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Abstract

Di�erent model checking tools o�er a variety of speci�cation languages to encode

systems. These speci�cations are compiled into an intermediate form from which the

global automata are derived at veri�cation time. Some tools, such as SPIN, provide

the user with constructs that can be used to a�ect the size of the global automata. In

other tools, such as Mur', the user speci�es a system directly in terms of its global

automata using a guarded command language, and hence has complete control over

the automata sizes. Our experience shows that using low-level speci�cations we can

signi�cantly reduce veri�cation times. The question then is, whether we can derive the

low-level representations directly from a high-level speci�cation without user intervention

or dependence on user annotations.

We address this problem in this paper. We develop an optimizing compilation tech-

nique that transforms high-level speci�cations based on value-passing CCS into rules

from which transitions of the global automata can be e�ciently generated. The rep-

resentation of rules is such that possible synchronizations can be computed at compile

time in polynomial time while transitions can be generated during veri�cation in unit

time modulo indexing. We show, via experiments using examples with di�erent char-

acteristics, that our technique is very e�ective in practice. For example, the compiler

reduces the veri�cation time of our XMC model checker by a factor of up to �fteen, while

reducing the space requirements by up to an order of magnitude. More importantly, we

identify a set of optimizations that can be implemented with little compile-time overhead

and signi�cantly reduce the time and space required for veri�cation.

Keywords: Model Checking, Speci�cation Languages, Veri�cation.

1 Introduction

Many powerful techniques and tools have been developed over the past decade for formally
verifying properties of complex systems from their speci�cations (see [CW96b]). The speci�-
cation languages supported by most tools have high-level features| such as data structures,
procedures and parameterized processes| to reduce the chance of errors in the speci�cations
themselves.

Model checking techniques [CE81, QS82, CES86], typically view the high-level system
speci�cation in terms of the underlying automaton: labeled transition system or Kripke struc-
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ture [MP95]. Veri�cation tools �rst compile the input speci�cations into a compact represen-
tation of the global transition relation. For example, SPIN [Hol97] compiles speci�cations in
PROMELA into local automata, one for each process; C�sar [GS90] translates input LOTOS
speci�cations [BB89] into Petri nets. At veri�cation time, these representations are used by
the explicit-state model checkers to construct the global automaton.

In contrast to the above tools, Mur' [Dil96] provides a guarded command language for
specifying a system directly as rules de�ning its global transition relation. This permits the
user to directly optimize the global automata by using several encoding tricks (such as grouping
many individual computations and actions together into a single transition). A recent study
of the performance of various veri�cation tools (based on verifying the i-Protocol, a sliding
window protocol in the GNU UUCP stack) shows that the low-level speci�cation enables
Mur' to be considerably faster, and consume much less memory, than other tools [DDR+99].

The immediate question that arises is whether we can achieve the veri�cation e�ciency
of low-level speci�cations without sacri�cing the ease of encoding and correctness of high-
level speci�cations. Many tools, such as SPIN, let the user provide annotations that are
then used to reduce the state space of global automata. For instance, using atomic and d step

constructs of PROMELA, a SPIN user can group many computation steps into one transition.
However, the responsibility of assuring the correctness of the optimization lies solely with the
user. Moreover, while these annotations reduce the state space to some extent, lower-level
optimizations (as can be done in a Mur' speci�cation) can reduce the state space even further.

An Optimizing Compiler for Model Checking: In this paper, we describe an optimizing
compiler that automatically and e�ciently translates high-level speci�cations (based on value-
passing CCS [Mil89]) into a compact representation of the global automaton. We deploy
several optimizations that reduce the state space of the global automaton without relying on

user annotations. The salient features of the compilation technique are:

� The compiler translates value-passing CCS expressions into (Horn-clause like) rules that
represent the transition relation of the global automaton. It precomputes possible syn-
chronizations at compile-time while still maintaining polynomial (quadratic) bounds for
compile time and space. The transition rules are represented such that transitions of the
global automaton can be computed in unit time (modulo indexing) during veri�cation.

� The compiler is derived directly from the SOS semantics of value-passing CCS expres-
sions. This is in contrast to the translation for LOTOS programs described in [GS90],
where the target Petri nets are derived from speci�cations other than LOTOS opera-
tional semantics. However, similar to [GS90], our compiler translates all valid expressions
except those with recursion over parallel composition and relabeling operations.

� Consecutive computation steps are grouped into single atomic transitions even across

basic block boundaries, leading to signi�cant reductions in the state space. Note that
in SPIN, in contrast, we can group together only those computations that span whole
blocks using atomic annotations. Experiments show that our aggressive optimization
reduces the state space by more than an order of magnitude in some examples, with
consequent improvement in veri�cation performance.

� The compiler takes time that is polynomial in the size of the input speci�cation. Note
that while techniques based on bisimulation equivalence can be used to minimize the
global automata, they take time proportional to the state space of the system, and hence
can be exponential.
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Our Approach and its E�ectiveness: We describe the compilation technique based on
the XMC system [RRR+97], a model checker for modal mu-calculus [Koz83] and XL, a
process description language that extends the value-passing CCS with parameterized pro-
cesses, sequential composition and procedure calls. The XMC system is built using the XSB
tabled logic programming system [XSB98]. The core of the system consists of two predi-
cates, trans:State�Action�State which computes the transition relation by interpreting XL
process terms, and models:State � Formula which veri�es whether a state represented by a
process term models a given modal mu-calculus formula. The two predicates directly encode
the structural operational semantics of XL and modal mu-calculus respectively. The encoding
exploits the capabilities of the XSB logic programming system to compute least �xed points
very e�ciently. Greatest �xed point computations are encoded as negation of their dual least
�xed point.

