
Inlining: A Tool for Eliminating Mutual Recursion

OWEN KASER, C. R. RAMAKRISHNAN, and SHAUNAK PAWAGI

State University of New York, Stony Brook

Procedure inlining can be used to convert mutual recursion to direct recursion. We present a

set of conditions under which inlining can transform all mutual recursion to direct recursion.

This will result in fewer procedure calls, and will allow use of optimization techniques that are

most easily applied to directly recursive procedures. Conditions are also provided which answer

the question, “when can mutual recursion elimination not terminate?”. Also, a technique is

presented to eliminate a mutually recursive circuit if it consists of only tail calls.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers,

optimization

General Terms: Languages, Performance

Additional Key Words and Phrases: Inline substitution, procedure inlining, call graphs, mutual

recursion, theory

1 INTRODUCTION

Inline expansion of a procedure call is the replacement of the call by the code of the called proce-

dure. As an optimization, inlining can reduce execution time for several reasons. First, it reduces

the number of call and return instructions executed. Second, inlining produces larger blocks of

code. This often benefits other optimization techniques, such as constant propagation[1], espe-

cially if inter-procedural optimizations are not attempted. Also, inlining can increase the locality

of code, resulting in an improved instruction-cache access pattern[5, 9], and improved paging[4].

A contribution of this paper is a set of conditions under which inlining can transform all

mutual recursion to direct recursion, resulting in fewer procedure calls. For instance, converting

two mutually recursive procedures to one self-recursive procedure may halve the number of

calls. Program locality is also improved, and further compiler optimizations may be possible

that would be more difficult, or impossible, otherwise. For instance, inlining may remove all

mutually recursive calls to a procedure, leaving only non-recursive or directly recursive calls.

In this case, inter-procedural analysis is much simplified, and certain optimizations that can

be performed only on directly recursive calls (or nonrecursive procedures, c.f. [12, 13]) may be

performed. One example of this is the standard technique (with an explicit stack data structure

1

and the use of local goto statements) for simulating recursion in nonrecursive languages1.

Another example involves tail calls, and is examined later. We present a technique to elimi-

nate a mutually recursive circuit if it consists of only tail calls.

For a second contribution, we consider whether heuristics for mutual-recursion elimination

can continue forever. We show that this can happen, even if certain reasonable restrictions

are placed on which arcs can be inlined. In fact, we provide a precise characterization of the

programs for which such undesirable behavior is possible.

2 BACKGROUND

First, we describe our definitions and notation. Then we describe our model of inlining, and

finally we consider the two different varieties of inlining we use.

2.1 Definitions

In this paper, we assume standard graph-theoretic definitions for directed graphs and multi-

graphs, directed trees, nodes, arcs, circuits, leaves, and so forth. An arc from parent u to child

v is denoted2 by (u, v). It is an in-arc for v and an out-arc for u. If u and v are identical, this

arc is a self-loop. In our multi-graphs, a circuit is viewed as a sequence of arcs. Thus, the same

set of nodes may correspond to several circuits, if there are parallel arcs. A circuit is simple if it

does not contain some node multiple times. Unless otherwise specified, all circuits are assumed

to be simple. Furthermore, a circuit of length two is called a 2-circuit. Without circuits, a

directed (multi-)graph is a (multi-)dag. Its roots are nodes without in-arcs, and its leaves are

nodes without out-arcs. Note that a dag may have several roots.

Rather than consider an actual program when deciding what to inline, we wish to make our

decision based on a more compact input. For this reason, we use the call graph of the program.

This is a directed multi-graph that has a node for each procedure and an arc for each call. For

an arc a = (q, r), we refer to procedure q as the caller and to procedure r as the callee. Observe

that a self-loop in the call graph indicates a directly recursive call, also known as a self-recursion,

in the program. Note that the call graph may be a multi-graph, since q may contain several

calls to r. Thus, we often refer to a specific call site within the code of q. For every call site

there is an arc in the call graph, and vice versa. Note that we may choose to inline an arc in

the call graph, but choose not to inline an arc parallel to it.

