EQUALS — The Next Generation

Owen Kaser*

Dept. of MSCS
UNB at Saint John
Saint John, NB, Canada.

owen@unbsj.ca

Abstract

EQuaALSs is a system for parallel evaluation of lazy
functional programs implemented on a Sequent Sym-
metry. A preliminary implementation of EQUALS [4]
was used to establish the validity of Normal Form
(NF) demand propagation and memory reclamation
via reference counting. However, that implementation
did not exploit vertical parallelism, where the argu-
ments to a function can be evaluated in parallel with
the function itself. The overheads of vertical paral-
lelism can be as high as the overheads in systems that
do not propagate NF demand. Hence careful integra-
tion of vertical parallelism with horizontal parallelism
(parallelism among the arguments to a function) is
needed to fully benefit from NF-demand propagation.
In this paper we describe schemes to harness vertical
parallelism within the context of the current EQUALS
system. We identify the aspects of the runtime system
(task management) that affect the overall efficiency
of the combined system. We also provide preliminary
performance figures indicating the effectiveness of the
selected schemes.

1 Introduction

Functional languages offer a conceptually simple
approach to programming parallel computers. Detec-
tion and exploitation of parallelism in functional pro-
grams is simpler than in imperative programs due to
referential transparency. The parallelism inherent in
a functional program is classified into:

*Supported by NSERC grant OGP0155967.

tSupported in part by the NSF (CCR-9102159, CDA-
9303181 and INT-9314412).

1This work was performed while R. C. Sekar was at Stony
Brook and supported in part by NSF CCR-9102159.

C.R. Ramakrishnant!

Dept. of Comp. Science
SUNY at Stony Brook
Stony Brook, NY 11794, USA. Morristown, NJ 07962, USA.

cram@cs.sunysb.edu

R.C. Sekar *

Bellcore
445 South St.

sekar@bellcore.com

1. Horizontal Parallelism, or parallelism among the
arguments of a function. In such cases, the
needed arguments of a function can be evaluated
in parallel before the function is invoked.

2. Vertical Parallelism (also known as stream par-
allelism) which arises when the arguments of a
function can be evaluated in parallel with the
function itself.

Whereas programs in strict languages exhibit only
horizontal parallelism, lazy languages express hori-
zontal as well as vertical parallelism.

EqQuaLs is a system for parallel execution of lazy
functional programs, implemented on the Sequent
Symmetry. A distinguishing feature of EQUALS over
previous implementations on shared memory ma-
chines (e.g., Buckwheat [3], GAML [6], and the (v, G)-
machine [1]) is the propagation of exhaustive Nor-
mal Form (NF) demand in addition to the traditional
Weak Head Normal Form (WHNF) demand. A pre-
liminary implementation of EQUALS [4] showed that
NF-demand propagation leads to low parallel over-
heads. However, that implementation did not exploit
vertical parallelism that arises naturally in many pro-
grams. If naively implemented, the overheads due
to vertical parallelism can be as high as that in sys-
tems propagating WHNF demand alone. Hence care-
ful integration of vertical and horizontal parallelism is
needed to maximize the benefits due to NF-demand
propagation. In this paper we describe schemes to
harness, i.e., to exploit and control vertical paral-
lelism within the context of the current EQUALS sys-
tem.

The paper is organized as follows. We present an
overview of the EQUALS system in the next section,
and describe the scheme for exploiting horizontal par-
allelism. In section 3 we motivate the use of vertical
parallelism, develop a scheme to exploit it, and dis-
cuss issues in controlling parallelism. In section 4 we



describe the features of the runtime system along with
proposed modifications needed to efficiently evaluate
programs with vertical parallelism. We describe the
current state of the implementation in section 5, and
identify future work.

2 Overview of EQUALS

The EQUALS system consists of a compiler and
a runtime support system. The compiler uses ee-
strictness analysis developed in [8] to detect paral-
lelism and translates the source program to C via a
combinator-based intermediate language. The com-
piled code is executed under the control of a run-
time system that provides facilities for task creation,
switching and synchronization. The runtime system
also manages the resources, such as memory, needed
to execute a task.