This encoding reduces model checking to logic program query evaluation. The XSB logic
programming system performs goal-directed evaluation of queries, and consequently, we obtain
a local (\on-the-y") model checker. This high-level encoding comes with little performance
penalty. Using XMC, we can verify systems with more than a hundred thousand reachable
states in times that are comparable to SPIN and Mur'. A detailed description of the XMC
system can be found in [CDD+98].

We implemented the compiler in the XMC system and evaluated its e�ectiveness using
benchmark programs with di�erent characteristics. The compiler speeds up the XMC model
checker by factors of up to 15, while reducing space requirements by factors of 6 or more.
Using the compiler we can verify high-level speci�cations of several examples in the XMC
system as fast as verifying equivalent low-level speci�cations in Mur'. For instance, XMC
with compilation is more than 4 times faster than XMC without compilation for verifying the
i-Protocol, and nearly as fast as Mur'. For the same example, veri�cation using XMC with
compilation is sometimes more than an order of magnitude faster than that using SPIN, and
never slower.

Organization: We �rst present the structural operational semantics of XL, which forms
the basis of our compiler (Section 2). We then formally describe a continuation-passing-
style [App92] optimizing compiler for XL (Section 3). Experimental results measuring the
e�ectiveness of the compilation technique and the various optimizations are presented in Sec-
tion 4. Although designed for XL and the XMC system, several features of the compilation
technique and the optimizations can be incorporated into the translation of any high-level
speci�cation language. We discuss these issues in Section 5.

2 The Speci�cation Language XL

XL is based on the value passing CCS [Mil89]. Values and computations are represented as
Prolog terms and predicates respectively. Thus the speci�cations can make use of recursive
data structures and computations.

The syntax of XL speci�cations are described by the grammar shown in Figure 1. In the
�gure, Proc is a (parameterized) process name, represented as a term (e.g., channel(N, Buf)).
Comp is a term (e.g., X is Y+1) representing a computation. A terminating null process is
represented by true, the empty computation. A process if(C,S1,S2), behaves like S1 if
computation C succeeds, and like S2 if C fails. The computation C in an if expression is
assumed to leave the bindings of variables unchanged. A process in(chan(t)) inputs a value
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E �! Comp (computation)

j in(Term) (input communication)

j out(Term) (output communication)

j zero (unit deadlocked process)

j E o E (sequential composition)

j E # E (choice)

j if(Comp, E, E) (conditional)

j E | E (parallel composition)

j E \ PortSet (restriction)

j E @ PortMap (relabeling)

j Proc (process invocation)

Def �! (Proc ::= E)� (process de�nitions)

Figure 1: Syntax of XL
.

channel ::= in(get(Data)) o ( out(put(Data)) # out(drop) ) o channel.

sender(Seq) ::=

% Seq is the sequence number of the next frame to be sent

out(dataOut(Seq)) o

( ( in(ackIn(AckSeq)) o

if( AckSeq == Seq

, NSeq is 1-Seq o sender(NSeq) % successful ack, next message

, sender(Seq)) % unexpected ack, resend message

) # sender(Seq)). % upon timeout, resend message

receiver(Seq) ::=

% Seq is the expected sequence number of the next frame to be received

in(dataIn(RecSeq)) o

if( RecSeq == Seq

, ( NSeq is 1-Seq o out(ackOut(RecSeq)) o receiver(NSeq) )

, out(ackOut(RecSeq)) o receiver(Seq)). % unexpected seq, resend ack

abp ::=

( sender(0) @ [s2r_in(X) / dataOut(X), r2s_out(X) / ackIn(X)]

| channel @ [s2r_in(X) / get(X), s2r_out(X) / put(X)] % sender -> receiver

| channel @ [r2s_in(X) / get(X), r2s_out(X) / put(X)] % receiver -> sender

| receiver(0) @ [s2r_out(X) / dataIn(X), r2s_in(X) / ackOut(X)]

) \ {s2r_in(_), s2r_out(_), r2s_in(_), r2s_out(_)}.

Figure 2: Speci�cation of the Alternating Bit Protocol in XL

that matches term t over port chan; out(chan(t)) outputs the value represented by term t

over port chan. Process invocations may be recursive; in fact, since the language provides
no iterative constructs, recursion is the only way to specify loops in processes. As in CCS,
relabeling and restriction are used to derive instances of a generic process. PortSet is a set of
terms that represent the restricted ports, and PortMap is a list of pairs of terms (each pair of
the form s=t) that denotes the mapping de�ned by relabeling.

