, even if there are other call sites invoking Pj.
Moreover, any semantically equivalent version of Pj's code may be used. Also note that the
operation will create new call sites, if and only if the chosen version of Pj contains call sites.
After the operation, Pi now has another, semantically equivalent versionÐthe current version
of PiÐavailable for future inlining operations. After all inlining operations, we obtain a
collection of versions for each procedure. The ®nal program is assumed to include the most
recently derived version of each procedure.
Code size: Consider inlining a call to Pj from Pi to create a new version of Pi, say, P

'
i. The

size of P'
i is often less than size (Pi) + size (Pj) due to the elimination of the space overhead in

parameter passing, and the increased scope for optimization. Moreover, if this were the only
call to Pj in the program, and Pj cannot be called directly from SYSTEM (e.g., static
functions in C), we could omit Pj from the program. Hence, the code size of an inlined
program may actually be smaller than that of the original program. For simplicity, though, we
conservatively assume the size of the new version is the sum of its parts' sizes, and that no
procedure is omitted from the program after inlining.

1 Call sites are not ``renumbered'' when other sites are eliminated or new sites are added.

O. Kaser, C. Ramakrishnan / Computer Languages 24 (1998) 55±72 57

2.1. Flexibility and power

Recall that an inlining policy speci®es the conditions under which calls may be inlined, and
hence restricts the set of programs that can be derived by inlining. Examples of inlining policies
are: ``No directly recursive calls may be inlined'', and ``Only the current version of the callee's
code may be used when inlining''. Let I1 and I2 be two inlining policies, P be any program,
and PP

I1
and PP

I2
be the sets of ®nal programs that can be formed when inlining on P is

constrained to follow I1 or I2, respectively. The notion of relative ¯exibility of two inlining
policies is de®ned as follows.
De®nition 1 (¯exibility). The policy I1 is at least as ¯exible as I2 if and only if 8P PP

I2
UPP

I1
. If

I1 is at least as ¯exible as I2 and 9P PP
I2
�PP

I1
then we say I1 is more ¯exible than I2.

Although ¯exibility is useful for comparing two policies, it is possible that the additional
programs that one policy can derive are inferior to the best program that another policy can
derive, under some metric. To capture this, we de®ne the notion of relative power of two
policies as follows.
De®nition 2 (power). Given a metric m that measures the merit of a program, a policy I1 is as

least as powerful as I2 under m if and only if 8P. maxp$PPI1
m(p) /rmaxPP

I2
m(p). The policy I1 is

more powerful than policy I2 under m if and only if I1 is at least as powerful as I2 under m, and
9P .maxp$PP

I1
m(p) > maxPP

I2
m(p).

Note that ¯exibility is purely a structural notion, whereas a metric must be ®xed to discuss
power. Moreover, it is clear that if I1 is at least as ¯exible as I2, then I1 is at least as powerful
as I2 under any metric. In addition, if I1 is at least as ¯exible as I2 and I1 is more powerful
than I2 under some metric, then I1 must be more ¯exible than I2. For a simple example
comparing policies, consider I1=``no directly recursive calls may be inlined'' and I2=``only
calls to leaf procedures may be inlined''. Since by de®nition a leaf procedure contains no call
site, and a directly recursive call implies a nonleaf procedure, clearly I1 is at least as ¯exible as
I2. It is also easy to see that I1 is, in fact, more ¯exible than I2.

3. Power of inlining original versions

There is an implicit assumption in previous inlining workÐthat the current version of
callee's code is inlined. This is not always the best policy, as we next show. We consider the
following three inlining policies.
cvÐThe current versions of the caller and callee are always used.
ovÐThe original version of the callee and the current version of the caller are always used.
avÐAny versions of the caller and callee may be used.
Clearly, av-inlining is the least restrictive policy. In this section, we show that ov-inlining

is at least as ¯exible as av-inlining. We then show that ov-inlining is more powerful than
cv-inlining under a reasonable metric.

O. Kaser, C. Ramakrishnan / Computer Languages 24 (1998) 55±7258

3.1. Block nesting graph

In order to compare the ¯exibility of one policy with that of another, we represent the
program with its block nesting graph. This graph abstracts the structure of each version of each
procedure, showing how the major blocks in each version nest (see Fig. 1). Each procedure
initially has only a single major block, which includes all its code. Whenever a call site is
inlined, all major blocks within the callee are duplicated within the caller.
The block nesting graph is a forest, with a tree T v

i for each version v of each procedure Pi.
The tree has two kinds of nodes, mb-nodes that represent major blocks, and c-nodes that
represent call sites. The c-nodes may only be leaves, whereas the mb-nodes may be internal
nodes or leaves. If a call site c (or another major block M') is directly nested within a major
block M, then the mb-node for M has the node for c (or M', respectively) as a child. Each arc
in the tree is labeled with a call site in the original program, and each c-node is in 1-1
correspondence with a call site in the version being represented and is labeled thus.
The initial forest contains trees with a single mb-node and as many c-nodes as call sites.

