
A Space E�cient Engine for Subsumption-Based

Tabled Evaluation of Logic Programs
?

Ernie Johnson, C.R.Ramakrishnan, I. V. Ramakrishnan, and Prasad Rao??

Department of Computer Science, State University of New York at Stony Brook

Stony Brook, New York 11794 - 4400

fejohnson,cram,ramg@cs.sunysb.edu

Abstract. Tabled resolution improves e�ciency as well as termination

properties of logic programs by sharing answer computations across \sim-

ilar" subgoals. Similarity based on subsumption of subgoals rather than

variance (i.e., identity modulo variable renaming) promotes more aggres-

sive sharing, but requires mechanisms to index answers from dynamically

growing sets. Earlier we proposed Dynamic Threaded Sequential Au-

tomata (DTSA) as the data structure for organizing answer tables in

subsumption-based tabling. Using a DTSA, we can retrieve answers one

at a time from the table, strictly in the order of their insertion. Although

DTSA performed very well, its space usage was high. Here we present an

alternative data structure called Time-Stamped Trie (TST) that relaxes

the retrieval order, and yet ensures that all answers will be eventually

retrieved. We show that TST has superior space performance to DTSA

in theory as well as practice, without sacri�cing time performance.

1 Introduction

Tabled resolution methods in logic programming (LP), beginning with OLDT
resolution pioneered by Tamaki and Sato [10], address the well-known shortcom-
ings of the SLD evaluation mechanism of Prolog, namely, susceptibility to in�nite
looping, redundant subcomputations, and inadequate semantics for negation.
Using tabled resolution we can �nitely compute the minimal model for datalog
programs. More recent methods [1, 2] compute well-founded semantics [11] for
normal logic programs. Due to this added power, tabled evaluation enables us
to combine LP, deductive databases, and nonmonotonic reasoning, and develop
complex applications requiring e�cient �xed point computations (e.g., see [7, 6]).

The power of tabled resolution stems from one simple notion: avoid redundant
computation by permitting the use of proven instances, or answers, from past
computation for satisfying new subgoals. This is achieved by maintaining a table

of the called subgoals paired with the set of answers derived for each such subgoal

? This work was supported in part by NSF grants C-CR 9711386, C-CR 9876242, and

EIA 9705998.
?? Currently at Telcordia Technologies (prasadr@research.telcordia.com); work

done while at Stony Brook.

(known as answer tables). When a subgoal is selected for resolution, it is �rst
checked against the entries maintained in the call table. If there exists a \similar-
enough subgoal", then its associated answers are used for resolving this subgoal
(answer resolution). Otherwise the subgoal is entered in the call table, and its
answers, computed by resolving the subgoal against program clauses (program
resolution) are entered in the corresponding answer table.

There are two approaches to locate a \similar-enough" goal. One approach,
used by the XSB system [8], is to look for an entry that is a variant of the
current goal, i.e., identical modulo variable renaming. Although variant-based
tabling has been highly successful, this approach permits only limited sharing of
answer computations.

The second alternative, called subsumption-based tabling, permits greater
reuse of computed results. Notice that, given a goalG, any entry in the table, say
G0, which subsumes G will contain in its �nal answer set all the instances to sat-
isfy G.1 Using the answers of G0 to resolve G avoids computationally-expensive
program resolution, and thereby can lead to superior time performance. Space
performance may also improve as fewer calls and their associated answer sets
need be stored in the tables. However, the mechanisms for e�ciently representing
and accessing the call and answer tables are more complex. In particular, answer
resolution now involves indexing, since not all answers in a selected answer table
(say, that of G0) may be applicable to the given goal (say, G). This process is
especially challenging since all answers to G0 may not yet be present in the table
when the call to G is made.

In an earlier work [9], we proposed a data structure called Dynamic Threaded
Sequential Automaton (DTSA) for representing and retrieving terms from dy-
namic answer sets. Answer resolution is performed one tuple at a time by back-
tracking through a DTSA. To ensure that every relevant answer is visited, an-
swers are retrieved strictly in the order of their insertion into the table. Although
an implementation based on this strategy shows improvement in time perfor-
mance on queries where the subsumption of calls is possible, it performs poorly in
space when compared to the variant-based tabling engine: potentially quadratic
in the size of corresponding tables constructed in a variant-based tabling engine.
Moreover, the incremental traversal of the DTSA for resolving each answer forces
us to maintain complex state information, thereby increasing choice point space.

In this paper we describe an alternative approach for answer resolution. We
tag each answer with a time stamp and store them in Time-Stamped Tries (TST)
which provides indexing based on the symbols in terms as well as the time stamp.
Answers relevant to a call are periodically collected from the subsuming call's
answer set and cached locally (by the subsumed call) for later consumption. The
local cache is updated whenever all answers currently held in the cache have
already been resolved against the goal. Each collection phase completely searches
the set for answers which have been entered since the previous phase, selecting
only those answers which unify with the subsumed goal. Since a complete search

1 A term t1 subsumes a term t2 if t2 is an instance of t1. Further, t1 properly subsumes

t2 if t1 subsumes t2 and t2 is not a variant of t1.

is done in each phase, only minimal state information| the time stamp of the
last update| is needed between collection phases. The tables stored as TSTs are
at most twice as large as the tables in the variant engine, and at most as large
as the tables in our earlier DTSA-based engine. Moreover, the space e�ciency
comes with little or no time penalty.