1 We do not claim that this technique cannot be modified to handle mutual recursion.
2 Since we deal with multi-graphs, this notation is somewhat ambiguous. A more precise notation, differenti-

ating parallel arcs (u, v), is not required in this paper.

2

m

m
m m m mmm

m

m
B
B
B
B
BBN

?

¤
¤
¤
¤
¤
¤¤²

J
J
J
J
J
JĴ

J
J
J
J
J
J
Ĵ

J
J
J
J
J
JĴ

??

¡¡ª
..........................R
HHHHj

HHHHj
..........................R¡¡ª

AfterBefore

q

r

s3s2s1
s3s2s1

r

q

a

Figure 1: A call graph before and after inlining arc a.

Notation. Throughout this paper we adhere to a naming scheme. We use q, r, s, f, g,

and h to represent procedures. Programs are named P , Q, and R, and the original program is

P . The size of a program is σ. For call graphs, v, u, and w are nodes, and a, b, and c are arcs.

C is a circuit in a call graph, and p is a path.

Inlining. Inlining r into q is the process of inserting r’s code into q, at some particular call site

in q where it calls r. Refer to Figure 1. The call to r is then removed, and various small changes

(e.g., simulating parameter passing) are made. To update the call graph after inlining, note

that inlining will introduce call sites into q, for every call site in r. Thus, for every arc leaving

r in the call graph, a new arc is created leaving q. Next, the arc representing the inlined call is

removed. Finally, the other data in the call graph must be updated: the size of q is incremented

by the size of r.

Inlining Model. Next, we give several assumptions we have made about inlining, and briefly

discuss each. The first assumption is that procedures cannot be removed, even when no calls are

made to them. Also, we assume that interactions between inlining and other optimizations can

be ignored. Finally, we assume the entire program is available, and that all mutually recursive

calls can be detected by examining the call graph.

If all calls to a procedure have been inlined, the procedure itself can sometimes be removed,

resulting in reduced code size. We do not consider this possibility, since in an interactive system

like equals[7], every procedure may be called directly by the user. Moreover, the variant of

inlining discussed in Section 2.2 may create a new call to a procedure that currently has none.

Even when inlining in C, Hwu and Chang [2, 6] are only able to remove procedures under very

limited conditions; for instance, if the procedure is declared to be static, and its address has not

been made available to others.

As another simplification, we usually assume that the inlining process does not optimize

tail recursions that may be created. We are primarily interested in improvement obtained by

3

inlining, and not with its interactions with other optimizations. Despite this, in Section 3.1 we

specifically consider tail-recursion removal in the context of inlining.

Finally, we assume that if the call graph of a program contains no circuits (except possibly

self-loops), then there is no mutual recursion. This is not necessarily the case if all call sites are

not explicitly provided. For instance, it is possible to create mutual recursion by calling through

a pointer, in C. Alternatively, if the entire call graph of the program is not provided, it is possible

that a separately-compiled module may contain procedures inducing mutual recursion.

2.2 Current- versus Original-Version Inlining

We next discuss two different methods of inlining, stating results that have been shown in [8].

There, we conclude that original-version inlining, or ov-inlining, is superior to the usual method,

called cv-inlining, where the current versions are inlined.

Suppose a call to procedure r is inlined into procedure q, and then a call to q is inlined into

procedure s. Which code is substituted in place of the call to q— the original code for q or the

most recent code for q? As inlining progresses, there may be several versions of q, and any of them

can be chosen: they are all functionally identical3. Previous approaches [1, 2, 3, 6, 9, 11] always

use the current version (most recent). In [8], though, we show that the best policy is always to

substitute the original version. Ov-inlining can obtain any program that cv-inlining can, and it

can also obtain any program obtained by intermediate-version inlining. We also showed there

are programs that can be obtained by ov-inlining, but not by cv-inlining. Moreover, some of

these programs are superior to any program obtainable by cv-inlining.

Finally, we consider the changes made to the call graph after either form of inlining. For cv-

inlining, a multi-arc is effectively collapsed, bringing copies of the callee’s out-arcs into the caller.

