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Abstract. Justifying the truth value of a goal resulting from query eval-
uation of a logic program corresponds to providing evidence, in terms of
a proof, for this truth. In an earlier work we introduced the notion of
justification [8] and gave an algorithm for justifying tabled logic pro-
grams by post-processing the memo tables created during evaluation. A
conservative justifier such as the one described in that work proceeds
in two separate stages: evaluate the truth of literals (that can possibly
contribute to the evidence) in the first stage and construct the justifi-
cation in the next stage. Justifications built in this fashion seldom fail.
Whereas for tabled predicates evaluation amounts to a simple table look-
up during justification, for non-tabled predicates this amounts to Prolog-
style re-execution. In a conservative justifier a non-tabled literal can be
re-executed causing unacceptable performance overheads for programs
with significant non-tabled components: justification time for a single
non-tabled literal can become quadratic in its evaluation time!

In this paper we introduce the concept of a speculative justifier. In such
a justifier we evaluate the truths of literals in tandem with justification.
Specifically, we select literals that can possibly provide evidence for the
goal’s truth, assume that their truth values correspond to the goal’s and
proceed to build a justification for each of them. Since these truths are
not computed before hand, justfications produced in this fashion may
fail often. On the other hand non-tabled literals are re-executed less of-
ten than conservative justifiers. We discuss the subtle efficiency issues
that arise in the construction of speculative justifiers. We show how to
judiciously balance the different efficiency concerns and engineer a spec-
ulative justifier that addresses the performance problem associated with
conservative justifiers. We provide experimental evidence of its efficiency
and scalability in justifying the results of our XMC model checker.

1 Introduction

Query evaluation of a goal with respect to a logic program establishes the truth
or falsehood of the goal. However the underlying evaluation engine typically
provides little or no information as to why the conclusion was reached. This
problem broadly falls under the purview of debugging. Usually logic programs

* Research partially supported by NSF awards EIA-9705998, CCR-9876242, IIS-
0072927, and ETA-9901602.



are debugged using trace-based debuggers (e.g. Prolog’s four-port debugger)
that operate by tracing through the entire proof search. Such traces are aided
through several navigation mechanisms (e.g. setting breakpoints or spy points,
skips, leaps, etc.) provided by the debugger.

There are several reasons why trace-based debuggers are cumbersome to
use. Firstly, they give the entire search sequence including all the failure paths,
which is essentially irrelevant if the user is only interested in comprehending
the essential aspects of how the answer was derived. Secondly, the proof search
strategy of Prolog, with its forward and backward evaluation, already makes
tracing a Prolog execution considerably harder than tracing through procedural
programs. The problem is considerably exacerbated for tabled logic programs
since the complex scheduling and fixed-point computing strategies of tabled res-
olution makes it very difficult to comprehend the sequence produced by a tracer.
Finally, from our own experience with the XMC model checker [1] (which is an
application of the XSB tabled logic programming system [11]) trace-based de-
buggers provide no support for translating the results of the trace (which is at
the logic program evaluation level) to the problem space (e.g. CCS expressions
and modal-mu calculus formulas in XMC).

In [8] we proposed the concept of a justifier for giving evidence, in terms of
a proof, for the truth value of the result generated by query evalaution of a logic
program. The essence of justification is to succinctly convey to the user only
those parts of the proof search which are relevant to the proof/disproof of the
goal. For example, if a query is evaluated to true, the justifier will present the
details of a successful computation path, completely ignoring any unsuccessful
paths traversed. Similarly, when a query is evaluated to false, it will only show
a false literal in each of its computation paths, completely ignoring the true
literals. Figure 1 is an illustration of justification, where the predicate reach/2
(Figure 1a) is tabled. Evaluation of the query reach(a,d) generates a forest of
search trees (Figure 1b), (See [12] for an overview of tabled evaluation.)