The complete speci�cation of the Alternating Bit Protocol [Tan96] in Figure 2 illustrates
the features of XL. Observe from the �gure that computation and communication are freely
intermixed in an XL speci�cation. Moreover, there are no user annotations that mark which
computations can be treated as atomic: these are inferred automatically by the compiler.
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(1)
in(t); �

in(t�)
�! true; �

(2)
out(t); �

out(t�)
�! true; �

(3)
E; �

�
�! E0; �0

E o F; �
�
�! E0 o F; �0

(4)
E; �

�
�! E0; �0

true o E; �
�
�! E0; �0

(5)
E1; �

�
�! E0

1; �
0

E1 # E2; �
�
�! E0

1; �
0

(6)
E2; �

�
�! E0

2; �
0

E1 # E2; �
�
�! E0

2; �
0

(7)
[[C]]L� 6= fg ^ E1; �

�
�! E0

1; �
0

if(C, E1, E2); �
�
�! E0

1; �
0

(8)
[[not(C)]]L� 6= fg ^ E2; �

�
�! E0

2; �
0

if(C, E1, E2); �
�
�! E0

2; �
0

(9)
E1; �

�
�! E0

1; �
0

E1 j E2; �
�
�! E0

1 j E2; �
0

(10)
E2; �

�
�! E0

2; �
0

E1 j E2; �
�
�! E1 j E

0

2; �
0

(11)
E1; �1

�
�! E0

1; �
0

1 ^ E2; �2
�
�! E0

2; �
0

2 ^ f�; �g � fin(t); out(t�)g

E1 j E2; �1�2�
tau
�! E0

1 j E
0

2; �
0

1�
0

2�

(12)
E; �

�
�! E0; �0

P 0; ��
�
�! E0; ��0

(P::= E; � = mgu(P; P 0)) (13)
[[Comp]]L� = �0

Comp; �
i
�! true; �0

(14)
E; �

�
�! E0; �0

E n L; �
�
�! E0 n L; �0

(� 62 L) (15)
E; �

�
�! E0; �0

E @ F; �
F (�)
�! E0 @ F; �0

Figure 3: Operational Semantics of XL

2.1 Operational Semantics of XL

In the following, we assume familiarity with the notions of terms and substitutions. The
uni�er of two terms t1 and t2 is a substitution � such that t1� = t2�. The most general uni�er
of t1 and t2 is denoted by mgu(t1; t2).

Following CCS, the structural operational semantics of XL can be speci�ed in terms
of labeled transition systems. In Figure 3 the semantics of an XL process is speci�ed in
terms of transitions in a labeled transition system where each state is represented by a pro-
cess/substitution pair E; �. We use E; �

�
�! E 0; �0 to denote that a process E under substi-

tution � can make a transition with label � to become process E 0 under substitution �0. For
computation C, [[C]]L� is de�ned as the substitution �0 that is the result of evaluating the
Prolog query C�. We say that [[C]]L� = fg if the query C� fails.

The semantics of communication primitives is speci�ed by rules 1 and 2, sequential com-
position by rules 3 and 4, choice by rules 5 and 6, and the conditional by rules 7 and 8.
Rules 9 and 10 denote autonomous transitions in a parallel composition. Rule 11 captures
synchronization by matching the transition labels of the two components. Values transmitted
by synchronizing in(t) with out(t0) are represented by the matching substitution � (i.e., �
such that t0 = t�).

Process invocation is represented by rule 12: when a process P 0 is invoked under substi-
tution �, a de�nition P : :=E can be chosen such that P and P 0 unify, with the most general
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uni�er composed with the current substitution �. As is normal in such cases, we assume that
P : :=E and P 0 are standardized apart before the uni�er is computed: i.e., variables in P and
E are suitably renamed to avoid capture.

Rule 13 captures the semantics of computation in XL in terms of the labeled transition
system: the system makes an internal transition labeled i, changing the substitution as di-
rected by the computation. The i-transitions which arise due to computations are considered
distinct from tau-transitions which arise from synchronization.

Rule 14 speci�es the semantics of restriction; the rule is made identical to that of basic
CCS by overloading the meaning of membership `2' as follows: Given an list L of terms,
s 2 L if there is a term t 2 L such that s =in(t) or s =out(t). Similarly, rule 15 uses a
relabeling function as follows: given a list F of pairs of terms, if s=t is a member of F then
F (in(t)) =in(s) and F (out(t)) =out(s); if there is no s such that s=t is a member of F
then F (t) = t.

3 Compiling XL

The operational semantics of XL de�nes the transition relation of the automaton correspond-
ing to an XL speci�cation. Given an XL program, the objective of the compiler is to derive a
set of rules that precisely and concisely describes the corresponding transition relation. The
conciseness requirement is especially important since the transition relation may be exponen-
tial in the size of the input program.

We follow the traditional approach for concisely representing large (even in�nite) automata:
separating control from data. A (possibly in�nite) set S of states of an automaton is charac-
terized by a single control state �, which is analogous to a program counter value. Associated
with each control state � are a set of variables, denoted by vars(�). For convenience, we use
a term that contains vars(�) to represent the control state � itself. Each state in the labeled
transition system can then be represented by ��: a control state � under a substitution �.
Transitions between states �s�s and �d�d can be captured by transition rules of the form
trans(�s, �, �d, c), where � is the label and c relates �s and �d. The control automaton
closely mirrors XL's operational semantics. Given a process expression E, control states in
the automaton correspond to the subexpressions of E, and the variables at any control state
is a subset of variables of E.