Ov-inlining is slightly more complicated. When the original code of a procedure is inserted, the

arc is collapsed and copies of the callee’s original out-arcs are given to the caller. Note that the

current out-arcs may be much different from the original ones.

3 ELIMINATING MUTUAL RECURSION

To eliminate mutual recursion by transformation to self-recursion, we classify arcs as legal or

illegal. An arc is illegal if it is to a node that has a self-loop. Inlining an illegal arc will not

result in any benefit, because it creates a new arc with the same endpoints as the one being

inlined. Thus, the resulting call graph contains the original call graph as a subgraph, and there

3 One of the desirable properties of inlining is that it does not affect the functional behavior of any procedure.

4

a

Figure 2: Arc a is illegal for cv-inlining in the above call graph.
Left: Before inlining. Right: After inlining. Note that a new arc has replaced a.

is no benefit in having more arcs. (See Figure 2.) An arc is legal for cv-inlining only if it is to

a node with no self-loops. For ov-inlining, legal and illegal arcs can be defined similarly, but the

distinction is not required for this paper. A sequence of (legal) inlinings that results in a call

graph with no mutual recursion is called a mutual-recursion elimination sequence.

It turns out that we cannot always eliminate all mutual recursions, whether cv-inlining or

ov-inlining is used. The following two questions raise interesting issues that are the main focus

of this paper.

Question 1 When can we eliminate all mutual recursion?

Question 2 Is there a call graph for which we can keep doing legal inlinings indefinitely?

For the first question we can precisely describe conditions on call graphs. This also yields an

algorithm for mutual recursion elimination. We shall answer the second question later. First, we

provide two lemmas describing when any version of inlining cannot remove all mutual recursion.

Consider a path p which is v(= v0), v1, v2, . . . , vl(= u0) (in the original call graph) from a

node v to a circuit4 C = u0, u1, . . . , um. Figure 3 illustrates this structure, used in the following

lemma, proved in the Appendix.

Lemma 1 After any number of inlinings of any version, each node vi, 0 ≤ i ≤ l − 1, has an

out-arc either to a node originally on C or to vj, where j > i. Furthermore, after any number

of inlinings, every node ui, 0 ≤ i ≤ m has an out-arc to some node uj , 0 ≤ j ≤ m.

4 Only the final node of p may be a node of C.

5

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯

±°
²¯
¶
¶
¶/

¾

6

-

A
A
AAU

u4 u3

u2u1

u0v3v2v1v

C

Figure 3: A path to a circuit.

Corollary After any sequence of inlinings, there is a path from any node that could originally

reach C, to at least one of the nodes originally on C.

Recall that the strongly connected components (SCCs) of a call graph identify groups of

mutually recursive procedures. Now suppose that we have two circuits C1 and C2 that are node

disjoint but are in the same SCC. Thus, every node of C1 has a path to C2, and vice versa. This

can be used to demonstrate that after any sequence of inlining, a circuit is always present in the

call graph, implying the presence of mutual recursion.

Lemma 2 If the call graph contains two node-disjoint circuits in an SCC, then there is no

mutual-recursion elimination sequence, regardless of whether cv- or ov-inlining is performed.

Proof: Let C1 and C2 be the two disjoint circuits of the SCC. Suppose that any sequence of

inlining is performed. Then by the corollary to Lemma 1, any node in C1 can reach one of the

nodes in C2, and vice versa. Consider any node u in C1. From u we can reach some node v in

C2. (Since C1 and C2 are disjoint, v 6= u) From v we can reach another node, say w, in C1.

(Again, v 6= w.) If w = u, we have a circuit. If not, a new node in C2 can next be reached, and

so forth. When we reach an already-visited node, we complete a circuit. The process of finding

unvisited nodes cannot be repeated indefinitely, since C1 and C2 are finite. 2

Finally, we arrive at a theorem that precisely identifies those call graphs for which inlining

can remove all mutual recursion. It is valid for both ov- and cv-inlining. It also assumes that a

self-loop is a circuit.

Theorem 1 For any call graph, there exists a mutual-recursion elimination sequence iff no SCC

contains two node-disjoint circuits.

