
Alternating Fixed Points in Boolean Equation
Systems as Preferred Stable Models

K. Narayan Kumar1,2, C.R. Ramakrishnan1, and Scott A. Smolka1

1 Department of Computer Science,
State University of New York at Stony Brook

Stony Brook, New York, U.S.A.
E-mail: {kumar,cram,sas}@cs.sunysb.edu

2 Chennai Mathematical Institute, Chennai, India.
E-mail: kumar@smi.ernet.in

Abstract. We formally characterize alternating fixed points of boolean
equation systems as models of (propositional) normal logic programs. To
precisely capture this relationship, we introduce the notion of a preferred
stable model of a logic program, and define a mapping that associates a
normal logic program with a boolean equation system such that the solu-
tion to the equation system can be “read off” the preferred stable model
of the logic program. We show that the preferred model cannot be calcu-
lated a-posteriori (i.e. compute stable models and choose the preferred
one) but its computation rather is intertwined with the stable-model
computation itself. This definition reveals a very natural relationship
between the evaluation of alternating fixed points in boolean equation
systems and the Gelfond-Lifschitz transformation used in stable-model
computation.
For alternation-free boolean equation systems, we show that the logic
programs we derive are stratified, while for formulas with alternation, the
corresponding programs are non-stratified. Consequently, our mapping of
boolean equation systems to logic programs preserves the computational
complexity of evaluating the solutions of special classes of equation sys-
tems (e.g., linear-time for the alternation-free systems, exponential for
systems with alternating fixed points).

1 Introduction

Model checking [1, 11, 2] is a verification technique aimed at determining whether
a system specification possesses a property expressed as a temporal logic formula.
Model checking has enjoyed wide success in verifying, or finding design errors
in, real-life systems. An interesting account of a number of these success stories
can be found in [3].

Model checking has spurred interest in evaluating alternating fixed points as
these are needed to express system properties of practical import, such as those
involving subtle fairness constraints. Probably, the most canonical temporal logic
for expressing alternating fixed points is the modal mu-calculus [10, 7], which
makes explicit use of the dual fixed-point operators µ (least fixed point) and

ν (greatest fixed point). A variety of temporal logics can be encoded in the
mu-calculus, including Linear Temporal Logic (LTL), Computation Tree Logic
(CTL) and its derivative CTL*.

Fixed-point operators may be nested in mu-calculus formulas and different
fixed-point formulas may be mutually dependent on each other. Alternating
fixed-point formulas are those having a least fixed point that is mutually depen-
dent on a greatest fixed point.

Recently, it has been demonstrated that logic programming (LP) can be suc-
cessfully applied to the construction of practical and versatile model checkers [12,
5]. Central to this approach is the connection between models of temporal log-
ics and models of logic programs. For example, the XMC model checker [13]
verifies an alternation-free modal mu-calculus formula by evaluating the perfect
model of an equivalent stratified logic program. While the relationship between
models of alternating modal mu-calculus formulae and stable models of logic
programs has been conjectured [8], there has been no formal characterization of
this connection. Establishing this relationship is the focus of this paper.

The model-checking problem for the modal mu-calculus can be formulated
in terms of solving Boolean Equation Systems (BESs); see, e.g., [14]. A BES is
a system of mutually dependent equations over boolean-valued variables, where
each equation is designated as a greatest or least fixed point. To capture the
solutions of a BES in terms of models of logic programs, we introduce the notion
of preferred stable models of normal logic programs, and describe a mapping
from BESs to propositional normal logic programs such that the solution to a
BES can be obtained from the preferred stable model of the corresponding logic
program. The mapping also ensures that alternation-free BESs are mapped to
stratified logic programs, and is thus a conservative extension of the one used by
the XMC system. This preserves the linear-time complexity of model checking
alternation-free formulas.

The rest of this paper develops along the following lines. Section 2 begins
with an overview of BESs and their relationship to logic programs; these ideas
are formalized in Section 3. Section 4 introduces the notion of a preferred stable
model of a normal logic program, while Section 6 formally establishes the rela-
tionship between solutions to BESs and preferred stable models. Our concluding
remarks are offered in Section 7. The paper also contains two appendices to make
it self-contained. Appendix A reviews the standard connection between model
checking in the modal mu-calculus and solving BESs. Appendix B contains the
proof of the main theorem of the paper.

2 Overview

2.1 Boolean Equation Systems

A Boolean Equation System is a sequence of fixed-point equations over boolean
variables, with an associated sequence of signs that specifies the direction of the
fixed points. The i-th equation is of the form Xi = αi where αi is a positive

2

boolean formula over variables {X1, X2, . . . } and constants 0 and 1. The i-th
sign, σi is µ if the i-th equation is a least fixed-point equation and ν if it is
a greatest fixed-point equation. We use 〈X1 = α1, X2 = α2, . . . , Xn = αn〉 to
denote the sequence of equations in a BES of size n, and 〈σ1, σ2, . . . , σn〉 to
denote its associated sign map. In a BES of size n, X1 is called the innermost
variable (and the equation X1 = α1 the innermost fixed point), and Xn is called
the outermost variable. A BES of size n is said to be closed if all variables
occurring in αi for all 1 ≤ i ≤ n are drawn from {X1, X2, . . . , Xn}.

In the following, we use φ to range over BESs, and E (possibly subscripted)
to represent specific BESs. Let φ be a BES 〈X1 = α1, X2 = α2, . . . , Xn = αn〉.
We use φi to denote the subsystem 〈X1 = α1, X2 = α2, . . . , Xi = αi〉. Thus
φ = φn, and φ0 denotes the empty BES 〈 〉.

A solution of a BES is a truth assignment to the variables {X1, X2, . . . }
satisfying the fixed point equations such that the outer equations have higher
priority over inner equations. More precisely, a solution of a BES of size i, 〈X1 =
α1, X2 = α2, . . . , Xi = αi〉 is a valuation of a fixed point for the outermost
variable Xi and is maximal (relative to its sign σi) among all solutions for the
subsystem 〈X1 = α1, X2 = α2, . . . , Xi−1 = αi−1〉.