Although justification is a general concept, the focus of our earlier work in
[8] was on justifying tabled logic programs. Towards that end we presented an
algorithm for justifying such programs by post-processing the memo tables cre-
ated during query evaluation. To justify the answer to a query some “footprints”
need to be stored during query evaluation. The justifier uses these footprints to
extract evidence supporting the result. The naturalness of using a tabled LP sys-
tem for justification is that the answer tables created during query evaluation
serve as the footprints. Indeed during query evaluation the internally created
tables implicitly represent the lemmas that are proved during evaluation. By
using these lemmas stored in the tables, the justifier presents only relevant parts
of the derivation to the user. In other words the additional information needed
for doing justification comes for “free”. Thus justification using tabled logic pro-
gramming system is “non-intrusive” in the sense that it is completely decoupled
from query evaluation process and is done only after the latter is completed.
More importantly, justification is done without compromising the performance
of query evaluation.
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Fig. 1. Justifying reach(a,d): (a) Logic Program (b) Forest of Search Trees (c) Justifi-
cation

Justifying the truth value of a given literal which we will denote as the goal,
amounts to providing a proof that usually will involve searching for other literals
relevant to the proof, knowing their truth values, justifying each such truth value
and putting them all together to produce a justification of the goal’s truth. For
some of them we may fail to produce justifications relevant for justifying the
goal. In Example 1 below the clause p :- r is irrelevant for justifying p is
true since the failure of r is not the correct evidence for p’s truth. Had we
selected this clause and proceeded to build a justification for r we would have
eventually discovered that it is irrelevant. Thus avoiding irrelevant justifications
is an important parameter in the design of justification algorithms.

Example 1 Consider the following logic program:
p :-r. p - t.
r :- ..., fail.
t.

The justification algorithm in [8] yields a conservative justifier in the sense
that by design it is geared towards limiting such wasteful justifications. It does so
by evaluating the truth of literals (that can possibly provide supporting evidence
for the goal’s truth) in the first stage. Armed with the needed truths, in a separate
second stage it proceeds to construct their justifications. By evaluating the truth
of r before hand upon selecting the clause p :- r in Example 1, we can avoid
building the justfication of r to support the truth of p and fail eventually.

The algorithm in [8] implicitly assumed that all the predicates in the program
are tabled. But real-life logic programs consist of both tabled and non-tabled
predicates. How does it handle such programs? Whereas for tabled predicates
evaluation is a simple table look-up during justification, for non-tabled predicates
this amounts to Prolog-style re-execution. In a conservative justifier, justification



of a non-tabled literal can trigger repeated evaluations of other non-tabled literals
on its proof path, causing unacceptable performance overheads for programs
with significant non-tabled components. Specifically the time taken to justify
the truth of a single non-tabled literal can become quadratic over its evaluation
time! In fact on large model checking problems our XMC model checker took
a few minutes to produce the results whereas the justifier failed to produce a
justification even after sevaral hours!

In this paper we explore the concept of a speculative justifier to address the
above performance problem associated with a conservative justifer. The idea un-
derlying such a justfier is this: When we select a literal as a possible candidate
for inclusion in the justificaton of the goal’s truth we speculate that it will be
relevent and proceed to build its justification. Since we do not know its truth
value before hand we may discover eventually that we are unable to produce a
justification for it that is relevant for justifying the goal’s truth (such as the jus-
tification of r in Example 1). On the other hand if we never encounter any such
literal then for a non-tabled literal we have built its justification without having
to repeatedly traverse its proof path. But doing speculative justification naively
can result in failing more often and thus offset any gains accrued by avoiding re-
peated re-executions of non-tabled literals. In this paper we discuss these subtle
efficiency issues that arise in the design and implementation of speculative jus-
tifiers. We show how to judiciously balance the different efficiency concerns and
engineer a speculative justifier that addresses the performance problem associ-
ated with conservative justifiers. The rest of the paper is organized as follows. In
Section 2 we review the concept of justification. Section 3 reviews conservative
justifier. In section 4 we present the design of a speculative justifier. In Section
5 we discuss its implementation and practical impact on real-world applications
drawn from model checking. Discussion appears in Section 6. The technical ma-
chinery developed in this paper assumes definite clause logic program. Extensions
are also disussed in Section 6.

Related Work A number of proposals to explain the results of query evaluation
of logic programs have been put forth in the past. These include algorithmic de-
bugging techniques [10], declarative debugging techniques [4, 6], assertion based
debugging techniques [7], and explanation techniques [5]. A more detailed com-
parison between justification and these aproaches appears in our earlier work [8].
Suffice it is say here that although justification is similar in spirit to the above
approaches in terms of their objectives it differs considerably from all them. It
is done as a post-processing step after query evaluation, and not along with
the query evaluation (as in algorithmic and assertion-based debugging) or be-
fore query evaluation (as in declarative and assertion-based debugging). Unlike
declarative debugging justification does not demand any creative input from the
user regarding the intended model of the program which can be very hard or
even impossible to to do as will be the case in model checking. But beyond all
that this paper examines effciency issues that arise in justifying logic programs
consisting of both tabled and non-tabled predicates — a topic that has not been
explored in the literature.