6

Proof: (If:) First note that no inlining can produce a circuit involving nodes in different

SCC’s. Therefore, consider some SCC. Since its circuits are not node disjoint, there exists a

shared node v that is on all circuits. Note that when v is deleted from the SCC, we obtain a

dag. (Otherwise there was a circuit that did not have v on it.) Consider a cv-inlining sequence

that completely inlines that dag, bottom-up. If this inlining sequence is used on the original

SCC (before the deletion of v), observe that we will not obtain any self-loops. The only arcs

introduced are in-arcs of v. Thus, after this phase has been completed, all arcs are either in-arcs

or out-arcs for v. Now we can inline all out-arcs of v that are not self-loops. Any new arc added

in this phase is a self-loop on v. Note that we have eliminated all arcs, except some in-arcs of

v. The result has no mutual recursion because no other node has any in-arcs.

Since this result was obtained by cv-inlining, the same result can be obtained by ov-inlining.

Only If. If the condition is false, then there is an SCC with two node-disjoint circuits. Thus,

by Lemma 2 no amount of inlining within that SCC can remove all mutual recursion. 2

This concludes our discussion for Question 1. Next we address Question 2, which asked if

an inlining program can keep inlining forever. Now, recall that, for cv-inlining, it is not legal

to inline an arc to a node with a self-loop. This restriction arises since inlining such an arc can

clearly be repeated forever. Likewise, we might suspect that legal arcs, in the case of ov-inlining,

could be defined as arcs to nodes that do not initially have self-loops. Nonetheless, even if the

nodes being inlined did not originally have self-loops, we can keep inlining forever. For instance,

consider the following program, where there is no initial self-recursion.

f = g()....; g = f()....

We can inline the call to g into f, to get

f =f()..... g = f()....

and then inline the recursive call, to get

f =g()..... g = f()....

Clearly this process can be repeated forever. (This case is uninteresting and is included for

completeness.) The interesting case involves cv-inlining and is considered next.

The answer to Question 2 is still yes, if only legal cv-inlining is permitted. We say that a

program has an infinite inlining sequence if there is some way to apply any number of inlining

7

operations to it. If the operations are all legal cv-inlinings, we say it has an infinite cv-inlining

sequence. An easy case, where the call graph is a dag, is considered in the next lemma, stated

without proof.

Lemma 3 If the call graph is a multi-dag, there is no infinite cv-inlining sequence.

Let an unlooped circuit be a simple circuit on which none of the nodes has a self-loop. The

necessary and sufficient conditions for the existence of an infinite cv-inlining sequence, for a

general call graph, are established by the following theorem. Its proof is in the Appendix.

Theorem 2 A program has an infinite cv-inlining sequence iff either of the two following con-

ditions hold:

1. Its call graph has an unlooped circuit of length three or more.

2. Its call graph has an unlooped circuit of length two, and there is a third node with an arc

to either of the two nodes of the circuit.

Before we proceed with the elimination of mutual recursion, we must test the conditions the

theorem. If these are met, we avoid a non-terminating sequence by keeping generation counts

for new arcs. (Without this several of our most natural heuristics actually did fail.) This count

is zero for all original arcs. Each time an arc of generation count i is inlined, any new arcs

created have a generation count of i+ 1. We limit the maximum allowable generation count to

a constant. This prevents us from inlining forever, even if no code-size limit is given. We note

that it is easy to efficiently test for the conditions of the theorem.

This concludes the discussion of Question 2. The next section shows that the answer to

Question 1 changes, if tail-recursion optimization is done while inlining progresses. In this case

we can always eliminate all mutual recursion that involves only tail-calls.

3.1 Creating Tail Recursions

Next, we consider an important interaction between mutual-recursion elimination and the tail-

recursion optimization performed by many compilers. Recall that a tail call is a procedure call

that is performed as the final activity of the calling procedure. The caller makes the call and,

after the called procedure has completed, immediately returns. A tail-recursive call is thus a

directly recursive call that is also a tail call. A frequently performed optimization replaces such

tail recursion with loops. Many compilers perform a more general optimization with tail calls

8

that are not directly recursive; such a call can be replaced by instructions that first modify the

current activation record and then perform a jump. The new sequence of instructions is usually

faster than the construction of a new activation record, and it also reduces the stack-space

requirement.