Example 2.1. Consider the BES E1 = 〈X1 = X1 ∧X2, X2 = X1 ∨X2〉 with sign
〈µ, µ〉. We first consider all solutions for the subsystem X1 = X1 ∧ X2〉. Note
that, although (X1 = 1, X2 = 1) is a fixed point for X1 = X1 ∧X2, it is not a
least fixed point (as specified by σ1) and hence not a solution for 〈X1 = X1∧X2.
The solutions for the subsystem are (X1 = 0, X2 = 0) and (X1 = 0, X2 = 1).
Both valuations are fixed points for X2 = X1 ∨X2, but (X1 = 0, X2 = 0) is the
least fixed point (as specified by σ2), and hence is the solution for E1. ut

Example 2.2. The signs of both equations in E1 were identical; for a more com-
plex example, consider the BES E2 = 〈X1 = X1 ∧ X2, X2 = X1 ∨ X2, X3 =
X3 ∧ X2〉 with sign 〈µ, µ, ν〉. Following the evaluation of E1, we see that the
solutions of 〈X1 = X1 ∧X2, X2 = X1 ∨X2〉 are (X1 = 0, X2 = 0, X3 = 0) and
(X1 = 0, X2 = 0, X3 = 1). Of these, only (X1 = 0, X2 = 0, X3 = 0) is a fixed
point for X3 = X3 ∧X2 and hence is the solution for E2. ut

In E2, the inner subsystem’s solutions were independent of the values assigned
to the outer variable X3. This property does not hold for every BES, as shown
in the following example.

Example 2.3. Consider the BES E3 = 〈X1 = X1 ∧X2, X2 = X1 ∨X2〉 with sign
〈ν, µ〉. We first consider all solutions for the subsystem X1 = X1∧X2. Note that,
although (X1 = 0, X2 = 1) is a fixed point for X1 = X1∧X2, it is not a greatest
fixed point (as specified by σ1) and hence not a solution for X1 = X1 ∧X2. The
solutions for the subsystem are (X1 = 0, X2 = 0) and (X1 = 1, X2 = 1). Both
valuations are fixed points for X2 = X1 ∨X2, but (X1 = 0, X2 = 0) is the least
fixed point (as specified by σ2), and hence is the solution for E3. ut

3

Nesting and Alternation in BES: We say that Xi depends on Xj if αi contains
a reference to Xj , or to Xk such that Xk depends on Xj . A BES is said to be
nested if there are two variables Xi and Xj such that Xi depends on Xj and
σi 6= σj . We say that Xi and Xj are mutually dependent if Xi depends on Xj

and vice versa. A BES is alternation free if Xi and Xj are mutually dependent
implies σi = σj . Otherwise, the BES is said to contain alternating fixed points.
For instance, the BES E1 has no nested fixed points, E2 has nested fixed points
while E3 has alternating fixed points. Note that every BES that has alternating
fixed points is also nested.

The order of equations in a nested BES is important, as the following example
shows.

Example 2.4. Consider the BES E4 = 〈X1 = X2 ∨X1, X2 = X2 ∧X1〉 with sign
〈µ, ν〉. Note that E4 differs from E3 only in the order in which the equations are
defined (and the corresponding change to the names of variables). Valuations
(X1 = 0, X2 = 0) and (X1 = 1, X2 = 1) are solutions for the subsystem X1 =
X2 ∨X1; among these only (X1 = 1, X2 = 1) is a fixed point for X2 = X2 ∧X1,
and hence is the solution for E4. ut

2.2 Boolean Equation Systems as Logic Programs

A normal logic program over a set of propositions A is a set of clauses of the
form γ ← β where γ ∈ A and β is a boolean formula in negation normal form
over A∪{0, 1}. We use 0 and 1 to denote true and false, respectively. In a clause
of the form γ ← β, γ is called the head of the clause and β its body. We use
p and q (possibly subscripted) to denote propositions and P to denote normal
logic programs. A definite logic program is a program where every clause body
is a positive boolean formula. We say that a proposition p depends on another
proposition q in a program if q appears in the body of a clause with p as the head;
p negatively depends on q if q appears in the scope of a negation. A program
is said to be stratified if no cycle in the transitive closure of the dependency
relation contains two literals p and q such that p negatively depends on q.

We use stable models as the semantics of normal logic programs [6]. Note
that stable models coincide with the standard least-model semantics for definite
logic programs and the perfect-model semantics for stratified logic programs.

A BES consisting only of least fixed points (and hence, not nested) can be
readily seen as equivalent to a definite propositional logic program. We can thus
use logic program evaluation techniques to find the solution for such a BES.

Example 2.5. Consider the propositional program P1 = {p1 ← p1 ∧ p2, p2 ←
p1 ∨ p2}. This program is equivalent to BES E1 where p1 represents X1 and p2

represents X2. The least model for P1 is {}, from which we can derive (X1 =
0, X2 = 0) as the solution for E1. ut

For a nested but non-alternating BES we can construct a stratified proposi-
tional logic program such that the solution of the BES can be obtained from the
perfect model of the logic program. The basic strategy is to convert the greatest

4

fixed-point equations to least fixed-point equations and using the equivalence
νX.φ ≡ ¬µZ.¬φ[¬Z/X]. In fact, the XMC model checker is based on this strat-
egy.

Example 2.6. Consider the propositional program P2 = {p1 ← p1 ∧ p2. p2 ←
p1 ∨ p2. p3 ← ¬q3. q3 ← q3 ∨¬p2.}. This program is equivalent to BES E2 where
pi represent Xi. The perfect model for P2 is {q3} from which we can derive
(X1 = 0, X2 = 0, X3 = 0) as the solution for E2. ut

However, for a BES with alternating fixed points, this translation yields a
non-stratified logic program which may not have unique stable models.

Example 2.7. Consider the propositional program P3 = {p1 ← ¬q1. q1 ← q1 ∨
¬p2. p2 ← p1∨p2.}. This program is equivalent to BES E3 where pi represent Xi.
There are two stable models for P3: {p1, p2}, and {q1} which gives two candidates
(X1 = 1, X2 = 1) and (X1 = 0, X2 = 0) as solutions for E3. ut

The translation from BES to normal logic programs informally described by
the above examples illustrates the problem: a BES has an ordered set of equations
(sequence), and the corresponding normal logic program loses the order. In fact
it is easy to see that the program P3 in the example also represents the BES E4
where p2 represents X1 and p1 represents X2. Each of the stable models of P3

correspond to the solutions of E3 and E4.
At first sight, it appears that one can simply “select” the appropriate stable

model by applying the order information after the stable-model computation.
The following example illustrates why such an a posteriori selection cannot be
done.