3.1 Basic Compilation of XL

We compile each process expression into an automaton with two distinguished control states:
entry and exit. The compiler is described in Figure 4 in terms the semantic function [[E]] entry exit
which maps the expression E to a set of the transition rules (trans). In the �gure, we use
ha1; a2; : : : ; i to denote sequences and � to denote concatenation of sequences.

Compiling Process Invocations: Each process itself is compiled into a set of trans rules
with a distinguished entry point. The control and data ow associated with calls and returns
are uniformly handled by passing the current continuation as the �rst argument to the called
process (the term exit in equation 10a and corresponding parameter Cont in equation 11)
and \jumping" to the continuation at the end of a process (equation 11). The continuation-
passing style naturally limits the number of i-transitions introduced by the compiler. Pa-
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[[Comp]] entry exit = f trans(entry, i, exit, Comp) g � � � (1)

[[in(t)]] entry exit = f trans(entry, in(t), exit, true) g � � � (2)

[[out(t)]] entry exit = f trans(entry, out(t), exit, true) g � � � (3)

[[E1 o E2]] entry exit = [[E1]] entry mid [ [[E2]] mid exit � � � (4)
where mid is a new control state such that

vars(mid) = (vars(entry) [ vars(E1)) \ (vars(exit) [ vars(E2)).

[[E1 # E2]] entry exit = [[E1]] entry exit [ [[E2]] entry exit � � � (5)

[[if(C; E1; E2)]] entry exit = f trans(entry, i, iftrue, C),

trans(entry, i, i�alse, not(C)) g � � � (6a)
[ [[E1]] iftrue exit � � � (6b)
[ [[E2]] i�alse exit � � � (6c)
where iftrue and i�alse are new control states such that

vars(iftrue) = (vars(entry) [ vars(C)) \ (vars(exit) [ vars(E1))

vars(i�alse) = (vars(entry) [ vars(C)) \ (vars(exit) [ vars(E2))

[[E1 | E2]] entry exit = f trans(s1 � V2, �1, d1 � V2, c1) such that � � � (7a)
trans(s1,�1,d1,c1) 2 [[E1]] entry exit

and V2 is a fresh variableg

[ f trans(V1 � s2, �2, V1 � d2, c2) such that � � � (7b)
such that trans(s2,�2,d2,c2) 2 [[E2]] entry exit

and V1 is a fresh variableg

[ f trans((s1 � s2)�, tau, (d1 � d2)�, (c1; c2)� ) such that � � � (7c)
trans(s1,�1,d1,c1) 2 [[E1]] entry exit

^ trans(s2,�2,d2,c2) 2 [[E2]] entry exit

and � is the most general substitution such that

f�1; �2g � fin(t), out(t�)g for some term t g.

[[E \ L]] entry exit = f trans(�E;L(s), �, �E;L(d), c) such that � � � (8)
trans(s,�,d,c) 2 [[E]] entry exit ^ � 62 L g

where �E;L maps every control state except entry and exit to a new

control state.

[[E @ F ]] entry exit = f trans(�E;F (s), F (�), �E;F (d), c) such that � � � (9)
trans(s,�,d,c) 2 [[E]] entry exit g

where �E;F maps every control state except entry and exit to a new

control state.

[[Proc]] entry exit = f trans(entry, i, � � � (10a)
entry point(Proc)(hexiti � subterms(Proc)), true) g

[ [[de�nitions(Proc)]] � � � (10b)
where entry point(Proc) is the name of the start control state of

the automaton corresponding to Proc, subterms(t) is the sequence

of immediate subterms of term t, and de�nitions(P ) is the set of all

de�nitions P 0::= E0 in the input speci�cation such that P uni�es

with P 0.

[[Proc::= E]] = [[E]] entry point(Proc)(hConti � subterms(Proc)) Cont � � � (11)
where entry and exit are new control states, entry point and

subterms are as de�ned in the previous rule and Cont is a fresh

variable.

Figure 4: Compilation Rules for XL

rameter passing and variable renaming are delegated to the underlying Logic Programming
engine as follows. We encode the caller state with the arguments, i.e., subterms in the call,
(equation 10a). We then access the parameters in the callee using the subterms in the pattern
de�ning the callee (equation 11). Note that for each process expression E, the compilation
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rules associate the set of all trans rules representing the transitions of E. If E contains a
process invocation, say P 0, then [[E]] contains the trans rules corresponding to the process
P 0 as well (due to equation 10b). This convention considerably simpli�es the compilation of
expressions with parallel, restriction and relabeling operations.

The �rst six equations in Figure 4 are direct encodings of the corresponding semantic rules
(1{8, 13) in Figure 3. It should be noted that, even though we associate with each E all
transition rules for each sub-automaton for E, the potential blow up is avoided by keeping
the transition rules as sets and using set union to combine the rules from expressions with
conditional, choice and sequential composition operations.