The equals compiler[7] can remove tail recursion, but since it generates C code, it is unable

to perform the general tail-call optimization. Despite this, selective inlinings of tail calls can

create tail recursions that equals can then optimize. Even if equals optimized general tail

calls, it would often be preferable to have new tail recursions, which then can be changed to

loops. An optimized tail recursion (a loop) is faster than an optimized sequence of tail calls.

Thus, the techniques we develop to expose tail recursions should be valuable to others.

Suppose a tail call is inlined, and the callee itself has a tail call to some procedure. A new tail

call is created from the caller to that procedure. If it is a direct tail-recursive call, the compiler

can immediately convert it into a loop. The simple algorithm described next can convert all

circuits of tail calls (tail-circuits) into tail recursions that are then eliminated by the compiler.

Note that if all mutually recursive calls are tail calls, then all mutual recursion can always be

eliminated, unlike the situation in the previous section5.

Consider the call graph when only the tail calls in the original call graph are retained. With

cv-inlining, a new tail call can only be created from an inlined tail call and a tail call from the

inlined node. (Informally, this is composing two tail calls.) Therefore, we use the modified call

graph: the arcs we omit have no bearing on the final presence or absence of tail circuits. Also,

since inlining can never introduce circuits involving nodes that are in different SCC’s, we also

delete arcs between SCCs from the modified call graph.

Thus, our algorithm processes the SCC’s of the modified call graph independently. It first

chooses some node u and cv-inlines all of its in-arcs, in the modified call graph. Any tail

recursions created thereby are immediately removed by the compiler. Now that u has no calls

to it, it will never receive any such calls (in-arcs): to create a new in-arc for u, cv-inlining would

require that u had an in-arc. The algorithm then chooses another node, and the process repeats.

Termination is guaranteed, since after each step the number of nodes without in-arcs increases.

4 CONCLUSION

We have examined several different issues that arise when inline expansion is attempted in a

heavily recursive environment. We examined the issue of mutual recursion elimination, and

5 We do not claim that our algorithm finds the best method of eliminating tail-circuits, though.

9

presented necessary and sufficient criteria for

• the existence of some sequence of inlinings that can completely remove mutual recursion.

• the existence of an unending sequence of cv-inlinings.

APPENDIX

Next, we prove Lemma 1 and Theorem 2, which are restated below.

A PROOF OF LEMMA 1

After any number of inlinings of any version, each node vi, 0 ≤ i ≤ l− 1, has an out-arc either

to a node originally on C or to vj, where j > i. Furthermore, after any number of inlinings,

every node ui, 0 ≤ i ≤ m has an out-arc to some node uj , 0 ≤ j ≤ m.

Proof: We prove both statements simultaneously by induction on the number of inlining steps.

Initially, every node vi on p, except the last, has an out-arc to its successor (vi+1) along p. Each

node of C has an out-arc to its successor on C. Thus, the basis is established, for zero inlining

steps. Assume that the lemma holds for k or fewer inlining steps. Consider a sequence of k + 1

inlinings, and let the last inlining be of arc a, which leaves node w. Inlining will only cause the

removal of one arc (that is, a), although it may cause several new arcs to be created. By the

inductive hypothesis, after k inlinings the property was true for all nodes. Observe that w is

the only node that might not satisfy the property after inlining. Nevertheless, we show that a

new arc is always added such that w also satisfies the property. The argument considers three

cases, depending on a.

Suppose that a is an arc (vi, w), where either w is vj (j > i), or w is a node uj′ of C. By

the inductive hypothesis, whatever version of w (which corresponds to a procedure) we choose,

it satisfies the property. If w = uj′ , it has an out-arc to some node of C. Otherwise, w has an

out-arc to vk (k > j), or to a node previously on C. After inlining a, vi will therefore obtain an

arc to a suitable node in either case, satisfying the property.