Suppose a new version v'i of Pi is formed by taking version vi of Pi and, at site s, inlining
version vj of Pj. This inlining step is re¯ected in the block nesting graph by adding a new
tree T v 0

i . The new tree is constructed by replacing the c-node labeled s in a copy of T vi
i by a

copy of T
vj
j and relabeling all the c- nodes derived from T vi

j . The bottom-right part of Fig. 1
shows the new tree added to the block nesting graph as a result of inlining at site 2.

3.2. Power of ov-inlining

Using the abstraction of block nesting graphs, we can establish the following theorem:
Theorem 1. The ov-inlining policy is at least as ¯exible as the av-inlining policy.

Fig. 1. Block-nesting graph and the e�ect of inlining. On the right, mb-nodes are depicted as circles, and c-nodes as
squares. Within each c-node, the associated call-site number is shown. Arc labels a, b, and e represent the call sites

of the original version of p.

O. Kaser, C. Ramakrishnan / Computer Languages 24 (1998) 55±72 59

Proof sketch: Consider any ®nal program P obtained using av-inlining. We show how the
same program can be obtained using ov-inlining. First, consider the subset of the block nesting
diagram for P that contains only one tree per procedureÐthe tree for the version of the
procedure that appears in P. Observe that, if we can construct a program Q whose block
nesting diagram matches that of P, then Q and P are the same (structurally, as well as
semantically). (We require the trees be isomorphic and arc labels, but not node labels, must
match.) However, any required tree is easily obtained by ``growing'' it top downÐwherever the
desired tree has an mb-node and the current tree has a c-node, perform an ov-inlining
operation on the call site corresponding to the c-node. This can be repeated until the desired
tree is obtained.2 For a precise proof, see [13].
This result has some practical implications: an inliner need only support ov-inlining, but by

``replaying'' an appropriate sequence of ov-inlining steps, as determined by the block nesting
diagram, it can simulate any inlining operation. This implies that an index structure could be
pre-computed to permit e�cient access to the (static) original procedure bodies. For programs
of modest size, all required data may even ®t in main memory, since only the block nesting
diagram, call graph, and the smaller original procedure bodies are required.
Next, we consider a ®gure of merit m for inlined programs, which rewards the reduction of

function calls executed at runtime, while requiring the program's size not be excessive. Let f(P)
denote the number of function calls performed when a program P is executed with a
prespeci®ed input. Let s(P) denote the size of P, and let Porig be the original program whose
inlined form is P.

m�P� � ÿ1 if s(P)>S
f�Porig� ÿ f�P� otherwise

�
Theorem 2. Under m, ov-inlining is more powerful than cv-inlining.
To prove the theorem, consider the program in Fig. 2. Clearly, the call site within f should

be inlined. Inlining the original version twice leaves us with a program where f(x) invokes
f(x-3) , with f now thrice its original size. If this is the maximum code growth permitted,
cv-inlining is only able to inline once at the recursive call site. (The next inlining would leave f
at quadruple its original size.) Thus, the best cv-inlined program would perform about 50%
more calls than the ov-inlined program.
Note: In [13], we ®nd an example where the call ratio of the best cv-inlined program to the

best ov-inlined program is1N/log N.

3.3. Importance of recursion

It is not coincidence that the program in Fig. 2 was recursive. For non-recursive programs,
we have the following result:
Theorem 3. For a non-recursive program, cv-inlining is at least as ¯exible as av-inlining.

2 In our experiments, we have used this approach to simulate cv-inlining with ov-inlining. Each cv-inlining is
replaced by the sequence of ov-inlining operations that makes the same additions to the block nesting graph.

O. Kaser, C. Ramakrishnan / Computer Languages 24 (1998) 55±7260

Proof sketch: Consider some non-recursive program P , from which av-inlining has obtained
P'. Since the call graph of P is acyclic, its procedures can be ordered topologically; thus, a
procedure precedes all procedures it calls (directly or transitively).
We can obtain the block-nesting diagram for P' (and thus P' itself) by working exclusively

on one tree at a time. First, we inline call sites within the topologically ®rst procedure, until
the ®nal form of the tree (procedure) is achieved. It will be, since the current version of each
callee is the original version. Then we proceed similarly to the topologically second procedure,
and so forth. For every inlining operation, the callee has only one version, since it appears
topologically after the caller.