Compiling Parallel Composition: If E1 and E2 have automata with control states drawn
from S1 and S2 respectively, the automaton corresponding to E1 | E2 has control states
drawn from S1 � S2. Equations 7a and 7b correspond to E1 and E2 making autonomous
moves respectively. Equation 7c captures synchronizing transitions. While at �rst sight it
appears as though precomputing the synchronizations will result in exponential blow up of
the number of transition rules generated, the following argument shows otherwise. In the
compilation of E1 | E2, let the automata for E1 and E2 have n1 and n2 non-tau transitions
and m1 and m2 tau transitions respectively. The automaton constructed for E1 | E2 using
equation 7 has n1 + n2 non-tau transitions (from equations 7a and 7b); m1 + m2 (from 7a
and 7b) +n1n2 (from 7c) tau transitions. Note that the product operation in 7c takes only
non-tau transitions and produces only tau transitions. Hence, the results of the product
cannot be fed into a product operation again, thereby averting the exponential blow-up. In
fact, a rough analysis of the product operation yields an upper bound of n2N2 transitions in
a parallel composition of N automata with at most n transitions each. However, we �nd that
the number of transition rules generated in practice is much smaller than the above bound.
For instance, the number of transition rules for leader election protocol as well as sieve of
Eratosthenes grow linearly with the number of processes.

An expression with restriction EnL is compiled by discarding any transitions with labels in
L from a fresh copy of the automaton for E. Similarly, an expression with relabeling E @ F

is compiled by suitably renaming all transitions in a fresh copy of the automaton for E. Note
that by parameterizing the \copying" function � with respect to E and L (or E and F ), we
avoid making multiple copies of the automaton for E if there are multiple occurrences of EnL
(or E @ F ) in any expression.

Soundness and Termination of Compilation: The soundness of the compilation follows
from the relationship between the compilation rules and the inference rules of XL's operational
semantics. Note that the transition rules generated by the compiler may create more i-
transitions. For instance, when compiling if(C,E1,E2), the compiler inserts i-transitions
between testing C and evaluating E1 or E2. However, since the substitutions of variables
remains una�ected, the interleaving semantics of the generated transition rules coincides with
the one given in Figure 3.

The compilation process can be implemented in the XSB tabled logic programming sys-
tem [XSB98] by simply encoding the (set) equations in Figure 4 as a Horn clause program
and evaluating it using tabled resolution [CW96a]. Termination of such a compiler can be
readily shown by induction on the structure of process expressions, whenever there is no
parallel composition within a recursive process de�nition. An XL speci�cation that overlaps
parallel composition with recursion, (e.g., p(s(N)) ::= q | p(N)) cannot be handled by the
compilation scheme. While the scheme can be extended to compile parameterized processes

8



trans(abp(A,channel_1(B,C),D,E), out(drop), abp(A,channel_0(C),D,E), true).

trans(abp(A,B,channel_1(C,D),E), out(drop), abp(A,B,channel_0(D),E), true).

trans(abp(sender_1(A,B),C,D,E), i, abp(sender_0(A,B),C,D,E), true).

trans(abp(sender_0(A,B),channel_0(C),D,E), tau, abp(sender_1(A,B),channel_1(A,C),D,E), true).

trans(abp(sender_1(A,B),C,channel_1(D,E),F), tau, abp(sender_0(G,B),C,channel_0(E),F),

(D == A, G is 1 - A)).

trans(abp(sender_1(A,B),C,channel_1(D,E),F), tau, abp(sender_0(A,B),C,channel_0(E),F),

(not(D == A))).

trans(abp(A,channel_1(B,C),D,receiver_0(E,F)), tau, abp(A,channel_0(C),D,receiver_4(B,G,F)),

(B == E, G is 1 - E)).

trans(abp(A,channel_1(B,C),D,receiver_0(E,F)), tau, abp(A,channel_0(C),D,receiver_3(B,E,F)),

(not(B == E))).

trans(abp(A,B,channel_0(C),receiver_4(D,E,F)), tau,

abp(A,B,channel_1(D,C),receiver_0(E,F)), true).

trans(abp(A,B,channel_0(C),receiver_3(D,E,F)), tau,

abp(A,B,channel_1(D,C),receiver_0(E,F)), true).

Figure 5: Transition Rules for the Alternating Bit Protocol

(such as p(N) above) whenever the value of the parameter is known at compile time. How-
ever, extending the compilation scheme to dynamically compile process expressions whenever
processes are created at veri�cation time remains an interesting open problem.

3.2 Optimizations

The XL compiler performs several optimizations, described below. To illustrate compilation
and optimization, we show in Figure 5 the transition rules for process abp of the alternating
bit protocol (Figure 2) derived using our compiler.

Reducing Internal (i-) Transitions: Internal transitions are generated by the compiler
for computations, conditional evaluation and process invocation. Among these, consider the
i-transitions generated for computations. Di�erent interleavings of these computations among
concurrent processes cannot be distinguished by any modal mu-calculus formula as long as
the computations do not a�ect the bindings of shared variables. Hence, such i-transitions
can be treated like �-transitions and eliminated from the rule set wherever possible, thereby
reducing the states and the number of interleavings considered at veri�cation time. Note that
the empty computation, true, is associated with i-transitions generated for conditional and
process invocation expressions; hence these too can be treated as �-transitions.

Every transition rule of the form trans(s, i, s0, c) where c a�ects only local variables
can be replaced with the set of transition rules of the form trans(s, �i, ti, (c; ci)) where
trans(s0, �i, ti, ci) are the set of transition rules from control state s0. Note that such
a transformation can potentially increase the size of the rule set exponentially; however, the
bene�ts of the optimization appears to outweigh the potential (although rare) blow ups.