Next, suppose that a = (uj , uk): it is an arc between two of the nodes previously on C. Now,

any version of uk has an arc to some node ul of C, by the inductive hypothesis. After inlining

a, uj will have an arc to ul and thereby satisfy the property.

Finally, we consider the uninteresting case when none of the above conditions are satisfied.

Note that after a has been inlined its absence will not affect the property that is claimed by the

10

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

¼.
. .

. .
. .
HH

HH
HY

¤
¤
¤¤²

@
@
@I

©©
©©*

u

v

C ′

Figure 4: An unlooped circuit with a non-circuit node. The dotted arc is not initially present.
It will be created when the arc from v to the circuit is inlined.

lemma. 2

B PROOF OF THEOREM 2

A program has an infinite cv-inlining sequence iff either of the two following conditions hold:

1. Its call graph has an unlooped circuit of length three or more.

2. Its call graph has an unlooped circuit of length two, and there is a third node with an arc

to either of the two nodes of the circuit.

Proof: Sufficiency. We show that if either condition is met, we can obtain an unlooped circuit

C ′ (of length two or more) and a non-circuit node that has an arc to a node of C ′. If condition

2 is met, then C ′ is simply the required circuit of length two (2-circuit).

Now suppose condition 2 is not met, but condition 1 is. Let C be the unlooped circuit

implied by condition 1. Suppose its length is k. Then we can inline any of the nodes, say v, on

C into its predecessor, say w. This introduces no self-loops. (If it did, then v must have had an

arc to w, forming an unlooped circuit. Furthermore, since C was of length ≥ 3, the predecessor

of w was neither v nor w and now has an arc to the unlooped circuit v, w, v. Hence, condition

2 is met, contrary to our assumption.) The required circuit C ′ is thus the result of this first

inlining, and its length is k − 1. v is not on C ′, but it maintains an out-arc to its successor on

C ′.

Now we show that the circuit C ′, with an arc to it from non-circuit node v, can yield

an infinite cv-inlining sequence. We can repeatedly inline circuit nodes into v, as follows. (See

Figure 4.) If there are arcs from v to several circuit nodes, choose one of them, say u, arbitrarily.

Inline u into v. It is unimportant if v obtains a self-loop. In any case, no node on C ′ gets any

outgoing arcs from this inlining, since only v acquires outgoing arcs. Therefore, no node on C ′

gets a self-loop. Also, v gets a new arc to the successor of u (along C ′). v will next inline this

11

¦
©¾¨

§-
¨
§-

'

µ-

¨
§-
¨
§- ¦
©¾ '

µ-

l

l

l

l
l

l

l

ll

l

l

l
l

l

l

l

ll ll

l

l

l

l

l

l l

l

l

l

l

l

J
J
JĴ

???
......

..

...

..

...
?

¢
¢
¢¢®

J
J
JĴ? ?....

J
J
JĴ

¢
¢
¢¢®

...

..

...

..

......
J
J
JĴ

Figure 5: An idag (left) and its corresponding dag

arc. This process of inlining the nodes of C ′ into v, in their order of appearance on C ′, can

continue indefinitely. Thus, we have shown that the conditions are sufficient.

Necessity. We now show that mutual-recursion elimination must terminate at some point, if

the call graph does not meet conditions 1 and 2. Therefore, assume that any circuit that it does

have either is of length two, without an outside node pointing to it, or is a circuit of length

greater than two, with a node that has a self-loop. Recall that it is illegal to inline a node with

a self-loop.

We next show that in-arcs to all such nodes can be deleted without affecting any mutual-

recursion sequence. Note that once a node has a self-loop at some stage of mutual-recursion

elimination, it will always have the self-loop. Thus, it will never be legal to cv-inline this node

into another, after it acquires a self-loop. Consider a node v that has self-loops initially. For

any in-arc (u, v), its copies created during inlining6 are all in-arcs of v. All such copies of (u, v)

are illegal for cv-inlining, as are their copies, and so forth.