4. A multi-version inlining technique

Having shown theoretical advantages to the policy of ov-inlining, we now show, as a major
case study, the bene®t of greater ¯exibility in an inliner. In this case study, we will focus on
inlining techniques whose goal is to maximize the reduction in function calls when the program
is run with a ®xed input, without exceeding a code-size bound. Schei¯er has shown that ®nding
a strategy for choosing a sequence of inlining steps to attain our goal is NP-hard.3 We examine
suitable greedy heuristics in Section 4.2 and 4.3. Note that our goal has previously been used
in [2±4, 6].
We believe that if greater ¯exibility leads to improvements with this inlining goal, we should

also expect improvements from other goalsÐfor instance, inliners that take code-improvement
possibilities or cache performance into account should also bene®t. Clearly, though, we cannot
test this thesis for all reasonable inlining goals; thus, we choose the above goal for its
simplicity and widespread use.

Fig. 2. Program used to demonstrate that ov-inlining is more powerful than cv-inlining.

3 It should be noted that although the hardness result was established under cv-inlining, the result is general since
the result was established for the case of nonrecursive programs.

O. Kaser, C. Ramakrishnan / Computer Languages 24 (1998) 55±72 61

An obvious problem arises at this point: how are we to know the e�ect of an inlining
operation? It is relatively easy to gather pro®le data to obtain, for a given input, the count of
the number of calls performed at each call site in the original program. However, except when
inlining a leaf procedure, new call sites will be created. To compute accurately the number of
calls that will be performed at these sites, we would need the complete call history upon
reaching every call site in the original program. This is prohibitively expensive, as discussed
in [4, 6]. Instead of attempting to predict the e�ect of an inlining step exactly, we estimate its
e�ect using pro®le data with a one-level history: the number of times each procedure was
originally entered, and the number of times each call site was taken. The fundamental
assumption behind the estimation technique is that the behavior of a procedure can be
approximated well by an ``average behavior'' that is independent of where the procedure is
called from. This corresponds to the constant ratios assumption made in [6]. The use of the
assumption is not new, and has been validated in [6, 13]. The estimation technique, however, is
novel and is based on a probabilistic model described below. The model itself resembles the
stochastic program model described for ¯owcharts in [14, pages 439±448].

4.1. Probabilistic model

In this model we associate, with each call site a, an expected execution frequency denoted by
ra, that corresponds to the average number of times a is reached per invocation of caller (a).
Observe that, in programs free of loop constructs, the expected execution frequency of site a
coincides with the conditional probability of reaching a on any invocation of caller (a). We
also maintain the expected call frequency mij for every pair of procedures Pi and Pj, which is
the expected number of times Pi directly invokes Pj (from statically known call sites) for each
invocation of Pi. Clearly, mij=aara for sites a in the program with caller (a) = i and callee
(a) = j. For a n-procedure program, the expected call frequencies mij form an n � n matrix M,
the direct call matrix of the program. Each row of M is a vector that describes the calling
behavior of one invocation of (the current version of) a particular procedure.
The total number of times procedure Pi is entered, denoted by vi, is divided into direct

entries, from known call sites, and indirect entries, from SYSTEM. The latter do not vary with
inlining, unlike the former. The number of indirect entries to Pi is denoted by si. Let row
vectors n = (n1, n2, . . . ,nn) and s= (s1, s2, . . . ,sn). From the de®nition of M, n and s, we have
n = n �M+ s and hence

n � s� �IÿM�ÿ1: �1�
Refer to Fig. 3 for an example, where

n � n�
0:75 1:5 0
0:165779 0 2
0 0 0

0@ 1A� �1; 2; 0�; and its solution is n � �1000; 1502; 3004�:

It is easy to see that n = s � (I +M +M2+� � �). Clearly, the in®nite sum in the above
equation converges whenever the program execution terminates. We say that the matrix
U= (IÿM)ÿ1=a1k=0M

k is the indirect call matrix of the program: the (i, j)th entry uij

O. Kaser, C. Ramakrishnan / Computer Languages 24 (1998) 55±7262

represents the expected number of times Pj will be invoked (directly or indirectly) for every
invocation of Pi from SYSTEM.