In addition, a transition rule of the form trans(s, �, s0, c) where the only transition
rule from state s0 is of the form trans(s0, i, t, c0) such that c0 succeeds whenever c does can
be replaced by trans(s, �, t, (c; c0)). The uniqueness condition on the transition from s0

is needed to preserve the branching behavior of the transition system. However, if transitions
from s are all mutually exclusive (as in the case of conditional branches), the above rule
can still be applied without violating the observable behavior of the system. Note that it is
impossible to derive such optimizations solely from user annotations (such as atomic in SPIN)
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since the transitions that are merged span block boundaries.

This optimization can be implemented by suitably merging the rule sets when new locations
are generated due to sequential composition (equation 4) and conditionals (equation 6).

Live Variable Optimization: Since each control state is associated with a set of variables,
it is imperative that we keep only the \needed" variables in each state. We compute an upper
approximation of the needed set as follows. Consider the creation of a new control state
mid as an intermediate state in a sequential composition (equation 4). The variables in the
expression E1 as well as the variables in the control state entry are used before reaching mid.
Similarly, the variables in E2 and exit are potentially used after leaving mid. The de�nition
of vars(mid) is the intersection of these two sets, and forms an upper approximation of the
needed variable set.

Removing dead variables, i.e., those that are not needed, from state vectors not only lowers
memory requirements for the state space search, but may reduce the size of the state space
itself. Values of dead variables may increase the number of states in the system by discrim-
inating between two instances of what is essentially one state. This fragmentation of states
may be avoided by setting the dead variables to a default value manually (as recommended
in the Mur' manual). It is encouraging to note that such workarounds can be e�ectively
replaced by a simple program analysis.

State Representation: A control state in a concurrent automaton corresponds to the col-
lection of control states of each sequential component, stored in some data structure. Tran-
sition rules are based on matching control states of individual components. Note that the
control states of a concurrent automaton are maintained as a tree (using the symbol `�' at
the internal nodes) with the control states of component sequential automata at the leaves.
Using this scheme, the control state of a sequential automaton can be accessed with no regard
to changes that may occur (due to dynamic process creation) elsewhere in the concurrent
automaton. However, when the structure of the concurrent process is known at compile time,
the tree structure can be collapsed into a tuple, yielding the so called state vector representa-
tion. Moreover, the state vector representation enables a more compact representation of the
concurrent state by squeezing together di�erent components of the vector into a single mem-
ory word. Currently the compiler generates transition rules with state vector representation
whenever possible, but without compression.

Partial Evaluation: Note that we have thus far not inspected the internals of the computa-
tion attached to each transition rule. Using simple partial evaluation [JGS93], we can eliminate
from the rule sets the transitions whose computations are known to fail, and eliminate from
the transition rules the computations that are known to succeed. Neither transformation af-
fects the size of the explored state space. The former reduces the size of rule sets, while the
latter optimizes application of rules.

4 Experimental Results

Consistent with the spirit of the XMC system, the XL compiler was implemented starting
with an encoding of the equations in Figure 4 as a tabled logic program. The program was
subsequently modi�ed to implement the optimizations described in the previous section. The
transition rules generated by the compiler are used to compute the global transitions as and
when required by the XMC model checker.
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In the following, we evaluate the e�ectiveness of the XL compiler, and compare the per-
formance of the XMC system with and without compilation with that of Mur' [Dil96]. Per-
formance measurements for Mur' were taken using version 2.70, since Mur' versions 3.0 and
above do not support veri�cation of liveness formulas.

The Benchmarks: We evaluate the performance of the XL compiler using the following
four examples:

i-Protocol is a sliding window protocol in the GNU UUCP stack. The process structure
is simple (a sender and a receiver processes connected via a pair of channel processes that
can drop or corrupt data), although each sequential process itself is complex. Four versions
of the i-Protocol were checked for presence of a livelock: for sliding window sizes (WS) of 1
and 2, and for each window size, one version with a bug that leads to a livelock and one �xed
version.

Rether [CV95] is an Ethernet protocol that supports real-time tra�c. Compared to the
i-Protocol, the communication patterns for rether are more complex (any process can commu-
nicate with any other, depending on the global state), while each sequential process itself is
relatively simple. The protocol was tested for a con�guration of 5 processor nodes, with a max-
imum of 3 slots for real-time tra�c in each Ethernet frame. Two properties, deadlock-freedom
and starvation-freedom, were veri�ed.

Leader is an encoding of the leader election protocol [DKR82] adapted from the SPIN
example suite. The protocol was veri�ed for 3, 5 and 7 participating nodes, communicating
via bu�ered channels. The property veri�ed was that exactly one leader is elected in any run
of the protocol.

Sieve is an encoding of the sieve of Eratosthenes, also from the SPIN example suite. The
program was tested for various number of �lters in the sieve (3, 5 and 7), and the property
veri�ed corresponds to a correctness condition: that the sequence produced by the �nal �lter
has a speci�c value at a given position.

The last two examples were chosen mainly since they were originally used to evaluate the
performance of XMC system [RRR+97] and hence form an useful point of reference. All
benchmark instances except the buggy versions of i-Protocol require exploration of the entire
reachable state space. This was chosen so that we can compare the performance of XMC's
local model checker with that of Mur''s global checker.

Table 1 lists the explored state space of the various benchmarks in the two systems. The
example speci�cations (XL as well as Mur' encodings), runtime parameters under which the
following performance �gures were obtained, as well as all experimental data are available
from http://www.cs.sunysb.edu/�lmc/compiler.