The goal of compiled code is to normalize a given
input expression. The EQUALS compiler generates two
versions of code for each function, which are invoked
under WHNF and NF demand respectively. Partial
applications (closures), delayed evaluations (thunks)
and head normal forms are all represented uniformly
as graphs (also referred to as terms or expressions)
in the heap. Once evaluated, a graph is overwritten
with its normal form, thus sharing the normal-form
computation.

If multiple subexpressions need to be evaluated in
order to normalize an input expression, these subex-
pressions can be evaluated in parallel. Subexpressions
that are evaluated in parallel are taken up by individ-
ual tasks, which execute the compiled code on their
private stacks. Since there may potentially be many
more parallel tasks than the resources available (e.g.,
processors, shared memory), tasks are created only
when they are deemed useful. Some of these decisions
are made at compile time itself; for instance, the com-
piler will never emit code to create a new task, unless
it can generate code for work to be done concurrently
by the existing task. At runtime, on the other hand,
opportunities for additional parallelism will be passed
up, if sufficient parallel resources are not available.

Although these tasks might be executed as UNIX
processes, it is too expensive to do so. Instead,
EQUALS implements a mechanism for managing light-
weight tasks, where tasks are executed under the con-
trol of evaluator processes (one per processor). All
runnable tasks are placed in a global ready queue,
which is used to share and balance the system load.
Given an input expression, a task to normalize this
expression is created and placed in the ready queue.

Whenever idle, the evaluator processes pick up tasks
from the ready queue and start their execution. If a
task needs the value of a subexpression that is cur-
rently being evaluated by another task, then the first
task is suspended, awaiting the subexpression’s eval-
uation. The evaluator then begins execution of a task
from the ready queue. Once an expression’s evalua-
tion is complete, all tasks awaiting its evaluation are
released to the queue.

2.1 Intermediate Language

We represent the code generated for a functional
program using an abstract intermediate language, de-
scribed in [4]. The constructs of the language relevant
to this paper are those used to build and dismantle
graphs, evaluate expressions locally and in parallel,
and synchronization barriers, described below.

Build var = ezpr: Build (without evaluating) the
graph corresponding to ezpr and store it in var.

GetChild n of t in var: Store the n-th child of the
graph in ¢ in var.

Eval var = exzpr to eztent: Evaluate the expres-
sion ezpr to exztent in the current task, storing
its value in var; eztent may be NF (default) or
WHNF.

RemoteEval var = ezpr to eztent: Evaluate the
expression in ezpr to extent in parallel with the
current task. When the evaluation is complete,
store its value in var.

WaitFor eztent of var: Suspend current task until
the expression corresponding to var is evaluated
to extent.

2.2 Compiled Code

Consider a fragment of the n-Queens program
shown in in Figure 1. The figure shows a rule that
composes multiple solutions (add_columns) using the
function append, and the rules that define append.
The code corresponding to the add_columns rule un-
der NF demand is given in Figure 2, and the code
generated for append (under NF demand) appears in
Figure 3. Note that append is strict in both its argu-
ments under NF demand, i.e., whenever normal form
computation of ¢; or ¢, diverge, the normal form com-
putation of append(t1,t2) also diverges. Hence its ar-
guments are evaluated to NF, potentially in parallel,
in the code for append_columns before append_NF



add_columns(z, n, bd:bds) =
append(add_col(z, n, bd),
add_columns(z, n, bds)

append(z:zs, ys) = z:append(zs, ys)
append(nil, ys) = ys

Figure 1: Fragment of N-Queens program.

fun add_columns_N F(t1,12,t3)
case root(t3) of

cons:
GetChild 1 of £3 in ¢4
GetChild 2 of ¢3 in t5
RemoteEval t6 = add_col_N F(t1,12,14)
Eval t7 = add_columns_N F(t1,12,15)
WaitFor NF of 6
Eval t8 = append_N F(t6,t7)
Return ¢8

Figure 2: of code generated for

add_columns.

Fragment

is invoked. Since whenever append_N F is called its
arguments are already in NF, the return value of
append_N F is always in NF.