4.2. Estimating the e�ect of an inlining operation

When a copy of a call site is created by inlining, the model assumes that the new call site
maintains the expected execution frequency with respect to the new (outermost) nested block that
is introduced into the block nesting diagram.More formally, consider inlining at the call site a such
that caller (a) = i and callee(a) = j. For each call site b in Pj , a new call site c is now introduced in
the new version of Pi, with rc=rarb . For instance, in Fig. 1, if all call sites a in the original
program had ra=0.5, we now have r4=r5=r9=0.5, r1=r6=r2=r3=r8=0. 25, r7=0.125.
Call sites 1±4 are not part of the program, since they are not within the current version of
procedure p.
The bene®t due to an inlining operation is the number of calls it saves. At any point while

inlining, there may be several potential inlining operations possible, and one must be selected
as the next operation. Using a greedy strategy, at each step we select the inlining operation (the
arc to be inlined, and the version to be used) that results in the largest number of calls saved
per unit increase in code space. For the inlining process to be fast, e�cient selection of the best
inlining operation is crucial. Therefore, direct use of (1) is precluded, and we next derive an
e�cient procedure to determine the best operation and its e�ect, under both ov-inlining and cv-
inlining policies.
Consider inlining an arc a = (Pi, Pj). The e�ect on M is that the ith row of M changes to

re¯ect the addition of any new call sites and the removal of the old call site. Speci®cally, under
the cv-inlining policy, we have

Mnew �M� ra1i;j �Mÿ ra1i;j

where 1i,j is a matrix that is 1 at the (i, j)th element and zero elsewhere.

Fig. 3. Top: Call graph for a program with three procedures. Dotted arcs represent indirect calls from the system,

made the indicated number of times. Solid arcs represent direct calls with the shown r values.

O. Kaser, C. Ramakrishnan / Computer Languages 24 (1998) 55±72 63

Under the ov-inlining policy, we have:

Mnew �M� ra1i;j �Morig ÿ ra1i;j �2�
where Morig denotes the direct call matrix of the original program (before any inlining). From
(2) and the univariant Uÿ1=(IÿM) we obtain

Uÿ1new � Uÿ1 � ra1i;j �Uÿ1orig:

Since inlining operations do not a�ect the termination characteristics of programs, the matrix
Unew=(IÿMnew)

ÿ1 exists. Next, let Unew=U � B. The matrix B essentially captures the change
in U due to the inlining step. Note that B= Uÿ1�Unew and hence B is invertible. Since
Uÿ1new=Bÿ1�Uÿ1=Uÿ1+ra1i, j�Uÿ1orig, we have

Bÿ1 � I� ra1i;j �Uÿ1orig �U

Now, let A= Uÿ1orig�U. Hence

Bÿ1 � �I� ra1i;j � A�: �3�
and

B � �I� ra1i;j � A�ÿ1: �4�
We will now use the identity that

�I� 1k;l �D�ÿ1 � �Iÿ 1

1� dlk

� �
1k;l �D�

to get

Iÿ B � ra
1� raaji

� �
1i;j � A:

Note that (1 + raaji) cannot be zero, otherwise the entire ith column of Bÿ1 would have been
zero (see Eq. (3)) and hence Bÿ1 would not have been invertible.
Let vnv = aini. The bene®t of an inlining step is simply vnvÿ vnnewv. Let e be a column-vector

of length n such that ei=1 for all i.
Then, using the de®nitions of U and Unew, we have

jnj ÿ jnnewj � n� eÿ nnew � e

� n� �Iÿ B� � e:

Now, by de®nition of (Iÿ B) and e, (IÿB) � e is a column-vector f of length n such that

fl �
ra

X
k

ajk

1�raaji if l � i

0 otherwise:

8>><>>:

O. Kaser, C. Ramakrishnan / Computer Languages 24 (1998) 55±7264

Continuing, the number of calls saved

jnj ÿ jnnew � n� �Iÿ B� � e

� fini

�
ra
X
k

ajk

1� raaji

0B@
1CAni:

Note that the matrix A= U � Uÿ1orig need be computed only once per inlining step. At that
time, we can also precompute akajk for each value of j. Thus, at every inlining step, the
number of calls saved by inlining each arc can be computed in time proportional to the
number of arcs. Moreover, we need compute only A at each step, and Anew can be computed
directly from B and A. In fact, using Eq. (4) and the de®nitions of U and Unew,
Anew=AÿA � ra/(1 + raaji)1i, j�A and can be computed in O(n2) time, since its (k, k')th entry
is akk'ÿraajk'aki/(1 + raaji). The updated value of n can likewise be calculated as
nnew=nÿ n � ra/(1 + raaji); note that these matrix products are special cases that can be
quickly calculated. Thus the choice of arc to be inlined can be made in time O(no. of
arcs) + O(n2).
Simpli®cation for the special case of cv-inlining: Note that for cv-inlining, the above

procedure still holds with A = U � Uÿ1=I. So akajk=1. If we are inlining a non-recursive arc
(i.e., i$ j) then aij=0 and hence the number of calls saved is ra ni. If the arc inlined is recursive
(i = j), then aij=1 and hence the number of calls saved is [ra/(1 + ra)]ni. Thus we get
Schei¯er's equations.