Example 2.8. Consider BES E5 = 〈X1 = X2∧X3, X2 = X1∧X3, X3 = X2∧X3〉
with sign 〈ν, µ, ν〉. The corresponding logic program is {p1 ← ¬q1, q1 ← ¬p2 ∨
q3, p2 ← ¬q1∧¬q3, p3 ← ¬q3, q3 ← ¬p2∧q3}. The stable models for this program
are {p1, p2, p3} and {q1, q3}, which correspond to solutions v1 = (X1 = 1, X2 =
1, X3 = 1) and v2 = (X1 = 0, X2 = 0, X3 = 0), respectively. Among them, v1

assigns to X3 (the outermost variable) the value 1, which is closest to its default
(since σ3 = ν). However, the solution to BES E5 is v2 since v1 is not a solution
to the subsystem 〈X1 = X2 ∧X3, X2 = X1 ∧X3〉. ut

Hence the “smallest” stable model may not correspond to the solution of a
BES. Thus, the order information on the BES lost in the translation to logic
programs should be taken into account when the appropriate model is computed.
In Section 4 we define the notion of preferred stable models where information
on ordering of literals is taken into account in the definition of the model itself.

3 Solutions to Boolean Equation Systems

Let χ = {X1, X2, . . . } be the set of variables. The set of positive boolean formulas
over the set χ is described by the following grammar:

α := Xi ∈ χ | α1 ∧ α2 | α1 ∨ α2

5

A valuation v is a map v : χ → {0, 1} with 0 standing for false and 1 for
true. Let V denote the set of valuations. Given a positive boolean formula α
and a valuation v, α[v] denotes the boolean value obtained by evaluating α using
valuation v. Given a valuation v and a boolean value a, the valuation v[a/Xi]
is the valuation that returns the same value as v for all Xj other than Xi and
returns a for Xi.

The solution of a boolean equation system φ, denoted by [[φ]], is defined as
a function that maps valuations to valuations. The mapping is such that [[φ]](v)
depends on v only for the free variables of φ. Thus, for a closed system [[]] defines
a constant function.

We first consider finding solutions to φi, where σi = µ. Consider a function
f parameterized by a valuation v defined as f(v) = λx.αi[v[x/Xi]]. Since evalu-
ating a formula w.r.t. a valuation results in a boolean value, f(v) maps booleans
to booleans. Now, the least fixed point of f(v) (taken w.r.t. the natural partial
order on {0, 1} with 0 less than 1), denoted by lfp(f(v)), gives the smallest
value for Xi such that the fixed-point equation µ : Xi = αi holds for the given
valuation v. Note that the value assigned by v to Xi is immaterial since f(v)
considers only v[x/Xi]. Let valuation v′ be such that for all inner variables Xj ,
j ≤ i, v′(Xj) are the fixed points of the equations in φi+1 when the outer vari-
ables Xk, k > i, are substituted by v′(Xk). Then lfp(f(v′)) is the fixed-point
value of Xi corresponding to the values of the outer variables as specified by v′.
Thus, [[φi]](v)(Xi), is identical to lfp(f([[φi+1]](v))). The semantics of greatest
fixed-point equations can be explained similarly.

The solution of a system φ is defined by induction on the size i of the system
as follows:

[[φ0]](v) = v

[[φi+1]](v) =
{

[[φi]](v[lfp(ξi+1)/Xi+1]) if σ(i+ 1) = µ
[[φi]](v[gfp(ξi+1)/Xi+1]) if σ(i+ 1) = ν

i ≥ 0

where ξi+1 = λx.αi+1[[[φi]](v[x/Xi+1])]

3.1 Solutions as Preferred Fixed Points

It is useful to treat the solution to a BES as the “minimum valuation” that
satisfies the equations in the BES. We now formalise this notion. We define a
family of partial orders vi, i ≥ 1, on valuations that captures our intuition that
least fixed-point variables take values as close to 0 as possible and greatest fixed-
point variables take values as close to 1 as possible. Further, it also captures the
idea that outer variables (i.e. variables with a higher index) have higher priority
then inner variables (i.e. variables with a lower index).

We say that a valuation v is a fixed point of the system 〈X1 = α1, . . . , Xn =
αn〉 if v(Xi) = αi[v] for 1 ≤ i ≤ n.

6

Definition 3.1 (Fixed Points of a BES). The set of fixed points of a BES φ
with respect to a valuation v, denoted by FP(v)(φ), is such that

FP(v)(φ0) = v
FP(v)(φi+1) = {u | u ∈ FP(v)(φi) and u(Xi+1) = αi+1[u]} if i ≥ 0

Note that in the above definition, we ignore the signs of the equations. We
now define a partial order on valuations based on the signs is used to select the
preferred fixed point.

For a given sign map σ, we define the following partial orders: Let the partial
order ≤i over {0, 1} be defined as 0 ≤i 1 iff σ(i) = µ and 1 ≤i 0 iff σ(i) = ν.
The partial order vi over valuations is defined by recursion over i as follows:

u v1 v ⇐⇒ u(X1) ≤1 v(X1)
u vi+1 v ⇐⇒ u(Xi+1) <i+1 v(Xi+1) or u(Xi+1) = v(Xi+1) ∧ u vi v

We say that u @i v if u vi v and u 6= v. It is easy to see that vi is a partial
order on any set of valuations that agree at Xj for all j > i.

Definition 3.2 (Preferred Fixed Points). The preferred fixed points of a
BES φ with respect to a valuation v, denoted by PFP(v)(φ), is the set of valuation
such that:

PFP(v)(φ0) = v
PFP(v)(φi+1) = minvi+1(PFP(v)(φi) ∩ FP(v)(φi+1)) if i ≥ 0

Observe from the above definitions that PFP(v)(φ) ⊆ FP(v)(φ). Moreover,
u(Xj) = v(Xj) for all j > (i+ 1) for any u ∈ FP(v)(φi). Thus, vi+1 is a linear
order (as it is a lexicographic order) on the set of valuations in PFP(v)(φi) ∩
FP(v)(φi+1). This leads us to the following proposition:

Proposition 3.3. For every closed boolean equation system φ, there is a unique
preferred fixed point, i.e., |PFP(φ)| = 1.

