
Logic Programming Optimizations for Faster

Model Checking

Yifei Dong, C.R. Ramakrishnan

1 Introduction

Over the last three years, we have showed that logic programming with tabulation
can be used to construct eÆcient model checkers [RRR+97, CDD+98, DDR+99].
In particular, we have developed XMC [RRS+00], a model checker which veri�es
properties written in the alternation-free fragment of the modal mu-calculus [Koz83]
for systems speci�ed in XL, an extension of value-passing CCS [Mil89]. The XMC
system is available from http://www.cs.sunysb.edu/�lmc.

XMC is implemented atop the tabled logic programming system XSB [XSB00].
Its initial implementation [RRR+97] consisted of two predicates trans/3, which en-
coded the SOS semantics of XL terms, and models/2, which encoded the semantics
of mu-calculus formulas. The predicate trans/3 computes the transition relation of
the automaton corresponding to the given XL speci�cation. The models/2 predi-
cate determines whether a given state in the automaton models a given formula. In
e�ect, model checking is done by query evaluation.

In a recent paper [DR99], we showed that XMC's performance can be signi�-
cantly improved by compiling XL speci�cations into transition rules, which are an
eÆcient representation of low-level automata. The compiler, at a very coarse level,
can be viewed as partially evaluating the trans/3 relation with respect to an XL
speci�cation, and then optimizing the resultant program.

In this abstract, we consider the orthogonal problem of compiling formulas. The
compilation process is done in four steps. First, we transform the formula at mu-
calculus level itself, to enable the subsequent transformations. We then partially
evaluate models/2 with respect to the transformed formula. We convert right re-
cursion to left (under certain conditions) in the partially evaluated program. The
specialization done in the second step can result in storing the same automaton state
in multiple tables. The �nal step introduces a dictionary structure to ensure that
state representations are shared.

We �rst describe the encoding of the models/2 predicate and describe each step
in the compilation. We present experimental results and discuss the e�ectiveness of
optimizations performed in each of the steps.

The authors are at the Department of Computer Science, SUNY Stony Brook, Stony Brook,

NY 11794, USA. Their emails addresses are: ydong@cs.sunysb.edu,cram@cs.sunysb.edu.

This work was support in part by NSF grants CCR-9711386, CCR-9876242 and EIA-9705998.



models(S, or(F1, F2)) :- models(S, F1); models(S, F2).

models(S, diamMinus(A, F)) :-

trans(S, B, T), B \== A,models(T, F).

models(S, boxMinus(A, F)) :-

findall(T, (trans(S, B, T), L), B \== A), L),

all_models(L, F).

models(S, form(X)) :- rec_models(S, X).

all_models([], _).

all_models([T|Ts], F) :- models(T, F), all_models(Ts, F).

:- table rec_models/2.

rec_models(S, X) :- def(X, F), models(S, F).

Figure 1: Fragment of mu-calculus model checker models/2.

2 Compiling and Optimizing the Model Checker

Formulas to be veri�ed are written in XL using an equational mu-calculus syntax;
the abstract syntax of these formulas are represented using def/2 facts. For instance
the property of deadlock freedom, expressed in XL as \df += [-]ff \/ <->df" is
represented in the abstract syntax as:

def(df, or(boxMinus(nil, ff), diamMinus(nil, form(df))))

The formula ff is false at all states, and nil is a transition label that does not
occur in the automaton to be veri�ed. A formula diamMinus(a,f) is true at state
s if there is a non-a transition from s to t such that f is true at t. A formula of the
form boxMinus(a,f) is true at s if for every non-a transition from s to t,f is true at
t. We use the notation of the form \df =": : : for least �xed point equations. This
semantics is encoded in the de�nition of predicate models/2, a fragment of which
is shown in Figure 1. Even in the initial encoding table only the rule that handles
recursion; the rest of the rules are not tabled.

In the following, we describe the various optimization steps in formula compi-
lation, namely, formula transformation, partial evaluation, recursion transforma-
tion, and dictionary creation. The e�ect of these optimizations in large XMC
benchmarks is shown in Table 1. In the table, \iproto" refers to the i-Protocol
model [DDR+99], \leader" refers a model of leader election algorithm adapted from
SPIN's test suite [Hol97], and \metalock" refers to a model of the Java Metalock-
ing algorithm [BSW00]. The i-Protocol benchmark veri�es a livelock property on
a faulty version (bug) and a corrected version, and with two window sizes (w=1,
w=2). The \leader" benchmark veri�es a liveness property for two instances: ring
sizes 5 and 7. The \metalock" benchmark veri�es a safety property (mutual exclu-
sion) on an instance with 3 objects and 2 threads. All measurements were made on
a Sun Enterprise 4000 with 2G memory.