4.3. A hybrid inlining strategy

It is straightforward to obtain a greedy strategy that considers only ov-inlining steps, based
on the above procedure to estimate the e�ect of an inlining operation. There is an additional
di�culty, however. A cv-inlining operation always leads to fewer calls at runtime. This does
not hold for ov-inlining, where an ov-inlining operation can replace a call to a highly optimized
procedure by its unoptimized code. In many such cases, an ov-inlining operation will actually
lead to more calls at runtimeÐthough further ov-inlining would lead to a superior result.
These small, local moves in the state space can result in the greedy strategy becoming trapped
at a local maximum. In such cases [15] it helps to add some lookahead capability, so the
strategy can greedily choose a small sequence of operations.
We can exploit the fact that cv-inlining always leads to fewer calls (in reality, and in

predictions). The greedy strategy now considers both ov- and cv-inlining at every call site.
Recall that the proof of Theorem 1 shows how the cv-inlining of an arc a can be simulated by
a sequence of ov-inlining operations, beginning with the ov-inlining of a. Therefore, by
considering cv-inlining operations as representing sequences of ov-inlining operations, our
solution gives the greedy strategy some lookahead along certain chosen paths through the state
space. As long as there is su�cient code space to simulate the cv-inlining of some arc a = (Pi,

O. Kaser, C. Ramakrishnan / Computer Languages 24 (1998) 55±72 65

Fig. 4. Pseudocode for hybrid inlining using a greedy strategy and a ®xed code-size expansion. sov(p) and scv(p)
denote, respectively, the original and current sizes of procedure p.

O. Kaser, C. Ramakrishnan / Computer Languages 24 (1998) 55±7266

Pj) for which ra ni>0, we cannot become trapped at a local maximum. We refer to this form
of inlining as hybrid inlining.
Fig. 4 provides pseudocode for hybrid inlining, summarizing the preceding discussion.

4.4. Experimental evaluation

We now continue our case study by measuring the e�ect of the additional ¯exibility o�ered
by an ov-inlining policy. We compare the performance of the hybrid inlining strategy described
in the previous section with that of the greedy ov-strategy (i.e., without lookahead), the greedy
cv-strategy due to Schei¯er, the pro®le-guided technique presented in [4] and the static
technique used in GCC. It should be re-stated that none of the above techniques make inlining
decisions based on secondary e�ects such as additional specialization opportunities.
For this case study, recall that our goal is to minimise the number of dynamic calls predicted

by the probabilistic model, without exceeding a ®xed code-size increase prediction. Success
toward this goal is thus measured. The accuracy of the predictions has been examined in [6, 13];
while there are some inaccuracies with the predictions, they do not a�ect our conclusions, as
explained below. In [13] we also examine the greedy strategy with cv-, ov-, and hybrid inlining,
using exact call information instead of relying on predictions made using the probabilistic
model. We observe a typical improvement of 1±3% over the probabilistic model for all
policies, with a few instances where the more accurate information decreased overall
performance. (This is not really surprising since the greedy strategy is suboptimal.)
To gather data, an inliner was designed for the C language. The GNU C compiler [7] was

modi®ed to emit a call graph for each separately compiled module and generate code to permit
suitable pro®ling. The inliner then pro®led the program, built a program-wide call graph, and
emitted information on the desired inlining operations and the predicted number of calls
executed. Inter-module inlining was permitted, as in [4].
We measured the e�ect of the various inlining techniques on both programmer-written and

machine-generated C programs.4 Programs in the ®rst category include Bison (version 1.24),
processing the grammar for GCC 2.7.2; Flex (version 2.5.2), creating the lexical analyzer for
EQUALS [16]; and Cccp, the macro pre-processor for GCC 2.5.8, processing cccp.c.
Programs in the second category were produced by the EQUALS compiler for the following

functional programs: Event and Ida adapted from Hartel's benchmark suite [17]; two theorem
provers, ODProv [18] and PCProv; Pascal, an interpreter for a subset of Pascal; and FFT,
which implements a Fast Fourier Transform algorithm. All the functional programs except
FFT make extensive use of lazy evaluation [19]. This reduces the number of calls that
procedures make directly to one another; instead, procedures are often invoked by the runtime
system when closures are entered. Since such calls cannot be inlined by any of the above
techniques, in order to obtain meaningful results, we measure the reduction in the number of
inlinable calls.