For the preferred fixed point to capture the solution of a given BES, the
preference minv must be applied to a set of preferred fixed points of the inner
equation. To see this, consider the following formula:

X1 = X2 ∧X3

X2 = X3 ∧X1

X3 = X2 ∧X3

with σ(1) = ν, σ(2) = µ and σ(3) = ν. It is easy to verify that the valuation
v that assigns 1 to X1, X2 and X3 is a fixed point, and is minimal w.r.t. v3.
However, it is also easy to check that the solution of the BES assigns 0 to X1,
X2 and X3, and this is the preferred fixed point according to the definition given
above.

Theorem 3.4. Let φ be a BES of size n. Then, for all i ≤ n, [[φi]](v) is the
preferred fixed point of φi w.r.t. v.

The proof follows by an easy induction on i.

7

4 Preferred Stable Models of Normal Logic Programs

Let P = {p1 ← β1, p2 ← β2, . . . , pn ← βn} be a logic program. A proposition
p 6∈ {p1, p2, . . . , pn} is said to be free in P if there is some β such that p occurs
in βi.

We represent a model of a logic program by a substitution that maps propo-
sitions to truth values {0, 1}. We use w0 to denote the substitution that maps
all propositions to 0. Given a substitution w over propositions, we extend it to
literals such that w(¬p) = ¬w(p) for every proposition p, where ¬0 = 1 and
¬1 = 0. Finally, given a program P and a substitution w, the program P [w] is
the one obtained by substituting all free propositions p in P by w(p).

Definition 4.1 (Least Models for Definite Logic Programs). The least
model of a definite logic program P w.r.t. a substitution w on the free propositions
of P is defined by the following equations:

M({})(w) = w
M({pi ← βi} ∪ P ′)(w) = M(P ′)(w[bi/pi])

where bi = lfp(λx.βi[M(P ′)(w[x/pi])])

The traditional least model of P under the closed world assumption is simply
M(P)(w0).

We now recall the definition of stable model semantics for normal logic pro-
grams.

Definition 4.2 (Gelfond-Lifschitz Transformation [6]). The Gelfond-Lif-
schitz transform of a propositional normal logic program P with respect to sub-
stitution w is a program P

;

w obtained by replacing every negative literal of the
form ¬p in P by ¬w(p).

Note that for all P and w, P

;

w is a definite logic program. A substitution
w is a stable model of a program P iff it is the least model of P

;

w.

Definition 4.3 (Stable Models). The set of stable models of a normal logic
program P w.r.t. a substitution w on the free propositions of P , denoted by
SM (P)(w), is defined as:

SM (P)(w) = {u | u = M(P [w]

;

u)(w)}

4.1 Preferred Stable Models

We now define stable models w.r.t. a preference sequence: a sequence S =
〈l1, l2, . . . , lm〉 of literals such that no proposition appears both positively and
negatively in S. As usual, we represent by Si the initial subsequence of S of
length i. Given a substitution w which maps propositions to truth values, we
extend w to literals with the usual interpretation that w(¬p) = ¬w(p) for some
proposition p where ¬0 = 1 and ¬1 = 0.

8

Definition 4.4 (Preference Order vS). Given two substitutions w1 and w2

and a preference sequence S = 〈l1, l2, . . . , lm〉, we say that w2 is preferred over
w1 (written as w1 vS w2) if w1(lm) < w2(lm), or w1(lm) = w2(lm) and
w1 vSm−1 w2. For an empty preference sequence S = 〈 〉, w1 vS w2 for any
pair of substitutions w1 and w2.

Note that vS defines a lexicographic order on substitutions, and hence is a
partial order. Moreover, for any pair of substitutions w1, w2 that agree at all
literals not in S, we have w1 vS w2 ∧ w2 vS w1 ⇒ w1 = w2. This means that
for every set of substitutions that agree on all literals not in S, there is a unique
minimum element w.r.t. vS . We denote this element by minvS .

Definition 4.5 (Preferred Stable Models). The preferred stable model of a
normal logic program P w.r.t. to a substitution w and a preference sequence S,
denoted by PSM S(P)(w), is defined inductively on the size of P as follows:

PSM S({})(w) = w
PSM S({pi ← βi} ∪ P ′)(w) = minvS (PSM S(P ′)(w) ∩ SM ({pi ← βi} ∪ P ′)(w))

By PSM S(P) we denote the set of all preferred stable models w.r.t. arbitrary
substitutions.

It is easy to show that the above definition is well-defined in the sense that the
value of PSM S is independent of the clause {pi ← βi} selected for use in the
recursive case.

A preference sequence S is said to be complete w.r.t. program P if every
proposition in P appears (positively or negatively) in S. Hence every program
that has at least one stable model has exactly one preferred stable model w.r.t.
a complete preference sequence. Formally,

Proposition 4.6 (Uniqueness of Preferred Stable Models). Let P be a
normal logic program, and S be a preference sequence that is complete w.r.t. P .
Then |PSM S(P)| ≤ 1. Moreover |PSM S(P)| = 0 iff PSM S(P) = {}.

5 Mapping Boolean Equation Systems to Propositional
Logic Programs

In order to map BESs to logic programs, we first consider the mapping between
the variables in a given BES φ and propositions in the corresponding logic pro-
gram P . The logic program P we derive is over propositions {p1, p2, . . . , q1, q2, . . . }
such that each variable Xi in φ corresponds to literal pi if σ(i) = µ and to ¬qi if
σ(i) = ν. The idea behind the mapping is to translate the equations into clauses
in a normal logic program, considering greatest fixed points in terms of their dual
least fixed points. The salient aspect of the mapping we define is that negation is
used only where absolutely necessary: negation will be used only when variables

9

of differing (fixed-point) signs are related. The following function M translates
variables of a BES to propositions in the translated logic program:

M(Xi) =
{
pi if σ(i) = µ
¬qi if σ(i) = ν

We lift M to boolean expressions by replacing the variables in a given ex-
pression using the above definition. In order to translate greatest fixed-point
equations, we need to find the dual of the equation. This is done by construct-
ing α, which is ¬α to negation normal form. When we apply M to boolean
expressions with negation, we also reduce expressions of the form ¬¬p to p.