2 Justification

In this section we will recall the formalisms developed in [8] for justification.
We generalize them here in order to deal with mixed programs containing both
tabled and non-tabled predicates.

Notational Conventions We use P to denote logic programs; HB(P), M (P) to
denote the Herbrand Base and least Herbrand model respectively; A and B to
denote atoms or literals; o to denote a set of atoms or literals; 8 to denote a
conjunction of atoms (a goal is a conjunction of atoms) or literals; 6 to denote
substitutions; ‘>’ to denote atom subsumption (A = B for A subsumes B);
and C to denote a clause in a program. For a binary relation R, we denote its
(reflexive) transitive closure by R*.

Definition 1 (Truth Assignment) The truth assignment of an atom A with
respect to program P, denoted by 7(py(A), is:

_ [true V6 A6 € M(P)
T(P)(A) - {false VO A6 & M(P)

We drop the parameter P and write the truth assignment as 7(A) whenever
the program is obvious from the context. Let A be an answer to some query
in program P, i.e., 7(A) = true. We can complete one step in explaining this
answer by finding a clause C such that (i) A unifies with the head of C, and (ii)
each literal B in the body of C has 7(B) = true. If A is not an answer to any
query, i.e., 7(A) = false, we can explain this failure by showing that for each
clause C' whose head unifies with A, there is at least one literal B in C such
that 7(B) = false. We call such one-step explainations as a locally consistent
explanations (lce’s), defined formally as follows:

Definition 2 (locally consistent explanation (lce)) Locally consistent ez-
planation for an atom A with respect to program P, denoted by & p) (A), is a
collection of sets of atoms such that:

1. If 7(A) = true:
§py(A) ={a1,a2,...,an}, with each a; being a set of atoms {Bi, By,
..,Bp} such that:
(a) V1< j<n 7(Bj) =true, and
(b) 3 C=A" :— 3 and a substitution # such that A’ = A and 86 = (B,
Bs,...,B,)d.
2. If 7(A) = false:
§py(A) = {L}, a singleton collection where L = {B1,B>,...,Bn} is the
smallest set such that:
(a) V1 <j<n 7(Bj)= false, and
(b) V substitutions 6§ and C = A’ :— (B},B5,...,B)), A0=A0 —
31 <k <1 such that B €L and V 1<i <k 7(B;f) = true.



&(reach(a,d)) = {{arc(a,c), reach(c,d)}}
§(reach(c,d)) = {{arc(c, d)}}

&(arc(c,d)) = {{}}

&(reach(a,c)) = {{arc(a,c)}, {arc(a,b), reach(b,c)}}

(a) lce’s for true literals

&(reach(a,e)) = {{arc(a,e), reach(b,e), reach(c,e)}}
&(reach(b,e)) = {{arc(b,e), reach(a,e)}}
§(arc(a,e)) = {{}}

(b) 1lce’s for false literals

Fig. 2. A fragment of lce’s for the example in Figure 1

We write {p)(A) as {(A) whenever the program P is clear from the context.

Observe that, for an atom A, the different sets in the collection £(A) represent
different consistent explanations for the truth or falsehood of A. An answer A
can be explained in terms of answers {By, Bs, ..., B} in £(A) and then (recur-
sively) explaining each B;. e.g. {(reach(a,d)) in Figure 2 has a set with elements
arc(a,c¢) and reach(c,d), meaning that the truth value (¢rue) of reach(a,d) can
be explained using the explanations of arc(a,c) and reach(c,d). Such explana-
tions can be captured by a graph as shown in Figure 1(c). The edges denote
locally consistent explanations. We do not use cyclic explanations to justify a
true literal. In contrast, cyclic explanations describe infinite proof paths and can
be used to justify a false literal. Instead of explicitly representing these cycles,
however, we choose to keep the justification as an acyclic graph, breaking each
cycle by redirecting at least one edge to a special node marked as ancestor.
Formally:

Definition 3 (Justification) A justification for an atom A with respect to pro-
gram P, denoted by J (A, P), is a directed acyclic graph G = (V, E) with vertex
labels chosen from HB(P)U {fact,fail, ancestor} such that:

1. G is rooted at A, and is connected
2. (Bi,fact) € E <= {} € {&(B1) A7(B1) = true
3. (B1,fail) € E <= {} € {(B1) A7(B1) = false
4. (Bi,ancestor) € E <= 7(B1) = false N{(B1) = {L}
A3dByeL s.t. (B2,B1) €E* V By=hB;
5. (Bl,Bz)EE A T(B1)=false =2
f(Bl)I{L} AN BaeL A (Bz,Bl) €E* A Bz;ﬁBl
6. (B1,B2) € E N 7(B1) = true =
3LE§(B1) s.t. Boe L A {VB’ €L (B’,Bl)gE* A B’#Bl}
7. B1€V A 7(By) =true = 3 unique L €£(B1) s.t.
VB; € L (Bl,Bz)EE A (Bz,Bl)gE* AN By # B

Rule 1 ensures that A is the root of justification. Rules 2 and 3 are the
conditions for adding leaf nodes based on facts. Rules 4 and 5 specifies conditions
for justifying false literals, while Rules 6 and 7 deal with true literals.



We will denote the justification graph built for a true (false) literal as true-
Justification (false-justification).

e.g.. the true-justification in Figure 1(c) is built as follows: reach(a,d) is the
root (by rule 1). Now consider the lce {arc(a,c), reach(c,d)} in (reach(a,d)).
Since every element in this lce does not form a cyclic explanation, and is different
from reach(a,d), both edges (reach(a,d), arc(a,c)) and (reach(a,d), reach(c,d))
are added to the justification (by Rule 6). Rule 7 guantees that one and only
one lce is added into the justification. Next we construct true-justifications for
arc(a,c) and reach(c, d) recursively.

3 Conservative Justifier

We review our algorithm in [8] to construct the justification graph. Its high-level
aspects are skecthed in Figure 3. V denotes the vertices (labelled by literals in
the ¢’s) and E denotes the edges in this graph.

Given a literal A the algorithm builds the graph recursively, traversing it
depth-first even as it is constructed. At any point, V is the set of “visited”
vertices, and Done is the set of vertices whose descendents have been completely
explored. V — Done contains exactly those vertices that are ancestors to the
current vertex A.

algorithm Justify(A : atom)
(* Global: P : program, (V, E): Justification, Done C V *)
if (A ¢ V) then (* A has not yet been justified *)
set V := V U{A}
if (7(A) = true) then (* true-justification *) (1)
let aa € £(A) such that (a¢a NV) C Done (2)
if (g = {}) then
set E := EU (A, fact)
else
for each B € a4 do
set E := E U (A, Justify(B))
else (* false-justification *)
lot {aa} = £(A) 3)
if (aa = {}) then
set E := E U (A, fail)
else
if ((aaNV) g Done) then
set E := E U (A, ancestor)
for each B € (ay — (V — Done)) do
set B := E U (A, Justify(B))
set Done := Done U {A}

Fig. 3. Justification Algorithm

The algorithm is structured as follows: it takes the literal A whose truth
is to be justified as the input parameter. It will determine a locally consistent
explanation for either a true-justification in case 7(A4) = true (line 2) or a false-
justification otherwise (line 3). Finally it justifies the literals in the explaination



set recursively. The selection of the justification is done by backtracking through
let. Correctness of Justify appears in [8].

Algorithm Justify in [8] had assumes that all the predicates in the program
are tabled. Let us analyse its behavior on “mixed” programs containing both
tabled and non-tabled predicates. Observe that the algorithm computes the ex-
planation set for A prior to building the justification graph rooted at A. Com-
puting the explanation set corresponds to evaluating the truth values of literals
in the set. Observe that this evaluation is done prior to justifying the truths of
the literals in a4. This ensures that the justifications of the truths of literals in
a4 do not fail. In fact the only time a justification gets discarded is when there
is a cycle in a true-justification. Algorithm Justify is the basis of a conservative
Jjustifier.