The rest of the paper is organized as follows. In Section 2, we present an
operational overview of tabling operations and answer resolution in subsumption-
based tabling. The design and implementation of TSTs appears in Section 3.
Comparisons between DTSA, TST and variant-based tabling engines appear in
Section 4. In Section 5 we provide performance results of a subsumption-based
tabling engine implemented using TSTs.

2 Answer Clause Resolution via Time Stamps

Below we give an overview of the time-stamp-based subsumptive tabling engine.
We begin with an abstract description of the operations of a tabling system.

2.1 An Overview of Tabling Operations

We can view top-down tabled evaluation of a program in terms of four ab-
stract table operations: call-check-insert, answer-check-insert, retrieve-answer

and pending-answers. Below, we describe each of these operations in the context
of subsumptive tabling.

Call-check-insert. Given a call c, the call-check-insert operation �nds a call c0

in the call table that subsumes c. If there is no such c0, then c is inserted into
the call table. Note that call-check-insert is independent of the data structures
used to represent answer tables.

A subgoal that is resolved using program creates answers to be inserted into
the corresponding answer table, say T , and is known as the producer of T . A
subgoal that is resolved using answer resolution with respect to an answer table
T is known as a consumer of T .

Answer-check-insert. This operation is used to add the answers computed for a
calll into its corresponding answer table. The operation ensures that the answer
tables contain only unique answers. Note that, while the data structures used
to represent answer tables may be di�erent between subsumptive and variant
tabling, the requirements on answer-check-insert remain the same.

Retrieve-answer. Answer clause resolution of a call c against a set of terms
T = ft1; t2; : : : ; tng in an answer table produces a set R such that r 2 R i�
r = ti�i for some ti, where �i = mgu(c; ti). This resolution is performed using
retrieve-answer operations. In a tuple-at-a-time resolution engine, a consumer

choice point is placed so that the answers can be retrieved one by one using
backtracking. To ensure that an answer is returned at most once, we maintain an

answer continuation in the choice point, which represents the set of all answers
remaining to be retrieved. Hence the arguments supplied to a retrieve-answer

operation is split naturally into:

{ �rst answer: Given an answer table T and a call c, return an answer from
T that uni�es with c, and an answer continuation.

{ next answer: Given an answer table T , a call c, and an answer continuation

, return the next answer a from T that uni�es with c as speci�ed by
, and
a modi�ed answer continuation
0 that represents the remaining answers.

Pending-answers. Answer continuation ? denotes that there are no more re-
maining answers. When a retrieve-answer operation for a call c on an incom-
plete table T returns ?, the call c will be suspended. The suspended call is
later resumed when new answers have been added to T , or when T is known to
be complete. Suspension and resumption of calls are performed by the answer
scheduler which invokes pending-answers to determine whether a suspended call
needs to be resumed. Given an answer continuation, pending-answers succeeds
i� the continuation represents a non-empty set of answers.

2.2 Answer Retrieval in Subsumptive Tabling

The DTSA, proposed as a data structure for answer tables in [9], directly sup-
ports the �rst-answer and next-answer operations. In this paper, we describe an
alternate, two-tier mechanism to realize these operations. At the fundamental
level, we decouple the operation of identifying the answers relevant to a given
goal in an answer set from the operation of unifying one of these answers with
the goal. This separation frees the identi�cation process from tuple-at-a-time
execution. We hence propose an e�cient mechanism to identify all relevant an-
swers that have been added since the last time the table was inspected. We
associate a time stamp with each answer and maintain, as part of the answer
continuation, the maximum time stamp of any answer in the set. These answers
are stored in a TST and accessed using identify relevant answers which, given
a table T , time stamp � and goal G, identi�es the set of all answers in T with
time stamps greater than � that unify with G. It returns this set as a list (with
some internal order) as well as the maximum time stamp of any answer in T.

Recall that answers are consumed from a table by a �rst answer opera-
tion followed by a sequence of next answer operations. We can implement these
tuple-at-a-time operations based on time stamps as follows. We assume that
time stamps are positive (non zero) integers. To compute �rst answer, we use
identify relevant answers with a time stamp of zero (thereby qualifying all avail-
able answers), select one answer from the returned set as the current answer,
and store those remaining in an internal data structure called an answer list.
The answer list, together with the maximum time stamp returned by iden-

tify relevant answers, form the answer continuation. On subsequent invocations
of next answer, we simply manipulate the answer list component of the continu-
ation, as long as the answer list is not empty. Should the answer list be empty, we

\refresh" the continuation by another call to identify relevant answers, using the
time stamp component of the continuation to restrict identi�cation to only those
answers that have been inserted since the last call to identify relevant answers.