Definition 5.1. The translation function P maps boolean equation systems to
normal logic programs, such that P(φ) for a boolean equation system φ is given
by

P(φ0) = {}

P(φi+1) =
{
{pi+1 ←M(αi+1)} ∪ P(φi) if σ(i+ 1) = µ
{qi+1 ←M(αi+1)} ∪ P(φi) if σ(i+ 1) = ν

for i ≥ 0

Note that for each Xi in φ there is exactly one proposition in P(φ). Observe
that if Xk appears in αi then the literal corresponding to Xk appears in negated
form in the program clause corresponding to αi if and only if σ(i) 6= σ(k).
Thus, negative dependencies are introduced in P(φ) only if the corresponding
variables in φ differ in sign. In an alternation-free BES, the dependency between
opposite-signed variables is cycle-free. Hence we have the following proposition:

Proposition 5.2. If φ is an alternation-free boolean equation system then P(φ)
is a stratified logic program.

Stratified logic programs have unique stable models which can be evaluated
in polynomial time. Thus, the logic programs generated from alternation-free
BESs can be efficiently evaluated.

We complete the translation by defining a mapping between sign maps of a
given BES and preference sequences for the corresponding logic program.

Definition 5.3. The translation function P maps the sign map σ of a BES of
size n to the preference sequence 〈l1, l2, . . . , ln〉 such that for all 1 ≤ i ≤ n:

li =
{
pi if σ(i) = µ
¬qi if σ(i) = ν

We have overloaded the symbol P to denote the translation functions that map
different aspects of the BES to logic programs with preferences. Note that P(σ)
is a complete preference sequence whenever σ is a sign map of a closed BES.

10

6 Solutions to Boolean Equation Systems are Preferred
Stable Models

We now show that given a closed BES φ of size n, its solution can be obtained
from the preferred stable model of P(φ). This is done by showing that

(i) the preference order among fixed points in a BES corresponds to the order
imposed by preference sequences,

(ii) every stable model of P(φ) is a fixed point of φ, and
(iii) the preferred fixed point of φ is a stable model of P(φ).

We first formalize the relationship between the valuations of a BES and
the models of the corresponding logic program. Given a valuation v over χ =
{X1, X2, . . . } let P(v) be a substitution over A = {p1, p2, . . . , q1, q2, . . . } such
that for all i ≥ 0, P(v)(pi) = v(Xi) and P(v)(qi) = ¬v(Xi). Similarly, for any
substitution w over A satisfying w(pi) = ¬w(qi) for every i, we write P−1(w) to
denote the valuation over χ such that P−1(w)(Xk) = w(pk).

The correspondence between valuations and substitutions, and between sign
maps and preference sequences, is formalized in the following theorem:

Theorem 6.1. Let φ be a closed BES of size n with sign map σ and let S = P(σ)
be a preference sequence. For any pair of valuations v1, v2 over {X1, X2, . . . , Xn},
v1 vn v2 iff P(v1) vS P(v2).

The following theorem formally states the second step needed for establishing
the correspondence between preferred fixed points and preferred stable models:

Theorem 6.2. Let φ be a BES of size n and v be a valuation. If u is a stable
model of P(φn)[P(v)] then P−1(u) is a fixed point of φ w.r.t. the valuation v.

The proof follows from the definition of stable models and the translation map-
ping P.

The third step would be trivial if the converse of Theorem 6.2 were true.
However, it turns out that not all fixed points of a BES correspond to stable
models of the translated program. This mismatch arises because the definition
of fixed points completely ignores the signs of the equations as well as the order
of nesting, while the translation from BES to logic programs ignores only the
order of nesting. Thus even for non-nested BESs the set of fixed points may be
larger than the set of stable models of the corresponding program. For example,
consider the BES φ with equations 〈X1 = X2, X2 = X1〉 and sign map 〈µ, µ〉. The
BES has two fixed points: v1 = (X1 = 0, X2 = 0) and v2 = (X1 = 1, X2 = 1),
with v1 as the solution. The program P(φ) is {p1 ← p2, p2 ← p1}, and has only
one stable model {}. Similarly the system E3 in Example 2.3 (Section 2) has three
fixed points but of these only two ((X1 = 0, X2 = 0) and (X1 = 1, X2 = 1))
correspond to stable models ({q1} and {p1, p2} respectively) of the translated
program.

Thus, we need to show that we have not “lost” the solution to a BES in the
translation, as formally stated by the following theorem.

11

Theorem 6.3. Let φ be a closed BES of size n and v be a valuation. Then, for
all n, P([[φn]](v)) is a stable model of P(φn)[P(v)].

Proof. See Appendix B.

Thus, the stable models of P(φ) correspond (via the translation function P
over valuations) to a subset of the set of fixed points of φ that contains the
preferred fixed point of φ. Since preference orders over valuations and substitu-
tions coincide (from Theorem 6.1) it is easy to establish from the definition of
preferred stable models that the preferred stable model of P(φ) corresponds to
the preferred fixed point of φ.

Corollary 6.4. Let φ be a closed BES with sign map σ and let S = P(σ). Then
PFP(φ) = {v} and PSM S(P(φ)) = {w} such that v = P−1(w).

7 Conclusions

We have shown how to compute alternating fixed points of boolean equation
systems by translating a given equation system φ into a propositional normal
logic program P(φ), and computing a particular stable model of P(φ).