3.1 Efficiency Issues in Conservative Justification

Using the XSB tabled LP system we implemented Justify as a post-processing
step following query evaluation. The advantage of using a tabled system for
justification is that the answers in the tables can be directly used for computing
the ¢’s (lines 2 and 3). In particular if all the predicates are tabled then the truth
value of all the literals are stored in the tables. Hence selecting a £ (A ) amounts
to a simple table lookup. In fact we can show:

Proposition 1 For a logic program consisting of tabled predicates only, the run-
ning time of Justify is proportional to the time taken by initial query evaluation.

Let us examine the behavior of Justify on a program containing both tabled
and non-tabled predicates. In a tabled LP system there is no provision for storing
the truth value of non-tabled literals. Consequently computing £’s can become
expensive since non-tabled predicates must be re-executed (a-la Prolog style) to
ascertain their truth values. In fact, as is shown below, the time for justifying a
single non-tabled literal can become quadratic its original evaluation time..

Example 2 Consider the following non-tabled factorial logic program:
fac(0, 1).
fac(N, S) :- N >0, N1 is N - 1, fac(N1, S1), S is S1 * N.

Assume that fac(N,S) is evaluted for some fixed n. It is easy to see that
evaluation time is O(n). The call to Justify(fac(n,n!)) will first compute
&(fac(n,n!)). This set will include fac(n-1, (n-1)!). Algorithm Justify takes
O(n — 1) steps to compute £(fac(n,n!)) since evaluting the truth value of
fac(n-1, (n-1)!) requires that many steps. Next Justify (fac(n-1, (n-1)!)) is
invoked and the above process is repeated. It is easy to see that Justify (n,n!)
will require O(n?) time.

One can however table all the predicates in a program. In such a case the
truths of fac(n,n!), fac(n-1,(n-1)!),..., q(0,1) are all stored in an an-
swer table upon completion of query evaluation. Justifiation will require O(n)



time since evaluating the truths of each of the fac’s can be done in O(1) time.
But for time and space efficiency predicates are selectively tabled in practice [3].
The interesting question now is this: Can we design an efficient justifier for mixed
programs without having to suffer the overheads of re-execution of non-tabled
predicates? Indeed our interest in this question was mainly motivated by our
expereince with our XMC justifer for model checking [1]. On large model check-
ing problems the XMC model checker took a few minutes to produce the results
whereas the justifier failed to produce the justification even after sevaral hours!
In the next section we will present an answer to this question.

4 Speculative Justifier

The idea behind a speculative justifer is as follows: Suppose we wish to justify the
truth of p and further suppose there is a clause p :- ¢1, ¢, ..., ¢, in the program.
Further suppose we wish to build a true-justification for p. If {¢1,¢2,...,q,} €
&(p) then one can build a justification for p by building true-justifications for each
of the ¢;’s, (1 < i < n). Without evaluating their truths apriori we speculate that
{q1,42,---,an} € &(p) and attempt to build a true-justification for all of them.
If {¢1,42,--.,qn} € £(p) then all these justifications will succeed and result in a
true-justification for p. If {g1,¢2,...,qn} & &(p) then there must exist at least
one g; for which the attempt at building a true-justification for it will fail. Hence
this clause cannot provide any evidence as to why p is true and we proceed to
find another candidate clause. Now suppose we wish to build a false-justification
for p. We speculate again that there must exist at least one g; that is false. So
we attempt building a false-justification for each of the ¢;’s in sequence. If we
fail to build a false-justification for any of the g¢;’s then we can conclude that
a false-justification for p does not exist. On the other hand if we do succeed
then we repeat this process on the next clause that unifies with p. Recall from
definition of justification that to justify that p is false there must exist a false
literal in each of these clauses.

The main advantage of speculative justifiers can be seen when justifying non-
tabled predicates. Recall non-tabled literals are re-executed during justification.
Speculative justifiers re-execute less often than their conservative counterparts.
Consider {g; - g;—1-|1 < i < n}, n is a constant and ¢ is a fact. To build a
true-justification for ¢, the speculative justifier will attempt to build a true-
justification for ¢, 1 which in turn build a true-justification for ¢, 2, and so on.
All of these justifications succeed without ever having to repeat re-execution of
any of the ¢;’s in ¢,’s proof.