Let � be the time stamp returned by an invocation of the access function
identify relevant answers. Since this operation identi�es all relevant answers,
h[]; �i represents the empty continuation, ?. Note that the continuation, h[]; 0i,
that represents all answers in a table. Thus, �rst answer(T; c) can be realized
simply as next answer(T; c; h[]; 0i).

The method described above can be formalized readily; see [5] for details. We
now state the requirement on identify relevant answers that is needed to show
the correctness of �rst answer and next answer :

Requirement 1 Given an answer table T representing a set of answers S, a
goal G and a time stamp � , identify relevant answers(T;G; �) returns a permu-

tation of the set fa 2 S j a uni�es with G and timestamp(a) > �g.

The correctness of operation retrieve-answer is then ensured by the following
proposition:

Proposition 1. Given a goal G and answer table T representing a set of an-

swers S, let ha1;
1i; : : : ; han;
ni be a sequence of values such that ha1;
1i =
�rst answer(T;G) and hai+1;
i+1i = next answer(T;G;
i), where 1 � i < n
and
n = ? = h[]; �i. Further, let B be the set fb 2 S j b uni�es with G and

timestamp(b) > �g. Then, provided identify relevant answers satis�es Require-

ment 1, the sequence ha1; : : : ; ani is a permutation of the set fb� j b 2 B, where

� = mgu(b;G)g.

3 Time-Stamped Tries

In this section we describe Time-Stamped Trie, which permits indexing on term
symbols as well as time stamps. A TST represents a set of terms T and supports
two operations: (1) Insert a term t into set T if not already present, and (2)
Given a term t, determine the set of all terms t0 2 T that unify with t. Below we
describe these operations formally. We begin by de�ning notational conventions
and terminology and review answer tries described in [8].

A position in a term is either the empty string � that reaches the root of
the term, or �:i, where � is a position and i is an integer, that reaches the ith

child of the term reached by �. By tj� we denote the symbol at position � in t.
For example, p(a; f(X))j2:1 = X . Terms are built from a �nite set of function
symbols F and a countable set of variables V [V̂ , where V is a set of normal

variables and V̂ is a set of position variables. The variables in the set V̂ are of
the form X�, where � is a position, and are used to mark certain positions of
interest in a term. We denote the elements of F [V by �.

A trie is a tree-structured automaton used for representing a set of terms
T = ft1; t2; : : : ; tng. A trie for T has a unique leaf state si for every ti, 1 �

i � n, such that the sequence of symbols on the transitions from the root to si

p(a,a,a)

p(b,a,W)

p(a,a,c)

p(a,b,b)

p(a,a,d)

p(a,b,b)p(a,a,d)p(a,a,c)p(a,a,a)

s8s4 s11 s10 s7

s9

s5

s6s3

s2

s1

p(b,a,W)
1 3 5 4 2

a,1
c,3

d,5

a,5

a,5 b,4 a,2

W,2

b,2

b,4

p(a,b,b)p(a,a,d)p(a,a,c)p(a,a,a)

s8s4 s11 s10

s9

s5

s6

12s s7

s3

s2

s1

1 3 5 4

a,1
c,3

d,5

a,5 a,2

W,2

p(b,a,W)
26

p(a,b,c)

b,4
c,6

b,2

b,6

a,6

(a) (b) (c)

Fig. 1. Set of terms (a), its corresponding TST representation (b), and e�ect of insert-

ing p(a,b,c) to the TST (c)

correspond to the sequence of symbols encountered in a preorder traversal of ti.
Moreover, for every state in a trie, all outgoing transitions have unique labels.
With each state s is associated a skeleton, denoted by Skels, that represents the
set of uni�cation operations that must be performed to reach that state. The
fringe of Skels represents positions where further uni�cation operations need to
be performed before unifying a goal term with a term in T. The position in the
goal term inspected at s is represented by the �rst position variable encountered
in a preorder traversal of the skeleton. We denote this position by �(s). Each
outgoing transition from s represents a uni�cation operation involving position
�(s) in the goal and the symbol labeling this transition. We label transitions
by �, where � is a variable or a function symbol. Let the position examined at
the current state be �. Then the skeleton of the destination state reached by
a transition labeled by � is Skels[t=X�], where t = f(X�:1; : : : ; X�:n) if � is a
n-ary function symbol f and t = � otherwise. Note that for a leaf state s in the
trie, fringe(Skels) is empty and that Skels 2 T is the term represented by s.

A Time-Stamped Trie (see Figure 1) is a trie augmented with information
about the relative time its terms were inserted. The time of insertion of each
term is called its time stamp, and is represented by a positive (non zero) integer.
Each transition in a TST is additionally labeled with the maximum time stamp
of any leaf reachable using that transition. Hence, all transitions in a TST will

be of the form s
h�;�i
�!d, where s and d are states in the TST, � is the symbol, and

� is the time stamp. We refer to these attributes of a transition � as symbol(�)
and timestamp(�), respectively. Since identify relevant answers looks only for
answers with time stamps greater than a given value, the maximum time stamp
information on transitions is necessary to restrict the search on portions of the
TST that correspond to answers with such time stamp values.