Hence, we delete all arcs, except self-loops, to nodes that initially have self-loops. This will

break all circuits of length three or more, resulting in a structure that we call an idag. An idag

is essentially a dag with 2-circuits present in some of its roots. See Figure 5 for an example.

Also, certain nodes may have self-loops on them, but they are all isolated. The 2-circuits are

present only in the roots since we assume that condition 2 has not been met, thereby disallowing

in-arcs. We also define the regular (multi-)dag corresponding to an idag, derived by contracting

each 2-circuit to a single node and deleting any self-loops present on isolated nodes. Any idag

arc that is not on a 2-circuit is called a dag-arc.

6 (u, v) gives rise only to new arcs that are copies of it, and this occurs when u is inlined into some other
node.

12

Next, we show that an idag cannot have an infinite inlining sequence. Assume, for a contra-

diction, there does exist an infinite inlining sequence. Any arc on any such sequence is either a

2-circuit arc or is a dag-arc. We next explain why there can be only a finite number of 2-circuit

arcs. When we inline some 2-circuit node v1 into its mate v2, it obtains a self-loop. All in-arcs,

whether existing or later created, of v2 are thereafter illegal for inlining, and thus cannot appear

in the remainder of the sequence. Now consider v1. It may still have in-arcs from (only) v2, but

it has no self-loops. Therefore, each time it is inlined, the number of its in-arcs drops. Since

inlining any other arc in the idag cannot affect the number of in-arcs of v1, the number of times

v1 can be inlined is bounded by the number of in-arcs it originally had. Thus, although an idag

may have several roots with 2-circuits in them, the infinite sequence must have fewer 2-circuit

arcs than existed before inlining. Since we have only a finite number of 2-circuit arcs, there must

exist an infinite sequence of dag-arcs. Hence, by Lemma 3 we obtain the desired contradiction. 2

References

[1] John Eugene Ball. Program Improvement by the Selective Integration of Procedure Calls. PhD thesis,

University of Rochester, 1982.

[2] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, andWen-mei W. Hwu. Profile-guided automatic

inline expansion for C programs. Software—Practice and Experience, 25:349–369, 1992.

[3] Jack W. Davidson and Anne M. Holler. A study of a C function inliner. Software—Practice and

Experience, 18:775–790, 1988.

[4] Stephen J. Hartley. Compile-time program restructuring in multiprogrammed virtual memory sys-

tems. IEEE Transactions on Software Engineering, 14:1640–1644, 1988.

[5] Wen-mei W. Hwu and Pohua P. Chang. Achieving high instruction cache performance with an

optimizing compiler. In Proceedings, 16th Annual Symposium on Computer Architecture, pages 242–

251, 1989.

[6] Wen-mei W. Hwu and Pohua P. Chang. Inline function expansion for compiling C programs. In

SIGPLAN ’89 Conference on Programming Language Design and Implementation, pages 246–255,

1989.

[7] Owen Kaser, Shaunak Pawagi, C. R. Ramakrishnan, I. V. Ramakrishnan, and R. C. Sekar. Fast

parallel implementations of lazy languages— the EQUALS experience. In Proc. Conf. on LISP and

Functional Programming, pages 335–344, 1992.

[8] Owen Kaser, C. R. Ramakrishnan, and Shaunak Pawagi. A New Approach to Inlining. Technical

Report 92/06, SUNY at Stony Brook, 1992.

[9] Scott McFarling. Procedure merging with instruction caches. In SIGPLAN ’91 Conference on

Programming Language Design and Implementation, pages 71–79, 1991.

[10] Thomas P. Murtagh. An improved storage management scheme for block structured languages.

ACM Transactions on Programming Languages and Systems, 13:372–398, 1991.

[11] Robert W. Scheifler. An analysis of inline substitution for a structured programming language.

Communications of the ACM, 20(9):647–654, 1977.

13

[12] Steven S. Skiena. Compiler optimization by detecting recursive subprograms. In 1985 ACM Annual

Conference, pages 403–411, 1985.

[13] Kenneth G. Walter. Recursion analysis for compiler optimization. Communications of the ACM,

19:514–516, 1976.

14