4.1 Efficiency Issues
But speculative justifiers can suffer from inefficiencies. For example, the gains

accrued by re-executing non-tabled literals less often can be easily offset by
wasted justifications. We discuss these problems below:



— The Problem of Wasteful Justifications:
Naive implementation of speculative justifiers can result in building wasteful
justifications that are eventually discarded. For example, suppose we wish to
build a true-justification for p using the clause pick p : — ¢, r. Suppose ¢ is
true and r is false. We will succeed in building a true-justificaton for ¢ but
fail to do so for r. So using this clause we will fail to build a true-justification
for p. But the true-justification built for ¢ is wasted.

— The Problem of Rebuilding Justifications:
In the above example justification of ¢ was discarded as being irrelevant for
justifying p. Now suppose later on we encounter the literal ¢ again during
justification. If we do not save the justifcation of ¢ then we will have rebuild
its justification all over again.

We now propose solutions to these two main sources of inefficiency in a
speculative justifier.

Lazy Justification To avoid wasteful justifications we justify tabled literals lazily.
The idea is this: Let us suppose we select the clause p : — q1,¢2,...,q, for
justifying p. Assume we wish to build a true-justification for p. Suppose the
literal currently on hand, say ¢;, is tabled. Then we do a simple table-lookup
to verify that 7(g¢;) is true. If this is the case we defer building its justification
and move on to the next literal in the sequence. If ¢; is non-tabled then we
build true-justification for it. We proceed to build justifications for the tabled
literals in the clause only after we succeed building true-justifications for all of
its non-tabled literals. This idea carries over for false-justifications also.

Sharing Justfications The solution to re-building justifications is to save all
of them after they are built the first time. We save the justifications of both
tabled and non-tabled literals. But this can result in space ineffciencies especially
if sharing is infrequent and irrelevant justifications outweigh relevant ones. A
practical compromise between never re-building and always re-building is to
share the justifications of tabled literals only. But note that justification of a
tabled literal might involve other tabled literals. So we will have to avoid copying
the entire justification. Instead we save a “skeleton” of the justification from
which we can reproduce the complete justification. We call this skeleton partial
justification. Intuitively the leaf nodes of a partial justification are either labelled
fail, fact, ancestor or by a tabled literal. All of the interior nodes except
the root are labelled by non-tabled literals. Formally:

Definition 4 (Partial Justification) A partial justification for an atom A
with respect to a program P and table T, denoted by P(pr)(A), is a directed
acyclic graph G = (V, E) with vertex labels chosen from HB(P)U {fact, fail,
ancestor} and the edges from {(B1,B2)|B1 = AV By ¢ T}. The conditions for
selecting the edges are the same as those used in defining justification (def. 3).

We drop the parameter P and T and write the partial justification as P(A)
whenever the program and the table are obvious from the context.
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fact fact

Fig. 4. Partial Justification of reach(a,d) and reach(c,d) in Figure 1

Figure 4 denotes the partial justifications of reach(a,d) and reach(c,d) for
the example in Figure 1.

We can compose partial justifications together to yield a complete justifica-
tion for a literal. Informally composition amounts to “stringing” together the
partial justifications of tabled literals at the leaf nodes labelled by those liter-
als. For example in Figure 4, by attaching the partial justification of reach(c, d)
to the leaf node labelled reach(c,d) in the partial justification of reach(a,d)
yields its complete justification. However care must be exercised when com-
posing partial justifications. In particular compositions that produce cycles in
true-justifications must be discarded.

4.2 Algorithmic Aspects of Speculative Justification

The speculative justifier builds a justifcation by composing several partial justi-
fications. The algorithm for partial justification is shown in Figure 5. It takes the
following parameters as its input: (i) A which is the literal to be justified, (ii) A’s
truth value Twal and (iii) Anc which is a list of tabled literals that are ancestors
of A in the justification. The algorithm builds a true(false)-justification if Twal
is true (false). It returns in J the partial justification of A and D those tabled
calls which appears in the leaf nodes of J. We use clause(4,B) to pick a clause
that unifies with A and findall for aggregation. T denotes the tabled literals
and their answers.

Recall that to build the complete justification of A we need to know the
partial justifications of all the tabled literals that the justification of A depends
upon (e.g. reach(a,d) depends on reach(c,d) in Figure 4). Let Dy = {P|P is
a tabled literal that appears as the label of a leaf node in P(A) }. We refer it
to as the dependent set. We will drop the subscript from the notation for the
dependent set if the literal that it is associated with is clear from the context.