This result provides the basis for extending the XMC model checker, which
currently handles only the alternation-free fragment of the modal mu-calculus, to
the full mu-calculus, complete with alternating fixed points. The extended model
checker works roughly as follows. Translate the given modal mu-calculus formula
(expressed equationally) into a propositional normal logic program P , using the
translation procedure of Section 5. Feed P into the XSB logic programming
system [15], XMC’s underlying logic-programming engine. XSB computes the
well-founded semantics of normal logic programs. Since, in general, P is non-
stratified, this results in a certain “residual program” r(P) of P . Now, feed
r(P) into the stable-models generator of [9]—with its search procedure suitably
modified—to compute r(P)’s preferred stable model. The answer to the original
model-checking question can be directly obtained from this model. Experimental
results have shown that the residual programs so derived are typically quite small
and the preferred stable model can be calculated quite efficiently [8].

We have also shown that for alternation-free boolean equation systems, the
logic programs we derive are stratified. Consequently, our mapping of boolean
equation systems to logic programs preserves the linear-time complexity of eval-
uating solutions of such equation systems established in [4]. We moreover con-
jecture that for boolean equation systems with alternating fixed points, time
complexity exponential in the “alternation depth” of the equation system can
be attained, again matching the best upper bound known to date. This result
would depend critically on the use of the Gelfound-Lifschitz transformation to
steer the computation of the preferred stable models of the non-stratified logic
programs that our translation produces in the case of alternating fixed points.

12

References

1. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skele-
tons using branching-time temporal logic. In D. Kozen, editor, Proceedings of the
Workshop on Logic of Programs, Yorktown Heights, volume 131 of Lecture Notes
in Computer Science, pages 52–71. Springer Verlag, 1981.

2. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM TOPLAS, 8(2),
1986.

3. E. M. Clarke and J. M. Wing. Formal methods: State of the art and future
directions. ACM Computing Surveys, 28(4), December 1996.

4. R. Cleaveland and B. U. Steffen. A linear-time model checking algorithm for the
alternation-free modal mu-calculus. Formal Methods in System Design, 2:121–147,
1993.

5. G. Delzanno and A. Podelski. Model checking in CLP. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), pages 223–239, 1999.

6. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In International Conference on Logic Programming, pages 1070–1080, 1988.

7. D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

8. Xinxin Liu, C. R. Ramakrishnan, and Scott A. Smolka. Fully local and efficient
model checking of alternating fixed points. In Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 1384 of Lecture Notes in Computer
Science, pages 56–70. Springer Verlag, 1998.

9. I. Niemela and P. Simons. Efficient implementation of the well-founded and sta-
ble model semantics. In Joint International Conference and Symposium on Logic
Programming, pages 289–303, 1996.

10. V. R. Pratt. A decidable mu-calculus. In Proceedings of the 22nd IEEE Ann.
Symp. on Foundations of Computer Science, Nashville, Tennessee, pages 421–427,
1981.

11. J. P. Queille and J. Sifakis. Specification and verification of concurrent systems
in Cesar. In Proceedings of the International Symposium in Programming, volume
137 of Lecture Notes in Computer Science, Berlin, 1982. Springer-Verlag.

12. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, T. L.
Swift, and D. S. Warren. Efficient model checking using tabled resolution. In
Proceedings of the 9th International Conference on Computer-Aided Verification
(CAV ’97), Haifa, Israel, July 1997. Springer-Verlag.

13. C.R. Ramakrishnan, I.V. Ramakrishnan, S.A. Smolka, Y. Dong, X. Du, A. Roy-
choudhury, and V.N. Venkatakrishnan. XMC: A logic-programming-based verifi-
cation toolset. In Computer Aided Verification (CAV), 2000.

14. B. Vergauwen and J. Lewi. Efficient local correctness checking for single and
alternating boolean equation systems. In Proceedings of ICALP’94, pages 304–
315. LNCS 820, 1994.

15. XSB. The XSB tabled logic programming system. Available from
http://xsb.sourceforge.net.

13

A Modal Mu-Calculus and Boolean Equation Systems

Formulas in the modal mu-calculus are constructed from existential (denoted by
〈·〉) and universal (denoted by [·]) modalities; explicit greatest and least fixed-
point operators (denoted by ν and µ, respectively); formula variables that index
the fixed points; and the traditional conjunction/disjunction operators and con-
stants true and false from classical logic. Models of mu-calclus formulas are
given in terms of sets of vertices (called states) of a (edge-) labeled graph (called
labeled transition system). For instance, the formula

νX.〈−〉true ∧ [−]X

characterizes deadlock freedom: a state s that models X is such that it is possible
to make a transition from s (i.e., the meaning of 〈−〉true) and every destination
state reached models X (the meaning of [−]X).

Fixed points in a mu-calculus formula may be nested: i.e., a fixed-point for-
mula φ1 may occur in the scope of another fixed point formula φ2. We then
say that the outer formula φ2 depends on the inner formula φ1. Moreover, the
inner fixed-point formula φ1 may refer to the variable indexing the outer fixed
point φ2, thereby making φ1 and φ2 mutually dependent. Forumlas where the
mutually dependent fixed points have different fixed-point operators (i.e., µ and
ν) are called alternating fixed-point formulas. An example of an alternating
fixed-point formula is:

νX.µX ′.[a]X ∧ [−a]X ′

which expresses the property that transitions labeled a occur infinitely often in
every infinite path of the system.

The problem of determining whether a labeled transition system constitutes
a model of a modal mu-calculus formula can be directly translated into the
problem of solving a corresponding boolean equation system. For example, the
model for the deadlock-freedom formula with respect to the labeled transition
system depicted in Figure 1(a) can be derived from the solution to the boolean
equation system given in Figure 1(c). Each variable Xi in the boolean equation
system can be seen as describing whether or not state si in the LTS is in the
model of the modal mu-calculus formula X.

B Proof of Theorem 6.3

Theorem 6.3. Let φ be a closed BES of size n and v be a valuation. Then, for
all n, P([[φn]](v)) is a stable model of P(φn)[P(v)].

Proof. We shall establish the proof of this theorem by induction on n, the size
of the formula φ.

14

S

S1

S4

S3

2

a

b c

d

ν X1 = X2 ∧X4

ν X2 = X3

ν X3 = X2

ν X4 = false

(a) (c)

νX.〈−〉true ∧ [−]X

X1 = false
X2 = true
X3 = true
X4 = false

(b) (d)

Fig. 1. Example Labeled Transition System (a), mu-calculus formula for deadlock free-
dom (b), corresponding Boolean Equation System (c), and its solution (d).