4 Recursion is not likely to predominate in the standard benchmark suites; as our results in this paper show, the
di�erence between cv- and ov-inlining policies becomes most important with recursion.

O. Kaser, C. Ramakrishnan / Computer Languages 24 (1998) 55±72 67

The percentage of inlinable calls removed by the various inlining techniques with 5% and
20% increase in code size are given in Tables 1 and 2 respectively. In the tables, GCC denotes
a static (not pro®le-based) inlining technique similar to the one used by GCC; IMPACT
represents a technique, described later, that is similar to that presented in [4]; CV, OV and
Hybrid denote the greedy strategy with cv policy (due to Schei¯er), the greedy strategy with ov
policy (without lookahead) and the hybrid strategy with ov policy and cv lookahead
respectively. For each example program, the best results obtained are highlighted.
Note that GCC's inliner does not take pro®le information into account; rather, it either

relies on programmer declarations, or inlines suitably small procedures within a module. We
have followed the latter approach, and it is clear that pro®le information would have been
helpful.
The inliner that was based on the technique discussed in [4] did not perform particularly

well, especially on the recursive programs. This was anticipated, as the strategy does not inline
recursive calls, which predominate in these benchmarks. An extension to their basic inliner,
which preprocesses directly recursive calls, was sketched but apparently not used in [4]. Since it

Table 1
Inlinable calls removed after 5% code size expansion

Benchmark GCC IMPACT CV OV Hybrid

Bison 17.7 31.7 57.1 55.8 57.1

Cccp 0.3 39.9 50.2 47.1 50.2

Event 0.0 45.2 76.3 76.3 76.3

FFT 0.0 1.7 64.4 69.2 69.2

Flex 1.0 39.1 59.3 59.0 59.3

Ida 0.0 73.4 96.9 76.9 96.9

ODProv 0.0 28.2 38.2 39.8 39.8

Pascal 5.5 89.0 94.5 90.8 90.8

PCProv 0.0 13.0 32.7 36.7 36.7

Geom. mean Ð 27.5 59.6 58.8 60.9

Wins 0 0 6 4 8

Table 2
Inlinable calls removed after 20% code size expansion

Benchmark GCC IMPACT CV OV Hybrid

Bison 17.7 58.4 87.1 75.2 87.1

Cccp 1.6 64.8 72.3 64.5 72.3

Event 10.2 80.9 99.9 99.9 99.9

FFT 0.0 3.5 84.0 84.8 84.8

Flex 1.4 58.2 84.0 76.7 84.0

Ida 0.0 74.0 98.7 77.0 98.7

ODProv 0.0 45.1 60.2 62.4 62.4

Pascal 5.5 89.0 100.0 100.0 100.0

PCProv 0.0 14.6 56.7 63.6 63.6

Geom. mean Ð 40.1 81.0 77.1 82.4

Wins 0 0 6 5 9

O. Kaser, C. Ramakrishnan / Computer Languages 24 (1998) 55±7268

is unclear how to deal with procedures containing several direct calls using this technique, we
did not implement a preprocessing step. Instead, we implemented the algorithm sketched in [4,
page 364]. This algorithm requires that we consider the procedures iteratively, from most to
least frequently called. For each procedure, we inline all its call sites that invoke already-
processed procedures, using the current versions of the invoked procedures. To enable
comparison with other techniques, we do not permit any operation that causes the ®xed code-
size bound to be exceeded.
Examining the di�erences between the ov-, cv- and hybrid inliners, it can be seen that,

despite the ov policy being more ¯exible than cv, suboptimal solutions and trapping at local
maxima are serious problems unless lookahead is used. For instance, in Ida it did not matter
much whether 5% or 20% code expansion was permitted with ov-inlining. In many other cases,
ov-inlining received much less bene®t than cv-inlining from a more generous code-size
expansion.
Further, we see that hybrid inlining can improve on both cv and ov-inlining. For instance,

Table 3 shows the performance of the di�erent inlining strategies on small EQUALS programs
from [13]. In that table, there are four examples on which hybrid inlining performed better
than both cv- and ov-inlining. In these cases, a mixture of cv- and ov- steps has been used to
achieve a result that would not have been found by either technique alone. On the other hand,
we see in Table 1 a benchmark (Pascal) on which the greedy strategy did not bene®t from the
additional ¯exibility; rather, it lead to choices that, ultimately, were counterproductive.
Additional lookahead would thus be useful, to further improve the hybrid inliner.
Discussion: The ultimate goal of a production inliner is typically to obtain faster code; for

such inliners, a model will usually consider secondary e�ectsÐthe ability to perform additional
optimizations with the inlined code in a particular context, the e�ect of enlarging the body of a
loop on cache performance [10], and so forth. While the overall reduction in running time may
be the most appropriate measure for quantifying the e�ectiveness of an inlining technique in
practice, the measure is architecture-dependent (due to the secondary e�ects themselves) and
hence is inappropriate for comparing diverse inlining techniques. In contrast, the percentage
reduction in function invocations is architecture-independent and repeatable, and hence is
highly suited to compare di�erent inlining techniques. In fact, the reduction in function calls
often is a good predictor of the reduction in running time, as discussed below.