4.3 Properties of a Speculative Justifier

We will suppose that a speculative justifier is based on algorithm partial-justify
and that the complete justification for any literal is obtained by composing all
the partial justifications of tabled literals it depends on. We state below some of
its important properties.

Proposition 2 On purely tabled logic programs, speculative justifier coincides
with conservative justifier.



The above is based on the observation that to justify A the speculative justifier
generates a partial justification which includes its dependent set and fact nodes.
They correspond to a lce for A.

Proposition 3 On purely non-tabled logic programs, justification time required
by a speculative justifier is proportional to query evaluation time.

This proposition is based on the observation that when a program has no
tabled predicates then the partial justification for A corresponds to complete
justification and that evaluation proceeds in Prolog-style.

Theorem 4 The time taken by a speculative justifier for justification is no more
than the time taken by a conservative justifier

We sketch only the main observation for establishing the above propoerty.
Note that a conservative justifier computes a lce for A by re-executing non-tabled

algorithm Partial-Justify(A : atom, Tval : truth value, Anc : Ancestors)
(* Local: J : Justification (V, E); D : Dependent Set *)
set (J, D) i= ({A}, {}), {})
if ( Tval = true ) then (* build true-justification *)
clause(A, B)
if ( B = true ) then(* the selected clause is a fact *)
set J := ({4, fact},{(4, fact)})
else
for each G € B then
if (G €T ) then
if ( 7(G) = true ) then
if (G € Anc) then
fail
else
set £ := EU{(A,G)}
set D := DU {G} (* add G to the dependent set *)
else (* 7(G) # true *)
fail
else (* G is a non-tabled call *)
set £E:= EU{(A,GQ)}
set (J, D) := (J, D) U partial-justify(G, Tval, Anc)
else (* build false justification *)
findall(B, clause(A, B), BL)
if (BL = {}) then (* no clause unifies with A *)
set J := ({4, fail}, {< A, fail >})
else
for each B € BL do
let G € B (* G is choosen from B sequentially *)
if (G €T ) then
if ( 7(G) = false ) then
if (G € Anc) then
set E := E U {(A, ancestor)}
else
set £ := EU{(A,G)}
set D := DU {G} (* add G to the dependent set *)
else (* 7(GQ) # Tval ¥)
fail
else (* G is a non-tabled call *)
set E:= EU{(A4,GQ)}
set (J, D) := (J, D) U partial-justify(G, Tval, Anc)
return (J, D)

Fig. 5. Speculative Justification



literals and consulting the answer table for tabled literals. This coresponds to
computing the partial justification of A by a speculative justifier. Besides the
search paths for computing lce’s in a conservative justifier and partial justifica-
tions in a speculative justifiier also correspond.

While the above theorem only says that the time taken is proportional, spec-
ulative justifiers can do better. Consider the non-tabled factorail program in Ex-
ample 2. By avoiding repeated re-executions the speculative justifier will build
a true justification for (fac(n,n!))in O(n) steps whereas it took O(n?) steps
for the conservative justifier.

5 Experimental Results

In [8] we reported on the performance of a conservative justifier based on Justify
(in Section 3) and implemented using the XSB tabled LP system. It was de-

Benchmark| Leader (ae_leader) Leader (one_leader)
Size 2|3 4|5 ]|6]2|3|]4]|]5]| 6
Conservative|0.18]1.51]10.86]130.3[n/a[|0.19]1.41]11.01[136.6]2252.7]
Speculative 0.05[0.24| 1.21 | 6.80 |35.2((0.06/0.22| 1.17 | 6.04 | 33.2 |

Benchmarks Sieve (ae_finish)

Size (374)|(3=5)|(475)|(4=6)|(576)|(5=7)|(677)|(6=8)|(679)|(6=10)
Conservative | 1.12 | 1.24 | 3.65 | 4.60 (11.92|15.71(46.83| 51.5 | 62.8 | 78.29
Speculative |0.16 | 0.18 | 0.42 | 0.52 | 1.17 | 1.45 | 3.38 | 3.69 | 4.13 | 4.80

Benchmarks Meta-lock (mutex) ABP |Iproto (bug)
Size (152)|(1a3)|(154)|(2a1)|(351)|(2a2) fix(1)

Conservative | 2.11 |21.95|310.1| 4.77 {239.0|488.4|| 1.81 n/a

Speculative | 0.18 | 0.97 | 4.98 | 0.32 | 4.09 | 6.16 || 0.20 193.2

(a) Running Time (in Seconds.)