2.3 Runtime Structures

The memory contains two main areas, namely,
heap and stack. The heap is divided into equal-sized
nodes that are used to construct the graphs. The
value fields of a node hold the symbol of the node and
pointers to its children. The status fields of a node
include NF bit that indicates that the graph rooted
at this node is in normal form; and InProc bit that
is set when the graph rooted at this node is under
evaluation.

A task consists of a graph to reduce and a stack to
use in the reduction. Instead of keeping stack frames
in heap, stacks are built out of blocks of contiguous
memory, obtained from stack space. The stack of a
task is a linked list of such blocks. When the task
overflows the current block, a new block is allocated
and linked to the current stack; on underflow, the
block is returned to the free pool.

See [5] for a detailed description of the structures

fun append_NF(t1,12)
case root(t1) of

cons:
GetChild 1 of 1 in 3
GetChild 2 of t1 in t4
Eval t5 = append_N F(t4,12)
Build t6 = cons(t3,15)
Return t6

nal:
Return ¢2

Figure 3: Code generated for append.

used in the runtime system.

3 Vertical Parallelism

In the example in Figure 1, although whenever
append(ty,t2) is evaluated to NF, both ¢; and ¢; need
to be in NF, append can compute portions of its out-
put even before ¢, is examined. Moreover, only the
spine of #; is directly inspected by append. Hence
append can be invoked before the normal form com-
putations of ¢; and ¢, are completed. Thus, append
can consume its inputs incrementally. Furthermore,
portions of the normal form output of append can
be produced without inspecting any argument in full.
The incrementality in the input-output behavior of
append resembles an element in a pipeline!. This im-
plicit (vertical) parallelism present in append was not
exploited by the scheme sketched in the previous sec-
tion.

3.1 Exploiting Vertical Parallelism

Note that in presence of vertical parallelism, the
arguments of a function are not guaranteed to be eval-
uated to any desired extent when the function is in-
voked. Hence the code that computes the normal form
of a function must test the extent of evaluation of an
argument before inspecting any part of the argument.
In case the required argument is not yet evaluated to
the necessary extent, the current function’s evaluation
must await till the argument evaluation is complete.
The code for append that incrementally consumes its
input is given in Figure 4.

Observe that append_N F_vert consumes its inputs
incrementally, but does not produce incremental out-

1Hence, vertical parallelism is also called pipeline paral-
lelism, or producer-consumer parallelism.



fun append_NF vert(tl,t2)
WaitFor HNF of t1
case root(t1) of
cons:
GetChild 1 of 1 in ¢3
GetChild 2 of £1 in t4
Eval t5 = append_N F _vert(t4,12)
Build t6 = cons(t3,15)
WaitFor NF of 3
Return t6
nil:
WaitFor NF of ¢2
Return £2

Figure 4: Vertical Parallel code (naive) generated for
append.

put. Hence append_N F_vert can participate as the
final consumer in a pipeline, but cannot form the mid-
dle of any pipeline. Note that when the second rule
of append is applicable we can output the cons node
that forms the head of its normal form immediately.

To achieve this, firstly, we need to de-link the data
and control flow in the compiled code. A function,
instead of simply Return-ing its output, writes the
output at a pre-assigned location, which is passed to
the function as an additional argument. This location
is also passed to any task that depends on the output
of the function.

Secondly, we need a mechanism to mark the (as
yet) unevaluated parts of a graph. We can use clo-
sures that represent partially evaluated functions for
this purpose. A closure not only marks a graph as un-
evaluated, but also specifies how to build this graph,
and is expensive to build. Note that since some task
is actively engaged in completing the evaluation, we
need to only mark the unevaluated part as “under
construction”; the specifics of how to build this graph
are irrelevant. This is done using a special nullary
function symbol, that is overwritten with the result
when that part of the graph is (eventually) evalu-
ated. This overwriting operation is analogous to the
normal rewriting operation on the graph. Tasks are
suspended pending overwriting of this symbol and re-
sumed in the usual manner, as described in section 2.