Basis: n = 1 Let us first consider the case σ(1) = µ. Thus,

P(φ1) = {p1 ←M(α1)}

Further, since p1 do not appear in negative literals in M(α1)

P(φ1)[P(v)]

; P([[φ1]](v)) = {(p1 ←M(α1))}[P(v)]

Thus,

M(P(φ1)[P(v)]

; P([[φ1]](v))) = M({(p1 ←M(α1))}[P(v)])

Thus, from the definition of semantics of definite logic programs, we have

M(P(φ1)[P(v)]

; P([[φ1]](v)))(p1) = lfp[λx.M(α1)[P(v)[x/p1]]]
= lfp[λx.α1[x/X1]]
= [[φ1]](v)(X1)
= P([[φ1]](v))(p1)

Next we consider the case when σ(1) = ν. Thus,

P(φ1) = {q1 ←M(α1)}

Further, as q1 does not appear in any negative literal in M(α1),

P(φ1)[P(v)]

; P([[φ1]](v)) = {(q1 ←M(α1))[P(v)]}

15

Now,

M(P(φ1)[P(v)]

; P([[φ1]](v)))(q1)
= lfp([λx.M(α1)[P(v)[x/q1]]])
= ¬gfp([λx.M(α1)[P(v)[x/q1]]])
= ¬gfp([λx.α1[v[x/X1]]])
= ¬[[φ1]](v)(X1)
= P([[φ1]](v))(q1)

Induction step: Let us consider the case when σ(i + 1) = µ (The proof with
σ(i+ 1) = ν is similar and is omitted.) Then,

P(φi+1) =
{
pi+1 ←M(αi+1)
P(φi)

}
Thus,

P(φi+1)[P(v)]

; P([[φi+1]](v)) =
{

(pi+1 ←M(αi+1))[P(v)]

; P([[φi+1]](v))
P(φi)[P(v)]

; P([[φi+1]](v))

}

Thus,

M(P(φi+1)[P(v)]

; P([[φi+1]](v)))

= M(
{

(pi+1 ←M(αi+1))[P(v)]

; P([[φi+1]](v))
P(φi)[P(v)]

; P([[φi+1]](v)])

}
)

The following fact about propositional definite logic programs is well known
and rather easy to establish. As always, we use characteristic functions to denote
models of propositional logic programs.

Proposition B.1. Let P = {p1 ← α1, . . . , pn ← αn} be a propositional definite
logic program. Let P 1

j = {p2 ← α′2, . . . , pn ← α′n} for j ∈ {0, 1}, where α′i is
obtained by substituting j for p1 in αi. Then, M(P) = M(P 1

0)[0/p1] iff M(p1 ←
α1[M(P 1

0)])(p1) = 0 and M(P) = M(P 1
1)[1/p1] otherwise.

Let us now consider the case when [[φi+1]](v)(Xi+1) = 0. Then, P([[φi+1]](v))(pi+1) =
0.

We now apply Proposition B.1 with p1 = pi+1. Here P 1
0 is

P(φi)[P(v)]

; P([[φi+1]](v)]) with 0 substituted for pi+1

= P(φi)[P(v[0/Xi+1])]

; P([[φi+1]](v)])

16

But,

M(P(φi)[P(v[0/Xi+1])]

; P([[φi+1]](v)))
= M(P(φi)[P(v[0/Xi+1])]

; P([[φi]](v[[[φi+1]](v)(Xi+1)/Xi+1])))
{ Since [[φi+1]](v) = [[φi]](v[[[φi+1]](v)(Xi+1)/Xi+1]) }

= M(P(φ)[P(v[[[φi+1]](v)(Xi+1)/Xi+1])]

; P([[φi]](v[[[φi+1]](v)(Xi+1)/Xi+1])))
{ Since [[φi+1]](v)(Xi+1) = 0 }

= P([[φi]](v[[[φi+1]](v)(Xi+1)/Xi+1]))
{ By induction hypothesis }

= P([[φi+1]](v))

Now,

M((pi+1 ←M(αi+1))[P(v)]

; P([[φi+1]](v))[P([[φi+1]](v))])(pi+1)
= M((pi+1 ←M(αi+1))[P([[φi+1]](v))]

; P([[φi+1]](v)))(pi+1)
= M((pi+1 ←M(αi+1))[P([[φi+1]](v))])(pi+1)
= lfp([a 7→ M(αi+1)[P([[φi+1]](v))[a/pi+1]]]
= lfp([a 7→ αi+1[[[φi+1]](v)[a/Xi+1]]])
= lfp([a 7→ αi+1[([[φi]](v[[[φi+1]](v)(Xi+1)/Xi+1]))[a/Xi+1]]]
= lfp([a 7→ αi+1[([[φi]](v[0/Xi+1]))[a/Xi+1]]]

But this least fixed point is 0 (= P([[φi+1]](v))(pi+1)) as

αi+1[([[φi]](v[0/Xi+1]))[0/Xi+1]]
= αi+1[[[φi]](v[0/Xi+1])]
= αi+1[[[φi]](v[[[φi+1]](v)(Xi+1)/Xi+1])]
= [[φi+1]](v)(Xi+1)
= 0

Thus, by Proposition B.1,

M(P(φi+1)[P(v)]

; P([[φi+1]](v)))
= P([[φi+1]](v))

Next we consider the case when [[φi+1]](v)(Xi+1) = 1. Let

I = {1 ≤ j ≤ i | σ(j) = µ}.