Performance Measurement and Evaluation Criteria: Each of the three systems were
evaluated on the four examples above in terms of veri�cation time and space used during
veri�cation. All measurements were made on a Sun Enterprise 4000 with 2 GB main memory
running Solaris 5.2.6. The times measured were CPU times reported by the di�erent systems.
For Mur', veri�cation time does not include time to generate C++ code from Mur' speci-
�cations and to compile it using g++. We used g++ (v2.8.1) with -O4 option to obtain an
optimized executable. The veri�cation times for XMC were the CPU time needed to answer
the corresponding models query. For Mur' it is the time to do reachability and assertion
checks (followed by cycle detection for liveness formulae only). The veri�cation times for
Mur' were obtained without using symmetry reduction.
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Benchmark # of States Explored # of Transitions
XMC Mur' XMC Mur'

i-Protocol, WS=1, Bug 230 18672 319 93480
i-Protocol, WS=1, Fixed 14014 39280 51702 192772
i-Protocol, WS=2, Bug 1562 348580 2527 1733816
i-Protocol, WS=2, Fixed 134360 636004 491872 3121912
rether 336 2241 366 2801
sieve(3) 615 541 1423 1232
sieve(5) 4023 3367 12091 9830
sieve(7) 22941 19006 81703 65902
leader(3) 67 88 124 170
leader(5) 864 1456 2687 4678
leader(7) 11939 25632 52300 115594

Table 1: Characteristics of the benchmarks

Space usage measurements for XMC were obtained by adding the maximum space used in
each of the memory areas of XSB: the table space, the four Prolog stacks, as well as permanent
space (where dynamic code is kept). Space measurements for Mur' are the sizes of the state
hash table reported by its statistics.

Analysis of Experimental Data: Table 2 lists the time and space performance of XMC
with and without compilation, and Mur' on the examples described above. Observe from the
table that compilation speeds up XMC by up to a factor of 15 for sieve, factors of 5 or better
for the i-Protocol and around a factor of 4 for leader. Fixed version of the i-Protocol with
window size 2 could not be veri�ed using the original XMC system due to memory overow,
whereas it completes in under 4 minutes with compilation. On the other hand, the compiled
code actually performs slightly worse than interpretation for rether. This is due to the large
number of transition rules generated for rether arising from the ability of any two processes
to communicate with one another. Many rules do not specify transitions from reachable
states, and the presence of these rules imposes severe indexing overheads when selecting the
applicable rule.

Note that all times for XMC with compilation are comparable to veri�cation using Mur'.
It should be noted that Mur' performs global checking and hence inspects all reachable states
while XMC inspects only a portion of the state space that contributes to the proof/disproof
of the given property. This accounts for the di�erence in performance for the buggy versions
of i-Protocol.

The compilation time for XMC (not shown in the table) ranges from 0.1s to 0.2s, and is
typically much smaller than the veri�cation time. This compilation time includes the time to
preprocess and load XL speci�cations, translate them to rules and load the rules. For Mur',
the time needed to generate the executable ranges from 7s for leader to 11s for the i-Protocol.

Observe that compilation also reduces memory requirements, by factors ranging from 2 to
15. The main reason is that the transition relation, which needed to be tabled (or cached)
when computed by the interpreter, is precomputed by the compiler into a set of Prolog facts
that do not need further tabulation. The savings in rether again appear minimal, mainly since
the number of transition rules generated consumes a large portion of the permanent space in
XSB, and dominates the memory measurements.

12



Benchmark Time (sec) Space (MB)
XMC XMC Mur' XMC XMC Mur'

(original) (compiled) (original) (compiled)

i-Protocol, WS=1, Bug 0.98 0.05 1.76 6.18 0.52 0.30
i-Protocol, WS=1, Fixed 99.72 12.82 7.33 388.85 18.31 1.61
i-Protocol, WS=2, Bug 1.30 0.31 35.61 13.01 0.78 5.58
i-Protocol, WS=2, Fixed mem o/f 214.36 139.83 mem o/f 198.06 26.71

rether, deadlock free 0.19 0.22 0.20 0.78 0.58 0.03
rether, no starvation 0.38 0.47 0.49 0.87 0.64 0.10

sieve(3) 1.54 0.19 0.14 6.07 1.07 0.02
sieve(5) 15.57 1.20 0.92 55.07 7.42 0.17
sieve(7) 130.12 8.71 8.36 437.88 61.32 1.03

leader(3) 0.13 0.04 0.03 0.85 0.47 0.01
leader(5) 2.82 0.59 0.39 13.27 2.44 0.06
leader(7) 68.66 12.90 12.63 294.47 44.56 1.87

Table 2: Comparative performance of XMC (with and without compilation) and Mur'

The performance of XMC relative to SPIN is not shown in the table. For both buggy
versions of the i-Protocol, XMC with compilation and SPIN (v3.2.3) show very similar per-
formance in terms of time (0.05s and 0.31s for XMC vs. 0.04s and 0.4s for SPIN, for WS=1
and 2 respectively) as well as space (0.52M and 0.78M vs. 1.0M and 2.3M respectively).
For �xed version with window size 1, SPIN takes 495s and consumes 1.1GB of memory; for
window size 2, we have been unable to obtain SPIN numbers without using bitstate hashing
or hash compaction, both of which compute only approximate answers. Although partial
order reduction [HP95] does not change the veri�cation performance for i-Protocol, it sub-
stantially reduces the search space for leader, making SPIN signi�cantly outperform XMC,
even with compilation. Currently, XMC does not perform partial order reduction; integrating
such search-space reduction techniques into XMC is a topic of future work.