model/method time space

total permanent stack table

iproto w=1 bug

original 0.09 2.4M 618K 34K 67K

after partial evaluation 0.07 2.2M 419K 31K 75K

after left recursion 0.90 2.7M 419K 57K 567K

after interning 1.00 2.6M 668K 28K 215K

iproto w=2 bug

original 0.45 2.7M 618K 143K 307K

after partial evaluation 0.45 2.5M 419K 138K 315K

after left recursion 4.32 4.1M 419K 116K 1956K

after interning 5.08 4.0M 1452K 63K 777K

iproto w=1 �x

original 14.92 31.5M 421K 14.7M 5.4M

after partial evaluation 14.84 32.7M 420K 13.6M 6.5M

after left recursion 13.12 7.7M 420K 77K 5.5M

after interning 13.84 6.3M 2105K 37K 2.5M

iproto w=2 �x

original 228.26 256.7M 421K 161.9M 50.7M

after partial evaluation 227.20 266.7M 420K 150.6M 60.7M

after left recursion 144.37 53.7M 420K 133K 51.6M

after interning 152.15 43.1M 17.3M 68K 24.2M

leader5 one-leader

original 0.75 3.6M 400K 1104K 722K

after partial evaluation 0.70 3.6M 400K 1123K 706K

after left recursion not applicable

after interning 0.75 2.8M 976K 371K 129K

leader7 one-leader

original 16.06 45.3M 411K 26.2M 12.9M

after partial evaluation 15.93 45.1M 411K 26.4M 12.6M

after left recursion not applicable

after interning 15.34 21.6M 11.3M 6.0M 1.8M

metalock 3x2 nomutex

original 23.31 39.7M 583K 22.9M 12.8M

after partial evaluation 22.29 41.0M 392K 19.0M 14.3M

after left recursion 18.87 14.3M 394K 848K 11.9M

after interning 21.53 12.0M 7.9M 1266K 2.2M

Table 1: E�ect of di�erent stages of formula compilation



Formula Transformation: The �rst step in compilation is to transform the for-
mulas themselves. We transform box modalities to their dual diamond modalities
as long as the transformation does not introduce cycles with negation in the corre-
sponding evaluation. In particular, we transform boxMinus(a,f) in the de�nition
of a formula g into neg(diamMinus(a, neg(f))) whenever the de�nitions of f are
g are not mutually recursive. For instance, the deadlock freedom formula is trans-
formed to:

def(df, or(neg(diamMinus(nil, neg(ff))),

diamMinus(nil, form(df))))

This transformation necessitates the addition of the following rules to models/2:

models(S, neg(F)) :- tnot(tab_models(S, F)).

:- table tab_models/2.

tab_models(S, F) :- models(S, F).

The predicate tab_models/2 is simply the tabled version of models/2. The addi-
tional table can be removed in the subsequent partial evaluation phase, as described
below.

Partial Evaluation: The next step in optimization partially evaluates models/2
with respect to the given formula. Partial evaluation involves traditional specializa-
tion and a few simple transformations that are speci�c to the model checker.

For example, the deadlock freedom property yields a specialized model checker
of the form:

:- table rec_models_df/1.

rec_models_df(S) :- tnot(tab_models_diam(S)) ;

trans(S,B,T), B \== nil, rec_models_df(T).

:-table tab_models_diam/1.

tab_models_diam(S) :-

trans(S,B,T), B \== nil,

tnot(tab_models_notff(S)).

:-table tab_models_notff/1.

tab_models_notff(S).

We can eliminate tab_models_notff/1 using a trivial partial evaluation step. Ob-
serve that tab_models_diam/1 need not be tabled and does not invoke a tabled
predicate; hence the tabled negation tnot can be replaced with Prolog negation.
Finally, since nil does not occur as a label on any transition, B\==nil always suc-
ceeds. This results in the following de�nition of rec_models_df/1:

:- table rec_models_df/1.

rec_models_df(S) :- not(trans(S,_,_)) ;

trans(S,_,T), rec_models_df(T).



Partial evaluation, by itself, has little e�ect on performance. For instance, for
verifying the deadlock freedom property on the \metalock" benchmark (not shown in
table). Partial evaluation alone speeds up model checking by about 8% compared to
XMC without formula compilation. Partial evaluation after formula transformation
results in a speedup of over 60%. The formula transformation step does not apply
to any of the benchmarks shown in Table 1 and hence we observe a speedup of 5% or
less on those examples. More signi�cantly, this step makes the recursive structure
of the formula explicit in the model checker, and thereby enables the recursion
transformation.

Recursion Transformation: It is well-known that bottom-up parsing algorithms
(such as LR(1)) perform better while parsing left-recursive grammars, due to fewer
symbols stored on the shift-reduce stack. A similar performance improvement can
be seen in a tabling environment when right-recursive predicates are converted to
left recursive ones. For instance, the right-recursive rec_models_df/1 predicate can
be transformed into models_df_left de�ned as:

models_df_left(S) :- reach(S, T), not(trans(T,_,_)).

:- table reach/2.

reach(S, S).

reach(S, T) :- reach(S, U), trans(S, _, T).