Then, the program P(φi+1)[P(v)]

; P([[φi+1]](v)) can be written as follows
{

(pi+1 ←M(αi+1))[P(v)]
{pj ←M(αj)}j∈I [P(v)]

}
{qj ←M(αj)}j 6∈I [P(v)]

 ; P([[φi+1]](v))

which is the same as


{

(pi+1 ←M(αi+1))[P(v)]
{pj ←M(αj)}j∈I [P(v)]

}

; P([[φi+1]](v))

{qj ←M(αj)}j 6∈I [P(v)]

; P([[φi+1]](v))


17

Now, we can use Observation 1 to rewrite this as,


{

(pi+1 ←M(αi+1))
{pj ←M(αj)}j∈I

}
[P([[φi+1]](v))]

{qj ←M(αj)}j 6∈I [P([[φi+1]](v))]


We now try to apply Proposition B.1 with p1 = pi+1. So, we need to evaluate

the least herbrand model of the following program:{
{pj ←M(αj)}j∈I [P([[φi+1]](v))[0/pi+1]]
{qj ←M(αj)}j 6∈I [P([[φi+1]](v))[0/pi+1]]

}
Note that the two parts of this program are independent of each other, the

variable pi+1 appears only in the first part and that too only positively. Thus,
we need to evaluate the following:

u = M(
{
{pj ←M(αj)}j∈I [P([[φi+1]](v)[0/Xi+1])]
{qj ←M(αj)}j 6∈I [P([[φi+1]](v))]

}
)

Let

w = M(
{
{pj ←M(αj)}j∈I [P([[φi+1]](v)[0/Xi+1])]
{qj ←M(αj)}j 6∈I [P([[φi+1]](v)[0/Xi+1])]

}
)

Since every occurance of pi+1 in M(αj) is negative for each j 6∈ I, and the
two parts of the program are independent of each other, u(pj) = w(pj) for all
j ∈ I and u(qj) ≤ w(qj) for all j ∈ I.

Now let us consider the valuations [[φi+1]](v)[0/Xi+1] and [[φi]](v[0/Xi+1]).
Note that

[[φi+1]](v) = [[φi]](v[[[φi+1]](v)(Xi+1)/Xi+1])
= [[φi]](v[1/Xi+1])

Thus, by the monotonicity of the operators in the formula, we have that

[[φi+1]](v)[0/Xi+1](Xj) ≥ [[φi]](v[0/Xi+1])(Xj)

for all 1 ≤ j ≤ i+ 1.
Thus,

P([[φi+1]](v)[0/Xi+1])(pj) ≥ P([[φi]](v[0/Xi+1]))(pj)

for all j ∈ (I ∪ {i+ 1}) and

P([[φi+1]](v)[0/Xi+1])(qj) ≤ P([[φi]](v[0/Xi+1]))(qj)

for all j 6∈ (I ∪ {i+ 1}).

18

Thus, for all pj , j ∈ I,

M({pj ←M(αj)}j∈I [P([[φi+1]](v)[0/Xi+1])])(pj)
≥ M({pj ←M(αj)}j∈I [P([[φi]](v[0/Xi+1]))])(pj)

and for all j 6∈ I

M({qj ←M(αj)}j 6∈I [P([[φi+1]](v)[0/Xi+1])])(qj)
≤ M({qj ←M(αj)}j 6∈I [P([[φi]](v[0/Xi+1]))])(qj)

Let t be the valuation given by{
t(pj) = M({pj ←M(αj)}j∈I [P([[φi]](v[0/Xi+1]))])(pj) if j ∈ I ∪ {pi+1}
t(qj) = M({qj ←M(αj)}j 6∈I [P([[φi]](v[0/Xi+1]))])(qj) if j 6∈ I

Thus for all j ∈ I ∪ {i + 1}, t(pj) ≤ w(pj) and for all j 6∈ I, t(qj) ≥ w(qj).
Further, since all occurances of any pj in the equations for qk is in the negated
form and vice versa, t is given by the following:

M(
{
{pj ←M(αj)}j∈I
{qj ←M(αj)}j 6∈I

}
[P([[φi]](v[0/Xi+1]))]

; P([[φi]](v[0/Xi+1])))

Thus, t is given by:

M(P(φi)[P([[φi]](v[0/Xi+1]))]

; P([[φi]](v[0/Xi+1])))
= M(P(φi)[P(v[0/Xi+1])]

; P([[φi]](v[0/Xi+1])))

Thus, by induction hypothesis, t = P([[φi]](v[0/Xi+1])). But, from the fact that
[[φi+1]](v)(Xi+1) = 1 and the definition of P it is easy to see that

M(({pi+1 ←M(αi+1)}[P([[φi+1]](v))]

; P([[φi+1]](v)))[t])(pi+1) = 1.

But, for all j ∈ I ∪ {i+ 1}, t(pj) ≤ u(pj) and for all j 6∈ I, t(qj) ≥ u(qj). Since,
pi+1 depends positively on pj it follows that

M(({pi+1 ←M(αi+1)}[P([[φi+1]](v))]

; P([[φi+1]](v)))[u])(pi+1) = 1.

Thus, by Proposition B.1,

M(P(φi+1)[P(v)]

; P([[φi+1]](v)))(pi+1) = 1.

Thus,

M(P(φi+1)[P(v)]

; P([[φi+1]](v)))(pi+1) = P([[φi+1]](v))(pi+1).

19

Let rj = pj if σ(j) = µ and qj otherwise. Now, for any j, 1 ≤ j ≤ i,

M(P(φi+1)[P(v)]

; P([[φi+1]](v)))(rj)
= M((P(φi)[P(v)]

; P([[φi+1]](v)))
[P([[φi+1]](v))[M(P(φi+1)[P(v)]

; P([[φi+1]](v)))(pi+1)/pi+1]])(rj)
{ By Proposition B.1 }

= M((P(φi)[P(v)]

; P([[φi+1]](v)))[P([[φi+1]](v))])(rj)
= M((P(φi)[P([[φi+1]](v))]

; P([[φi+1]](v)))[P([[φi+1]](v))])(rj)
= M(P(φi)[P([[φi+1]](v))]

; P([[φi+1]](v)))(rj)
= M(P(φi)[P([[φi]](v[[[φi+1]](v)(Xi+1)/Xi+1]))]

;

P([[φi]](v[[[φi+1]](v)(Xi+1)/Xi+1])))(rj)
= M(P(φi)[P(v[[[φi+1]](v)(Xi+1)/Xi+1])]

; P([[φi]](v[[[φi+1]](v)(Xi+1)/Xi+1])))(rj)
= P([[φi]](v[[[φi+1]](v)(Xi+1)/Xi+1]))(rj)
{ By Induction Hypothesis }

= P([[φi+1]](v))(rj)

Thus, we have proved that P([[φi+1]](v)) is a stable model of P(φi)[P(v)].
This completes the proof of the theorem.

20