3.1 Term Insertion into a TST

Terms are inserted into a TST in a manner analogous to the single-pass check-
insert for the trie representation described in [8]. The TST is traversed recursively

algorithm insert(s; t; �)

(* returns true i� t was successfully inserted *)

if (fringe(Skels) = fg) then

return (false) (* term already exists, hence insert fails *)

endif

let Gj�(s) = f=n = �

if (9� : s
h�;� 0i
�! d) then

if (insert(d; t; �)) then

timestamp(�) = � (* insert successful, so update time stamp *)

return (true)

else

return (false) (* insert failed; propagate failure up *)

endif

else (* match fails at s, so add a new path *)

create new state d and add transition � : s
h�;�i
�!d

Skeld = Skels [f(X�(s):1; : : : ; X�(s):n)=X�(s)]

insert(d; t; �)

return (true)

endif

Fig. 2. Term Insertion into a Time-Stamped Trie

starting at the root. A transition from states s to d, s
h�;�i
�!d, is taken if the symbol

� matches the symbol in the goal term at the position speci�ed by s. If a leaf
state is reached, then the term already exists in the set, and hence the TST
is left unchanged. On the other hand, if a match operation fails at a state s,
then a new path is added to the TST corresponding to the given term. All
time stamps on the transitions along the root-to-leaf path corresponding to this
term are updated with a value greater than any other time stamp in the TST.
This recursive procedure is speci�ed in Figure 2. The TST obtained from the
one in Figure 1(b) by adding the term p(a,b,c) is given in Figure 1(c). The
new transitions and states, as well as the transitions whose time stamps were
modi�ed by the addition, appear in bold face in the �gure.

3.2 Identifying Relevant Answers using a TST

We now describe how TST supports identify relevant answers. Given a goal G
and a time stamp � , answers in a TST, T , are identi�ed by recursively traversing
T from the root, at each state exploring all transitions that meet the term
indexing as well as the time stamp constraints. The set of transitions to be
explored can be formally speci�ed as follows.

De�nition 1 (Set of Applicable Destinations). Given a Time-Stamped

Trie T , the set of all destination states that are applicable upon reaching a state s
in T with an initial goal G and time stamp � , denoted dest(s;G; �), is such that

d 2 dest(s;G; �) i� (i) Skeld is uni�able with G, and (ii) s
h�;� 0

i
�! d is a transition

in T with � 0 > � .

In the above de�nition, condition (i) corresponds to indexing on terms while (ii)
corresponds to indexing on time stamps.

Given a state s in a TST, a goal G, and time stamp � , the set of all terms
represented by the leaves reachable from s with time stamps greater than � and
uni�able with G is given by:

relevant(s;G; �) =

(
fSkelsg if s is a leafS
d2 dest(s;G;�)

relevant(d;G; �) otherwise

Finally, let T be a TST. Then,

identify relevant answers(T;G; �) = relevant(root(T); G; �) :

We can establish that the above de�nition of identify relevant answers meets
Requirement 1.

Proposition 2 (Correctness). Given a Time-Stamped Trie T representing a

set of terms S, a goal G and a time stamp � , identify relevant answers(T;G; �)
computes the set fa 2 S j a uni�es with G and timestamp(a) > �g.

Although one can readily derive a computation based on the above de�nition
of identify relevant answers, its e�ectiveness depends on the e�cient implemen-
tation of dest . It should be noted that the condition in dest for indexing on terms
is identical to the one with which transitions to be traversed are selected in a
(non time-stamped) trie [8]. The indexing on time stamps, however, is unique to
TSTs. We can show that identify relevant answers can be e�ciently computed
given an e�cient technique to index on time stamps at each state in a TST, as
formally stated below.

Requirement 2 Given a Time-Stamped Trie T , � = dest(s;G; �) is computed

in time proportional to j�j.

Proposition 3 (E�ciency). Let G be an open goal { i.e., a term whose im-

mediate subterms are all distinct variables { T be a Time-Stamped Trie, and

identify relevant answers(T;G; �) be a non-empty set of terms S for some given

value of � . Then, if dest satis�es Requirement 2, the set S can be computed in

time proportional to the sum of the sizes of the terms in S.

The structure of TSTs do provide at each state, in addition to the normal
index on symbols present in tries, an index on time stamps. Each time index can
be maintained as a doubly-linked list of outgoing transitions in reverse time-

stamp order. This organization allows us to select transitions based on time
stamps alone, at constant time per selected transition, thereby satisfying Re-
quirement 2. Moreover, by cross-linking the time and term indices, the time
index can be updated in constant time as new transitions are created. Finally,
note that TSTs support answer retrieval from incomplete answer sets the time
index can be deleted when the answer table is complete.

p(a,b,b)p(a,a,a) p(a,a,c)

a

a a

a

a

a

c d

b

p(a,a,d)

b

W

p(b,a,W)

b

a

1s

s

s

s s s

ss

s s

s s

s s

2

3

4

5

6

7

8

9

10

11

12

13

14

Answer

List

dca b

11

a b a

a b

s

s

W

3s s

s

s
1

s
2

s ss
4 s

8

9

10

5

6

7

(a) (b)

Fig. 3. DTSA (a) and Trie (b) representation of terms in Figure 1(a)

4 Comparison of Tabling Approaches

We now compare variant- , TST-, and DTSA-based tabling engines. To provide
the context for comparisons, we now brie
y review the data structure called
Dynamic Threaded Sequential Automaton (DTSA) that was used in our earlier
implementation of a subsumption based tabling engine.