Table 3
Inlinable calls removed after 200% code expansion

Benchmark CV OV Hybrid

Euler 94.6 75.6 95.5

MatMult 94.7 74.9 94.8

MergeSort 68.6 70.2 71.8

N®b 55.6 65.4 65.4

NumInt 77.8 74.3 78.7

Queens 96.6 75.9 96.6

Sieve 93.0 93.2 93.2

Tak 62.1 68.4 68.4

O. Kaser, C. Ramakrishnan / Computer Languages 24 (1998) 55±72 69

The relationship between execution times and the number of calls performed has been
examined in [8]; in that study, an inliner that considered many factors still found that the most
signi®cant factor was due to the reduction in call and return operation time [8, page 94]. More
interestingly, the paper showed that code-size expansion did not need to be avoided; the larger
inlined programs and uninlined programs had similar virtual-memory behavior. However, it
should be noted that their policy forbade inlining directly recursive calls, and for most
programs their inliner usually did not even double code size [8, Fig. 15].
Despite this paper's focus on comparing techniques, for which measurement of inlining's

direct e�ects was appropriate, indirect e�ects should nevertheless be considered in future
production inliners. Running times may be a�ected by such indirect e�ects as changes in
virtual memory and cache behavior, possible performance degradation due to compiler
shortcomings (such as limitations in a compiler's register allocation technique [8]) as well as
performance gains due to opportunities for aggressive specialization. Therefore, a simpli®ed
model ignoring these e�ects is not ideal for future production inliners. Moreover, such inliners
must take advantage of pro®le information whenever available, since pro®le-based inlining
techniques signi®cantly outperform static techniques. It should be noted that pro®le-based
inliners must be able to predict the pro®le behavior of new calls that are introduced as a result
of the inlining operations themselves. In this article, we presented a pro®le-based inlining
framework for any version inlining, with pro®le prediction, while modeling only direct e�ects.
Incorporation of various indirect e�ects into our inlining model remains an interesting open
problem.

5. Evaluating inlining techniques: a summary

Many inlining techniques have been proposed in the past literature, and their relative merits
have been established empirically. In this paper, we propose a non-empiric scheme to compare
inlining techniques, by decomposing a technique into its policyÐrules that restrict the possible
set of inlining operationsÐand its strategyÐrules that specify which allowed operation, if any,
should be performed next.
We de®ne two measures to compare inlining techniques: the ¯exibility and the power of an

inlining policy. While ¯exibility measures the set of all programs derivable using some policy,
power is de®ned with respect to some abstract performance metric and re¯ects the best inlined
programs that can be derived using that policy.
Observe that during inlining many semantically equivalent versions of a procedure are

created. At every inlining step, a call to a procedure can be replaced with the code for any one
of these equivalent versions. The policy used in currently known inlining techniques restricts
attention to the most recent (i.e., current) version of a procedure's code, and is called the cv
policy. We show that the above policy is too restrictive.
In particular, we consider two other policies: the av policy which allows any previously

derived version of a procedure to be inlined, and the ov policy which allows only the original
version of a procedure to be inlined. We show, using our notions of ¯exibility and power, that

. The ov policy is as powerful as the av policy, under any metric.

O. Kaser, C. Ramakrishnan / Computer Languages 24 (1998) 55±7270

. On non-recursive programs, the cv policy is as powerful as the av policy, under any metric.

. There are recursive programs, and reasonable metrics, for which the ov policy is more
powerful than the cv policy.