Finally, note that the space usage for Mur' is signi�cantly lower than XMC with or without
compilation. State vectors are stored in compressed form in Mur'. For instance, a state in
i-Protocol (window size 2) is represented in 56 bits (without hash compaction). Recall that
although the XL compiler encodes global states as state vectors, it does not further compress
this representation. Study of compile-time techniques to reduce the memory needed to store
the state space is a topic of current research.

E�ectiveness of the Optimizations: We now present experimental results on the e�ec-
tiveness of the individual optimizations described in Section 3.2.

The most signi�cant of the optimizations is the elimination of i-transitions, since it can
lead to considerable reductions in the state space. Eliminating i-transitions across block
boundaries is particularly interesting. As mentioned in Section 3.2, the e�ect of these elimi-
nations cannot be achieved by user annotations (such as atomic and d step in SPIN) since the
optimization merges transitions across block boundaries. To quantify the impact of this elim-
ination, we turned o� elimination of i-transitions whenever the candidate transitions spanned
basic blocks (but performed elimination in all other cases) and measured the performance of
XMC with compilation. Table 3 shows the time, memory, and state space �gures, as well
as the degradation factor relative to the those of XMC with compilation (which were given
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Benchamrk Time (sec) Space (MB) # of states # of transitions

i-proto, WS=1, Bug 1.72 (34x) 1.98 (4x) 9125 (40x) 18180 (57x)
i-proto, WS=1, Fixed 300.28 (23x) 223.98 (12x) 188112 (13x) 664528 (13x)
i-proto, WS=2, Bug 2.41 (8x) 2.57 (3x) 12483 (8x) 23729 (9x)
i-proto, WS=2, Fixed out of memory

rether, deadlock free 0.21 (1x) 0.59 (1x) 341 (1x) 371 (1x)
rether, no starvation 0.49 (1x) 0.66 (1x) 341 (1x) 371 (1x)

sieve(3) 2.11 (11x) 10.22 (10x) 8323 (14x) 28793 (20x)
sieve(5) 47.79 (40x) 45.15 (6x) 123147 (31x) 573909 (47x)
sieve(7) out of memory

leader(3) 0.03 (1x) 0.53 (1x) 88 (1.3x) 170 (1.4x)
leader(5) 0.72 (1.2x) 3.42 (1.4x) 1456 (1.7x) 4678 (1.7x)
leader(7) 21.54 (1.7x) 81.34 (1.8x) 25632 (2.1x) 115594 (2.2x)

Table 3: E�ect of not eliminating i-transitions across block boundaries

in Table 2). The tables reveal that the elimination of i-transitions across block boundaries
reduces state spaces by more than a factor of 12 for i-Protocol, by 2 for leader and 30 for
sieve. Again, the savings in rether appear minimal due to the simplicity of the sequential
components of the protocol. The state space reduction also translates directly to savings in
veri�cation time and space, as the table shows.

As noted in Section 3.2, eliminating dead variables from state vectors can lower the memory
requirements to store the state space, and sometimes reduce the size of the state space itself.
With dead variable elimination, we observed a 7% drop in memory requirements across all
examples. For i-Protocol, the elimination lowered the size of the state space by 5%, but there
was no change in state space for the other examples.

Partial evaluation of expressions does not a�ect the state space, but can reduce the number
of transition rules generated and eliminate some computation from the rules. For the examples
described above, this optimization reduced the set of the generated rules by 25% on the
average, and changed the veri�cation time and space by less than 5%, mainly from reduction
of indexing overheads.

5 Discussion

We have shown that compiling high-level speci�cations into global transition rules improves
model checking performance. We also showed that such compilation can be performed very
e�ciently. Although presented as a compilation technique for XL, the technique can be
readily adapted to translate high-level speci�cations written in other formalisms also. We
showed that combining computations across block boundaries, an optimization that cannot
be done based on user annotations alone, reduces state space signi�cantly. This optimization
can be introduced to improve the performance of any explicit-state model checker. Although
dead variable elimination does not lead to the kind of performance improvements shown by
the above optimization, it is nevertheless useful especially in a language with imperative
constructs such as loops and assignments. Partial evaluation can be used to reduce the
indexing overheads: those associated with �nding transitions in the global automata from a
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given state. Deriving a generic optimizing compiler, based on systems such as PAC [CMS95],
will help share such optimizations over a wide variety of speci�cation languages and veri�cation
systems.

While we have o�ered preliminary evidence of the importance of optimizing compilation,
its full power remains to be exploited. For instance, can powerful state-space reduction tech-
niques such as partial order reduction [HP95, KLM+98] be used at the transition rule level
to eliminate entire families of transitions in one step, at compile time? What techniques and
optimizations are most useful for reducing the space requirements for veri�cation? We believe
that answers to these questions will lead to considerable improvements in the e�ciency of
current model checkers.
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