The DTSA Structure. DTSA is a trie-like automaton for representing a set of
ordered terms ft1; t2; : : : ; tng. A DTSA is constructed such that, in a preorder
traversal, the leaf representing term ti is visited before the leaf representing
term ti+1 (Figure 3(a)). Since transitions from a state s preserve the order of
terms represented by the �nal states reachable from s, there may be multiple
transitions with the same label. The loss of indexing due to this duplication
is o�set by using threads which link states that share pre�xes. For instance,
using the DTSA in Figure 3(a) to �nd terms uni�able with a given goal term
p(a,a,V), after �nding the �rst term (at state s4), the next term, p(a,a,c), can
be retrieved by backtracking to s3, following the thread to s9, and making the
transition to s10. Observe that both s3 and s9 have p(a,a,X3) as their skeleton.

4.1 Shared Features

The variant, DTSA- and TST-based subsumption engines share many common
features. For instance all engines distinguish between complete and incomplete

table entries. Completed answer tables are organized as compiled trie code in
all of them (see [8] for details). Although incomplete tables are organized dif-
ferently they all use substitution factoring whereby only the substitutions for
the variables of the call are stored in the answer tries [8]. Once a table entry
has completed, all structures created to support answer resolution from the in-
complete table are reclaimed. These include the leaf node pointers, the auxiliary
structures for indexing on time in the TST-based subsumption engine, and the
entire DTSA itself in the DTSA-based subsumption engine.

In the following, we focus on the di�erences between the three engines.

4.2 Variant- vs. TST-Based Engine

Subsumption engines have a more complex call-check-insert operation than the
variant engine. However, this adds very little (constant factor) overhead to the
evaluation time. Due to sharing of answer computations, subsumption engines
can show arbitrary gains in time performance. The interesting result is that the
table space used by a TST-based engine is always within a constant factor of
that used by the variant engine. In fact,

Proposition 4 (Space Complexity of TST-Based Engine). The maximum

table space used during computation in a TST-based engine is at most twice that

of the variant engine.

This bound follows from the observation that a TST is structured like a trie with
respect to the representation of the answers as sequences of symbols { i.e., a trie
and a TST representing the same set of answers have the same number of nodes
(states) { and that the size of a TST node is twice that of a trie node (including
space for the time index).

4.3 DTSA- vs. TST-Based Engine

The subsumptive engines can be distinguished by their approaches to performing
answer retrieval. Subsumption using Time-Stamped Tries divides this operation
into two processes: (i) identifying answers relevant to a particular goal, and (ii)
unifying a selected relevant answer with that goal. Identi�cation of relevant an-
swers is achieved by a complete search of the TST, yielding a set of answers,
as discussed in Section 3.2. In contrast, DTSA directly supports the primitive
operations of answer retrieval, providing for simultaneous identi�cation and con-
sumption of a single answer.

Consequently, DTSAs have more complex continuations, requiring enough
state information to resume the traversal; a continuation consists of a set of
choice points, one for each level in the DTSA. On the other hand, since com-
plete traversals of a TST are performed during each identi�cation phase, only
the maximum time stamp of all answers contained in the TST is required for
subsequent processing.

DTSA also consumes more table space than TST. In contrast to Proposi-
tion 4, the maximum size of a table in the DTSA-based engine is at least double
that of the representation in the variant engine, as an answer trie (Figure 3(b))
is created in addition to the DTSA. Moreover, the number of nodes in a DTSA
may be quadratic in the number of nodes in a corresponding TST. For example,
consider the program depicted in Figure 4(a). Answers to the query a(X,Y) are
discovered in such an order that no sharing of nodes is possible in the DTSA
(Figure 4(b)). However, since answers are simply marked with the insertion time
in a TST, rather than stored in derivation order, the resulting sharing makes
the corresponding TST more compact (Figure 4(c)). It can be shown that the
number of nodes required to represent the set of answers to the query a(X,Y) in
the TST is n(n�1)=2 + 2k, whereas in the DTSA, the number of nodes required

:- table a/2.

a(X,Y) :- p(X,Y).

a(X,Y) :-

p(X,Z),

q(X,Z,W),

a(W,Y).

q(f(),Z,g(h
k
(Z))).

q(g(),Z,f(h
k
(Z))).

p(f(h
k
(1)),2).

p(g(h
k
(2)),3).

p(f(h
k
(3)),4).

.

.