Note that models_df_left is not tabled.
This transformation does not a�ect the complexity of evaluation as long as there

is only one query to models_df_left/1. If the predicate being transformed results
from an inner �xed point, then there may be multiple queries to the predicate. Since
multi-source reachability is quadratic, the transformation may produce unacceptable
slow downs. Hence we apply this transformation only on the predicate derived
from the outermost �xed point in the mu-calculus formula. The outermost �xed
point of the formula \one leader" used in the leader benchmark cannot be made left
recursive (due to a box modality). We see that the space and time requirements of
all benchmarks except the faulty \iproto" are signi�cantly improved by recursion
transformation.

The recursion transformation can change the order in which the model checking
search is done. Hence, for formulas that do not require complete exploration of
the state space, the transformation can cause dramatic slow downs or speedups,
depending on how the search order was changed. This is apparent the order-of-
magnitude slowdown observed for the faulty version of \iproto".

State Dictionary: Partial evaluation of model checking with respect to a set of
formulas may have adverse e�ect on the table space. When the original models/2
is used, the trie representation of calls and answers in tables [RRS+95] shares the
states across multiple formulas, since the trie linearizes terms by a preorder traversal.
Specialization destroys this sharing opportunity. We use a dictionary of states to
ameliorate this loss.



Each state is stored in a separate structure, using XSB's intern library. The
system assigns to each \interned" term an unique index which can be used as a
handle for lookup. The states are then represented only by their intern indices.
Using such a dictionary, any state sharing that was destroyed by specialization can
be restored. However, the dictionary lookup at each step (to check for transitions
from a state) increases model checking time.

Note that state dictionary is not useful for a single (non-nested) �xed point
formula, since there is no loss in sharing due to specialization. All formulas used in
the benchmarks shown in Table 1 have nested �xed points. For such formulas, we
see space savings in the range from 4% to over 200%. The use of dictionary increases
run time by up to 15%.

3 Conclusions

We presented several simple LP-based techniques to improve the space and time per-
formance of a model checker. We �nd that these techniques can yield considerable
savings in time (up to 40%) and space (by a factor of two or more) when exhaustive
state-space search is necessary. When only a portion of the state space needs to be
explored, the techniques may change the search order, consequently worsening the
performance. Hence it seems appropriate to use these optimizations when exhaus-
tive exploration is expected: especially checking for \bugs" in the �nal stages of a
design. We observe that further improvements in the performance are unlikely if the
techniques are based solely on the properties being veri�ed. Techniques to reduce
the state space of the system based on the given formula hold signi�cant promise
and are currently being studied.

References

[BSW00] S. Basu, S. A. Smolka, and O. R. Ward. Model checking the Java
Meta-Locking algorithm. In Proceedings of 7th IEEE International Con-

ference and Workshop on the Engineering of Computer Based Systems

(ECBS 2000), Edinburgh, Scotland, April 2000.

[CDD+98] B. Cui, Y. Dong, X. Du, K. Narayan Kumar, C. R. Ramakrishnan,
I. V. Ramakrishnan, A. Roychoudhury, S. A. Smolka, and D. S. Warren.
Logic programming and model checking. In Static Analysis Symposium.
Springer Verlag, 1998.

[DDR+99] Y. Dong, X. Du, Y. S. Ramakrishna, C. R. Ramakrishnan, I.V. Ra-
makrishnan, S. A. Smolka, O. Sokolsky, E. W. Stark, and D. S. Warren.
Fighting livelock in the i-Protocol: A comparative study of veri�cation
tools. In Tools and Algorithms for the Construction and Analysis of Al-

gorithms (TACAS '99), Lecture Notes in Computer Science, Amsterdam,
March 1999. Springer Verlag.



[DR99] Y. Dong and C. R. Ramakrishnan. An optimizing compiler for eÆcient
model checking. In Proceedings of FORTE/PSTV '99, 1999.

[Hol97] G. J. Holzmann. The model checker SPIN. IEEE Transactions on Soft-

ware Engineering, 23(5):279{295, May 1997.

[Koz83] D. Kozen. Results on the propositional �-calculus. Theoretical Computer

Science, 27:333{354, 1983.

[Mil89] R. Milner. Communication and Concurrency. International Series in
Computer Science. Prentice Hall, 1989.

[RRR+97] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A.
Smolka, T. W. Swift, and D. S. Warren. EÆcient model checking using
tabled resolution. In Proceedings of the 9th International Conference

on Computer-Aided Veri�cation (CAV '97), Haifa, Israel, July 1997.
Springer-Verlag.

[RRS+95] I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S. Warren.
EÆcient tabling mechanisms for logic programs. In International Con-

ference on Logic Programming, 1995.

[RRS+00] C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, Y. Dong,
X. Du, A. Roychoudhury, and V. N. Venkatakrishnan. XMC: A logic-
programming-based veri�cation toolset. In Computer Aided Veri�cation

(CAV), 2000.

[XSB00] The XSB Group. The XSB logic programming system v2.1, 2000. Avail-
able from http://www.cs.sunysb.edu/�sbprolog.