The code generated using the above scheme for
add_columns and append appear in Figures 5 and 6
respectively. In the figures, the instruction Makebot
z creates a graph node (pointed to by #) and marks it
as “under construction”?; the instruction OverWrite

2Note that this can be done by simply turning the InProc

fun add_columns_NF _Vert(t1,12,13, ret)
case root(t3) of

cons:
GetChild 1 of £3 in t4
GetChild 2 of £3 in 5
MakeBot t6
RemoteEval add_col_NF _Vert(tl,t2,t4,16)
MakeBot &7

RemoteEval add_columns_NF_Vert(t1,12,15,17)

Eval append _NF _Vert(t6,t7,ret)

Figure 5: Fragment of Vertical Parallel code gener-
ated for add_columns.

fun append_NF _Vert(tl,t2,ret)
WaitFor HNF of t1
case root(t1) of
cons:
MakeBot ¢3
GetChild 1 of £1 in t4
Build t5 = cons(t4,13)
OverWrite ret = t5
GetChild 2 of £1 in 6
Eval append_NF _vert(t6,12,3)
WaitFor NF of t4
SetNF ret
nil:
WaitFor NF of ¢2
OverWrite ret = t2

Figure 6: Vertical Parallel code generated for append.

d = s overwrites the node in d with the graph in s and
releases the tasks awaiting the evaluation of graph d;
the instruction SetNF z sets the NF bit of node .

3.2 Controlling Vertical Parallelism

Opportunities for parallel evaluation must be
passed up whenever the cost of exploiting the par-
allelism outweighs the benefits. This situation arises
when either the available parallelism exceeds the sys-
tem resources, or the synchronization costs are com-
parable to the computation cost itself.

Note that, in presence of vertical parallelism, in-
stead of waiting once before invocation of a function
for evaluation of an argument, we await evaluation
of different parts of the argument as needed. The

bit on.



additional parallelism offered by the pipelining of ar-
gument and function evaluations must be sufficient to
overcome the additional synchronization costs. Note
that the synchronization in presence of vertical paral-
lelism corresponds to synchronization at WHNF level
and hence the cost can be as high as that in systems
without NF-demand propagation.

Horizontal parallelism is relatively inexpensive to
exploit compared to vertical parallelism due to lower
synchronization costs. Hence, in a system that ex-
ploits both types of parallelism, vertical parallelism
must be avoided whenever sufficient horizontal par-
allelism is available. In a system that exploits only
horizontal parallelism, we avoid creating new parallel
tasks when the system load is high. Firstly, we extend
this scheme in presence of vertical parallelism. The
threshold at which parallelism is forsaken differs for
horizontal and vertical tasks — creation of horizontal
tasks are throttled at a higher load than the creation
of vertical tasks. Secondly, a vertical task remains
incremental only when there is insufficient horizon-
tal load on the system. All vertical tasks cease in-
cremental output when the system’s horizontal work
load exceeds a threshold. Thus creation of horizontal
tasks is given a priority in the system over creation
and execution of vertical tasks.

In addition to the higher synchronization costs,
vertical parallel schemes create many more tasks than
horizontal schemes. Most of these tasks are suspended
awaiting output of other tasks and the system load,
measured as the size of ready queue, does not reflect
this. Consider the fragment of n-Queens program in
Figure 1. In that example, add_col is a producer and
append is a consumer in a pipeline. If the producer
is faster than the consumer, there are no bottlenecks
in the pipeline. However, append consumes its argu-
ment rapidly enough to often await (involving a task
switch) the output of add_col. In the current imple-
mentation, the total number of tasks (ready, active
and suspended) in the system is also used to throttle
the creation of vertical tasks. However, this is a global
scheme that controls the overall parallelism in the sys-
tem instead of avoiding extension of the pipelines with
bottlenecks.

We are investigating two approaches to identifying
useful parallelism — compile time schemes that trans-
form a program so as to avoid fine-grained synchro-
nization; this involves analysis methods to estimate
task granularity (e.g., see [2]), and run-time schemes
which avoid parallelism in pipelines containing tasks
that frequently switch between the ready and wait
queues.