We then develop an inlining technique based on the ov policy and a greedy strategy previously
used for cv-inlining. This greedy strategy requires pro®le information for the original program;
as inlining changes the program, the pro®le behaviours of the inlined programs are estimated
with a probabilistic model. We develop an e�cient model for estimating the e�ect of an
inlining step which naturally generalizes the model developed for cv-inlining.
It should be noted that, while every inlining step using the cv policy is guaranteed to

improve the performance (according to the chosen metric), individual steps using the ov policy
can actually lead to performance degradation. Hence, a greedy strategy with ov policy can be
trapped at local maxima. To avoid this, we describe a hybrid policy, which considers both the
original and current versions at each inlining step.
We experimentally evaluate the di�erent techniques based on cv, ov and the hybrid policies,

using the ``function calls removed without code explosion'' metric. Trapping at local maxima
was frequently observed for pure ov-inlining (without lookahead), both on recursive and non-
recursive programs. Pure cv-inlining, which corresponds to the techniques described in previous
works, displays suboptimal behavior on many recursive programs. We ®nd that hybrid inlining
often outperforms either pure ov- or pure cv-inlining.
C.R. Ramakrishnan is currently an Assistant Professor in the Department of Computer

Science, SUNY at Stony Brook. He holds an M.Sc. in Physics and an M.Sc. in Computer
Science from Birla Institute of Technology and Science, Pilani, India, and a Ph.D. in Computer
Science from SUNY at Stony Brook. His research interests are in the areas of logic and
functional programming, optimizing compilers and formal veri®cation.
Owen Kaser is currently an Assistant Professor in the Department of Mathematics, Statistics

and Computer Science at the Saint John campus of the University of New Brunswick, Canada.
He holds a BCSS from Acadia University, Wolfville, Canada, and M.S. and Ph.D. degrees in
Computer Science from SUNY at Stony Brook. His research interests include parallel
computing, algorithms and optimizing compilers.

Acknowledgements

This work was supported in part by NSF grants CCR9404921 and CDA 9303181 and
NSERC grant OGP0155967.

References

[1] Appel AW. Compiling with Continuations, Cambridge: Cambridge University Press, UK, 1992.
[2] Bal HE, Tanenbaum AS. Language- and machine-independent global optimization on intermediate code.

Journal of Computer Languages 1986;11:105±21.
[3] Ball JE. Program Improvement by the Selective Integration of Procedure Calls. PhD thesis. University of

Rochester, 1982.

O. Kaser, C. Ramakrishnan / Computer Languages 24 (1998) 55±72 71

[4] Chang PP, Mahlke SA, Chen WY, Hwu Wen-mei W. Pro®le-guided automatic inline expansion for C pro-
grams. SoftwareÐPractice and Experience 1992;25:349±69.

[5] Peyton-Jones SL, Santos A. Compilation by transformation in the Glasgow Haskell compiler. In: Functional
Programming, Glasgow '94. Workshops in Computing, Springer-Verlag, 1994:184±204.

[6] Schei¯er RW. An analysis of inline substitution for a structured programming language. Communications of

the ACM 1977;20(9):647±54.
[7] Stallman RM. 1993. Using and Porting GCC. Free Software Foundation. For version 2.5.
[8] Davidson JW, Holler AM. Subprogram inlining: A study of its e�ects on program execution time. IEEE

Transactions on Software Engineering 1992;18:89±101.
[9] Cooper KD, Hall MW, Torczon L. An experiment with inline substitution. SoftwareÐPractice and Experience

1991;21:581±601.

[10] McFarling S. Procedure merging with instruction caches. In: Proc. of the SIGPLAN '91 Conference on
Programming Language Design and Implementation, 1991:71±79.

[11] Kaser O, Ramakrishnan CR, Pawagi S. On the conversion of indirect to direct recursion. ACM Letters on
Programming Languages and Systems 1993;2(14):151±64.

[12] Kaser O. Inlining to reduce stack space. In: International Symposium on Programming Language
Implementation and Logis Programming (PLILP-93). Tallinn, Estonia, Springer-Verlag, LNCS 714, 1993.

[13] Kaser O. Computational Aspects of Inlining. PhD thesis. SUNY at Stony Brook, 1993.

[14] Deo N. Graph Theory with Applications to Engineering and Computer Science. Prentice Hall, 1974.
[15] Krishnamurthy B. An improved min-cut algorithm for partitioning VLSI networks. IEEE Transactions on

Computers 1984;C-33:438±46.

[16] Kaser O, Ramakrishnan CR, Ramakrishnan IV, Sekar RC. EQUALSÐa fast parallel implementation of a lazy
language. Journal of Functional Programming 1997;7(2):183±215.

[17] Hartel PH, Langendoen KG. Benchmarking implementations of lazy functional languages. In: ACM

Conference on Functional Programming Languages and Computer Architecture (FPCA). New York, ACM,
1993:341±349.

[18] O'Donnell MJ. Equational Logic as a Programming Language. In: Foundations of Computing. MIT Press,
1985.

[19] Peyton-Jones SL. The Implementation of Functional Programming Languages. Prentice-Hall, 1987.

O. Kaser, C. Ramakrishnan / Computer Languages 24 (1998) 55±7272