.

p(g(h
k
(n-2)),n-1).

p(f(h
k
(n-1)),n).

n-2

h/1

g/1

1

2

f/1

h/1

2

h/1

3

h/1

n

h/1

4

h/1

3

h/1 h/1

f/1 g/1

h/1

2 n n

n-1

h/1

h/1

n-1n n

n-2

3

21

h/1

f/1 g/1

(a) (b) (c)

Fig. 4. Program (a) and two organizations of the answer set for the query a(X,Y):

That which would be produced for a DTSA (b) and a (Time-Stamped) Trie (c)

is n(n� 1)(2+ k). As can be seen from both the diagram and these expressions,
the size of k adds but a constant factor to the size of the TST, whereas in the
DTSA, its e�ect is multiplicative.

5 Experimental Results

We now present experimental results to compare the performance of the TST
engine with that of the variant and DTSA engines. All measurements were taken
on a SparcStation 20 with 64MB of main memory running Solaris 5.6. We present
the results using the benchmarks presented in [8], derived from the programs:
left-, right-, and double-recursive versions of transitive closure (lrtc/2, rrtc/2,
drtc/2), and the same generation program (sg/2). We note that both the TST
and DTSA engines were constructed from di�erent base versions of XSB { the
TST engine from version 1.7.2, and the DTSA engine from version 1.4.3. The
measurements were made so as to minimize the impact of this di�erence dur-
ing each experiment, as discussed below. Because the changes between to two
versions did not grossly a�ect the method of evaluation| in particular, XSB's
scheduler| we feel that the following results accurately re
ect the relative per-
formance of the systems.

Time E�ciency. The TST engine shows little overhead when the evaluation
does not lead to subsumed calls. The overheads result only from the subsumption-
checking call-check-insert operation. As time-stamp indexes are lazily created,
no penalty is incurred due to their maintenance. In addition, updating of time
stamps along the path of insertion is avoided by assigning a time stamp value of
1 to all answers entered before the �rst subsumed call is made. These optimiza-
tions enable the TST engine to perform performing within 2% of the speed of
the variant engine (see [5] for details).

The performances of variant and TST engines di�er when subsuming valls are
made. Table 1 shows the execution times of the TST and DTSA engines relative

Table 1. Speedups of DTSA and TST engines in evaluations involving subsumption

Query Graph Size XSB 1.4.3 XSB 1.7.2

Variant DTSA Speedup Variant TST Speedup

rrtc(X,Y) Chain 512 3.36 3.44 0.97 3.05 2.16 1.41

1024 16.8 13.8 1.21 14.6 8.74 1.68

Tree 2048 0.48 0.77 0.62 0.45 0.37 1.21

4096 1.06 2.08 0.51 1.00 0.83 1.20

drtc(X,Y) Chain 128 6.54 4.60 1.43 5.88 3.09 1.90

256 52.0 38.7 1.35 51.5 24.1 2.14

Tree 2048 1.87 1.91 0.98 1.72 1.25 1.38

4096 4.57 4.86 0.94 4.24 3.00 1.41

sg(X,Y) Chain 512 0.68 0.06 11.3 0.64 0.04 15.8

1024 2.73 0.12 22.5 2.58 0.09 27.5

Tree 128 0.12 0.14 0.89 0.11 0.10 1.10

256 0.49 0.50 0.97 0.43 0.43 1.01

lrtc(1,X), Chain 2048 29.4 0.13 219 27.5 0.10 277

lrtc(2,X) 4096 118 0.30 392 110 0.20 574

Tree 2048 17.6 0.10 176 17.3 0.09 190

4096 71.1 0.20 351 69.7 0.18 388

to their base variant engines on examples with this behavior. We compare the
performance of each engine using the speedups achieved over their base variant
engines, thereby removing the noise in the results caused by di�erences in their
base implementations. As each subsumptive engine merely extends the tabling
subsystem to support subsumption, this method measures the performance gain
achievable by each tabling approach. Notice that in all cases, the TST engine
performs at least as well as the DTSA engine.

Table Space Usage. In Table 2 we report on the memory utilized in repre-
senting the tables for some of the benchmarks described earlier. This table space

consists of the call and answer tables, where the latter consists of answer tries,
TSTs, DTSA, and answer lists as present in a particular engine. We report the
maximum space consumed during evaluation, as well as the space consumed
by the completed tables. Table 2 is divided into three sections: the upper por-
tion shows results for benches that do not make use of subsumption; the middle
section shows results for benches for which properly subsumed calls consume
answers only from incomplete tables; and the bottom portion shows results for a
bench whose subsumed calls consume answers from completed tables only. The
space used by the DTSA engine for completed tables is identical to that of TST,
and therefore is not repeated.