Benchmark|Leader (ae_leader)||Leader (one_leader)
Size 2|3]4]| 5 2[(3]4]| 5
Conservative|2.35(4.96|17.6| 81.1 ||2.40|2.62|8.25| 43.7
Speculative |2.48|3.68|10.4| 63.7 ||2.48/3.68/10.5| 63.9

Benchmarks Sieve (ae_finish)

Size  |(3,4)|(3,5)|(4,5)|(4,6)|(5,6)|(5,7)|(6,7)|(6,8)|(6, 9)|(6,10)
Conservative | 5.03 | 4.86 | 9.26 | 9.16 | 17.6 | 33.6 | 66.4 | 66.7 | 67.1 | 67.6
Speculative | 2.63 | 2.67 | 3.87 | 4.04 | 6.57 | 10.1 | 18.9 | 19.3 | 19.9 | 20.8

Benchmarks Meta-lock (mutex) ABP

Size  |(1,2)[(1,3)[(1,4)[(2,1)[(3,1)[(2,2)
Conservative | 2.45 | 6.50 | 21.3 | 2.32 | 14.3 | 25.4 || 2.57
Speculative | 2.53 | 6.11 | 32.9 | 3.60 | 19.6 | 34.3 || 2.54

(b) Space Usage (in MBs)

Fig. 6. Time and Space Comparison between Conservative and Speculative
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Fig. 7. Time and Space Comparison between Evaluation and Justification

veloped for our XMC model checking environment Model checking in XMC
corresponds to evaluating a top-level query that denotes the temporal prop-
erty of interest. The query succeeds whenever the system being verifed satisfies
the property. To succinctly explain the success or failure of the query we use
the XMC justifier. We have now implmented the speculative justifier based on
Partial-Justify (see Section 4). This impelmentation also uses the XSB system.
Both the impelmentations only share the justifications of tabled literals.

We compare the performance of both the justfiers on the model checking
application using our XMC system. Figure 6(a) compares their running times
while Figure 6(b) shows their space usage. The model checking examples used in
these experiments ((i-Protocol, ABP,Leader,Sieve) were taken from the XMC
collection. i-Protocol is a sliding window protocol in the GNU UUCP stack,
ABP is the alternating protocol, Leader and Sieve are taken from the SPIN [2]
example suite.

Observe that the running times of the speculative justifier is significntly bet-
ter, sometimes by several orders of magnitude. Because of its significant speedups
the speculative justfier is able to scale up to large problem sizes. For example, on
i-Protocol(window size 1, no livelock) and Leader(size 6), which are instances
of large model checking examples, the speculative justifier took a few minutes
whereas the conservative justifier did not finish even after several hours!

Also observe that the space usage of the speculative justifier appears compa-
rable to its conservative counterpart.

Figure 7(a) compares justification time of the speculative justifier to query
evauation time while Figure 7(b) compares their space usage. Observe that the
running times and space usage of the speculative justifier seems to suggest that
they are both nearly proportional to those of query evaluation.

6 Discussion

We introduced the concept of a sepeculative justifier, presented an algoritihm
for it and provided experimental evidence of its efficiency and scalabity. The jus-



tification algorithm in this paper assumed definite clause logic programs. In [8]
we show how to extend the justification algorithm in a conservative justifier to
normal logic programs evaluated under well-founded semantics. The same exten-
sions carry over to the justifcation algorithms used in the speculative justifier.
In this paper our primary focus was on improving the running time of justi-
fication so as to scale to large problem sizes that we encountered in our model
checking application. The justifier described in this paper can be used with any
other tabled LP system. As far as space usage is concerned it is possible to
improve it further. One possibility is to control the size of partial justification.
Recall that partial justification can include justification of non-tabled literals.
There are several reasons for controlling the justification of non-tabled literals
and thereby control the size of partial justificaion. Firstly, justification of non-
tabled literals can be arbitrarily big. Secondly, users may not be interested in
justifying non-tabled calls. Thirdly users may prefer to use the familiar 4-port
debugger for non-tabled literals over a justifier. Users can specify the non-tabled
literals that they are not interested in justifying. The justifier will simply evaluate
away such literals without explicitly building a justification for them. Improving
space efficiency using such techniques is a topic that deserves further exploration.
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