4 Runtime Issues

To efficiently harness useful vertical parallelism,
it is necessary to minimize the task synchronization
overheads. To this end, in the current runtime sys-
tem (see [5]) the inactive tasks (either freshly created
or suspended) and the evaluator tasks are uniformly
represented using a suspension. A suspension con-
sists of a task control block pointing to the top of
stack, and the stack containing volatile registers, base
pointer and code pointer as its top frame. A task is
resumed by entering its suspension that consists of
simply restoring registers and the base pointer and
return-ing to the code.

When a task is suspended, the context switches
to the evaluator, which picks the next available task
from the ready queue. Since the ready queue is a
shared resource, its access needs to be carefully de-
signed to avoid bottlenecks. The split-lock queue used
in EQUALS shows good base performance and scala-
bility — enqueue and dequeue take only Tus and 5us
respectively on 2 processors, and 38us and 22us on 10
processors in the worst case. Task creation overheads
are also low. For instance, creating a new parallel
task and enqueuing it takes only 48us. Creating a
new parallel task that returns immediately, and then
awaiting it requires 125us if an idle processor is avail-
able. Otherwise, the parent needs to be suspended
and reinvoked, and 150us is typical.

The number of tasks created in presence of verti-
cal parallelism also stresses the memory management.
Apart from the large number of suspended tasks, the
scheme to create vertical tasks as sketched in Section 3
creates a large number of tasks that await NF of an ar-
gument, and once resumed, set the return graph to NF
and end. The function append NF _Vert (Figure 6)
is a good example of such a task. In many cases, it
turns out that the return graph is no longer of interest
to any task, and is freed immediately after the NF bit
is set! Hence both the graph and the stack associated
with the task are held much longer than they need be.
Note that we can avoid most of the above operations
based on the reference counts that are already main-
tained on the nodes. We are currently implementing
a task cleanup mechanism tuned to vertical tasks, to
reclaim stacks whenever the return graph is no longer
needed.

Based on the current implementation of the run-
time system, the n-Queens program (on a 10 x 10
board) shows a speedup of 13.2 on 20 processors, de-
spite creating numerous tasks (over 41,000) and allo-
cating over 520,000 nodes.



5 Conclusion

In this paper we described a scheme to integrate
vertical parallelism with horizontal parallelism in the
presence of NF-demand propagation, and mechanisms
to efficiently support this scheme. The focus of our
current effort is in identification of useful vertical
parallelism: designing compile-time schemes to avoid
fine-grained synchronization, and run-time schemes to
avoid extending pipelines showing little usable paral-
lelism. Implementation of a task cleanup mechanism
for early release of the resources associated with a ver-
tical task is underway. Although preliminary results
are encouraging, much work is needed in evaluating
the execution mechanisms over larger programs.

References

[1] L. Augustsson and T. Johnsson. Parallel graph
reduction with the (v, G) machine. In Functional
Programming Languages and Computer Archi-
tecture, 1989.

[2] S. Debray, N. Lin and M. Hermenegildo. Task
Granularity Analysis in Logic Programs. In ACM
Conference on Programming Languages Design
and Implementation, 1990.

[3] B. Goldberg. Buckwheat: Graph reduction on
shared-memory multiprocessor. In ACM Confer-
ence on Lisp and Functional Programmaing, 1988.

[4] O. Kaser, S. Pawagi, C.R. Ramakrishnan, I.V.
Ramakrishnan and R.C. Sekar. Fast Parallel Im-
plementation of Lazy Languages — The EQUALS
Experience. In ACM Conference on Lisp and
Functional Programming, 1992.

[5] O. Kaser, C.R. Ramakrishnan and R.C. Sekar. A
High Performance Runtime System for Parallel
Evaluation of Lazy Languages. In Intl. Sympo-
sium on Parallel Symbolic Computation, 1994.

[6] L. Maranget. GAML: A parallel implementation
of lazy ML. In Functional Programming Lan-
guages and Computer Architecture, 1991.

[7] S. L. Peyton Jones. Implementing lazy functional
languages on stock hardware: The Spineless Tag-
less G-machine. Journal of Functional Program-
ming, 1992.

[8] R.C. Sekar, S. Pawagi and I.V. Ramakrishnan.
Small domains spell fast strictness analysis. In

ACM Symposium on Principles of Programming
Languages, 1990.