As mentioned earlier, the subsumptive engines exhibit a 20% overhead in the
representation of answer tries as compared to the variant engine. For the benches
which do not exhibit subsumption, observe that the actual increase appears lower
due to the presence of the call table and answer lists in this measure, which are

Table 2. Space usage for tables in variant and subsumptive engines

Query Graph Size Maximum Table Space Completed Table Space

Variant DTSA TST Variant TST

lrtc(1,Y) Chain 4096 128 KB 144 KB 144 KB 96.1 KB 112 KB

8192 256 KB 288 KB 288 KB 192 KB 224 KB

rrtc(1,Y) Chain 512 4.23 MB 4.75 MB 4.75 MB 3.23 MB 3.75 MB

1024 16.8 MB 18.8 MB 18.8 MB 12.8 MB 14.8 MB

rrtc(X,Y) Chain 512 7.41 MB 9.89 MB 7.73 MB 6.41 MB 3.73 MB

1024 29.5 MB 39.1 MB 30.8 MB 25.5 MB 14.8 MB

Tree 2048 1.23 MB 1.64 MB 1.23 MB 1.09 MB 702 KB

4096 2.68 MB 3.58 MB 2.69 MB 2.36 MB 1.48 MB

drtc(X,Y) Chain 128 492 KB 826 KB 508 KB 429 KB 252 KB

256 1.87 MB 3.19 MB 1.95 MB 1.62 MB 971 KB

Tree 2048 1.23 MB 1.71 MB 1.23 MB 1.09 MB 702 KB

4096 2.68 MB 3.73 MB 2.69 MB 2.36 MB 1.48 MB

sg(X,Y) Chain 512 88.1 KB 110 KB 84.1 KB 84.1 KB 60.1 KB

1024 176 KB 220 KB 168 KB 168 KB 120 KB

Tree 128 231 KB 430 KB 309 KB 188 KB 168 KB

256 855 KB 1602 KB 1190 KB 685 KB 629 KB

lrtc(1,X), Chain 2048 320 KB 128 KB 128 KB 304 KB 112 KB

lrtc(2,X) 4096 640 KB 256 KB 256 KB 608 KB 224 KB

Tree 2048 276 KB 100 KB 100 KB 260 KB 84.4 KB

4096 522 KB 200 KB 200 KB 520 KB 168 KB

present in all engines. When answer lists are reclaimed upon completion, the
space overhead approaches 20%.

The query lrtc(1,X),lrtc(2,X) exhibits behavior similar to nonsubsump-
tive evaluations during construction of the tables as subsumed calls do not occur
until the tables complete. This allows both subsumptive engines to avoid con-
structing their respective subsumption-supporting data structures. Since answer
tables are shared, the subsumption makes the subsumption engines consume less
maximum and �nal spaces than the variant engine.

For those queries which utilize subsumption from incomplete tables, only a
single table is constructed under subsumptive evaluation { that of the origi-
nal query. This table expands throughout the computation until it completes,
terminating the evaluation. Under variant evaluation, however, several tables
are constructed in addition to the one for the query itself, but are completed
incrementally during the computation. Therefore, memory usage is somewhat
amortized as space is periodically freed by the tables as they complete. The rel-
ative performance in maximum space usage between the two tabling paradigms,
then, depends not only on the amount of answer sharing that is possible { and
so the extent to which duplicity can be avoided { but also on the pattern of table
completion. For these queries, only sg(X,Y) on chains exhibits conditions dur-
ing the evaluation which are conducive to savings under subsumption, and that

Table 3. Maximum choice point space usage for various tabling engines

Query Graph Size Variant DTSA TST

lrtc(1,Y) Chain 4096 0.61 KB 0.61 KB 0.61 KB

8192 0.66 KB 0.66 KB 0.66 KB

rrtc(1,Y) Chain 512 36.5 KB 36.5 KB 36.5 KB

1024 72.5 KB 72.5 KB 72.5 KB

rrtc(X,Y) Chain 512 36.5 KB 100 KB 30.5 KB

1024 72.6 KB 208 KB 60.5 KB

Tree 2048 1.64 KB 288 KB 120 KB

4096 1.81 KB 592 KB 240 KB

drtc(X,Y) Chain 128 16.4 KB 494 KB 477 KB

256 32.5 KB 1950 KB 1913 KB

Tree 2048 1.76 KB 1.22 MB 1.06 MB

4096 1.94 KB 2.69 MB 2.34 MB

sg(X,Y) Chain 512 0.71 KB 100 KB 30.5 KB

1024 0.77 KB 208 KB 60.6 KB

Tree 128 0.76 KB 16.5 KB 7.93 KB

256 0.82 KB 33.7 KB 15.5 KB

lrtc(1,X), Chain 2048 0.74 KB 0.74 KB 0.74 KB

lrtc(2,X) 4096 0.80 KB 0.80 KB 0.80 KB

Tree 2048 0.78 KB 0.78 KB 0.78 KB

4096 0.84 KB 0.84 KB 0.84 KB

by using TSTs only. However, as Table 2 also shows, in all subsumptive cases
(middle and lower portions of the table) the TST engine yields a more compact
representation of the completed tables, even though each TST consumes more
space than the corresponding answer trie in the variant engine.

Finally, for all queries where subsumed calls are resolved only with incom-
plete tables, the TST engine outperforms the DTSA engine in maximum space
required as predicted (Sect 4.3). The results show that the amount of savings can
be signi�cant, in absolute (see rrtc(X,Y)) or relative terms (see drtc(X,Y)).

Choice Point Creation. In Table 3 we present maximum choice point stack
usage which, together with table space usage, accounts for most of the total
memory used during query evaluation with subsumption. As the sizes of producer
and consumer choice point frames di�er between the versions of XSB, we have
added padding to these structures to normalize the values and enable a direct
comparison. For this reason, only results from one version of a variant engine is
shown in this table.

As compared to a variant based evaluation, choice point space is likely to in-
crease as subsumed calls are dependent upon the more general goal, and there-
fore cannot complete before the general goal itself is completed. Hence, the
corresponding consumer choice points must remain active on the choice point
stack. In contrast, under variant evaluation, the more speci�c goals are resolved
by program resolution, independent of the more general call, and hence have

the opportunity to complete earlier and free stack space for reuse. Note that
the former condition is a characteristic of subsumption-based query evaluation
rather than any particular implementation of the tables. In particular, for the
query drtc(X,Y) executed on trees of depth k, it can be shown that the maxi-
mum number of concurrently active choice points is equal to the number of calls
to drtc/2, which is proportional to k2k, whereas under variant evaluation, the
maximum number of active choice points is only 2k. However, there are cases,
such as occurs in the evaluation of rrtc(X,Y), where the initial call pattern is
identical under either evaluation strategy. Here, the use of subsumption actually
saves space as the representation of a consuming call on the choice point stack
is more compact than that of a producer. Note that, even in the worst case, the
choice point stack expansion is tied to the number of interdependent calls, and
hence proportional to the table space.

As discussed in Section 4.3, the DTSA engine uses more stack space than
the TST due to the addition of specialized choice points for performing answer
resolution from the DTSA. As the data in Table 3 shows, the TST engine out-
performs the DTSA engine in terms of choice point space usage in all examples.
Moreover, the overhead is signi�cant, sometimes resulting in usage that is more
than triple that of the TST engine. Finally, recall that the table space of the
TST engine is proportional to that of the variant engine, and that its choice
point space usage is proportional to its table space usage. Therefore, the TST
engine's total usage is proportional to that of the variant engine.

6 Discussion

We presented a new organization of tables based on time-stamped tries for sub-
sumption based tabling. We showed from a theoretical as well as practical per-
spective that it is superior to a tabling engine based on DTSA. Further we have
shown that the space performance of such an implementation is no worse than
a constant factor away from a variant implementation.

Existence of an e�cient subsumption based tabling engine opens up inter-
esting new opportunities for expanding the applicability of top-down evaluation
strategies. For instance, programs exist for which top-down, goal-directed query
evaluations impose a high factor of overhead during the computation when com-
pared to semi-naive bottom-up evaluation. Preliminary evidence suggests that
the performance of our TST-based tabling engine augmented with call abstrac-

tion is competitive with semi-naive bottom-up evaluation methods (see [5] for
details). In general, abstraction of a call c is performed by �rst making a more
general call, c0, and allowing c to consume answers from c0. Observe that do-
ing call abstraction within a subsumptive engine on a call c amounts to losing
goal directedness as far as the evaluation of c is concerned. Thus by selectively
abstracting calls we can vary the degree of goal directness employed during an
evaluation without changing the core evaluation strategy.

References

[1] R. Bol and L. Degerstadt. Tabulated resolution for well-founded semantics. In

Proc. of the Symp. on Logic Programming, 1993.

[2] W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic

programs. JACM, 43(1), 1996.

[3] S. Dawson, C. R. Ramakrishnan, I. V. Ramakrishnan, and T. Swift. Optimizing

clause resolution: Beyond uni�cation factoring. In ICLP, 1995.

[4] Y. Dong, et al. Fighting livelock in the i-protocol: A comparative study of veri�ca-

tion tools. In Tools and Algorithms for the Construction and Analysis of Systems,

(TACAS '99). Springer Verlag, 1999.

[5] E. Johnson, C. R. Ramakrishnan, I. V. Ramakrishnan, and P. Rao. A space-

e�cient engine for subsumption-based tabled evaluation of logic programs. Tech-

nical report. Available from http://www.cs.sunysb.edu/~ejohnson.

[6] Y. S. Ramakrishna, et al. E�cient model checking using tabled resolution. In

Proceedings of the 9th International Conference on Computer-Aided Veri�cation

(CAV '97), Haifa, Israel, July 1997. Springer-Verlag.

[7] C. R. Ramakrishnan, S. Dawson, and D. S. Warren. Practical program analy-

sis using general purpose logic programming systems - a case study. In ACM

Symposium on Programming Language Design and Implementation, 1996.

[8] I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S. Warren. E�cient

access mechanisms for tabled logic programs. JLP, January 1999.

[9] P. Rao, C. R. Ramakrishnan, and I. V. Ramakrishnan. A thread in time saves

tabling time. In JICSLP. MIT Press, 1996.

[10] H. Tamaki and T. Sato. OLDT resolution with tabulation. In ICLP, pages 84{98.

MIT Press, 1986.

[11] A. van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for

general logic programs. JACM, 38(3), July 1991.

[12] The XSB Group. The XSB programmer's manual, Version 1.8, 1998. Available

from http://www.cs.sunysb.edu/~sbprolog.

