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Abstract

We present a computational framework based on tabled
resolution and constraint processing for verifying real-time
systems. We also discuss the implementation of this frame-
work in the context of the XMC/RT verification tool. For
systems specified using timed automata, XMC/RT offers
backward and forward reachability analysis, as well as
timed modal mu-calculus model checking. It can also han-
dle timed infinite-state systems, such as those with un-
bounded message buffers, provided the set of reachable
states is finite. We illustrate this capability on a real-time
version of the leader election protocol. Finally, XMC/RT
can function as a model checker for untimed systems. De-
spite this versatility, preliminary benchmarking experiments
indicate that XMC/RT’s performance remains competitive
with that of other real-time verification tools.

1. Introduction

In a recent paper [26], we showed that logic program-
ming with tabulation can be used to construct an efficient
model checker for untimed systems. In particular, we pre-
sented XMC, a model checker supporting XL (an extension
of Milner’s value-passing CCS) as the system specification
language, and the alternation-free fragment of the modal
mu-calculus as the property specification language.

XMC is written in XSB Prolog, where XSB [31] is
a logic programming system developed at SUNY Stony
Brook that extends Prolog-style SLD resolution withtabled
resolution. The principal merits of this extension are that
XSB terminates more often than Prolog (e.g. for all datalog
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programs), avoids redundant subcomputations, and com-
putes the well-founded model of normal logic programs.

XMC is written in a highly declarative fashion. Essen-
tially, it consists of two predicatestrans , encoding the
transitional semantics of XL terms, andmodels , defining
when an XL term satisfies a given modal mu-calculus for-
mula. All told, the model checker is written in less than 200
lines of XSB Prolog code.

Despite the high-level nature of XMC’s implementation,
we were able to—through the judicious use of source-level
code optimizations—attain performance comparable to that
of highly optimized model checkers such as Spin [20] and
Mur' [9] on several examples, including some from the test
suite contained in the standard Spin distribution. A sub-
sequent paper [12] showed that XMC’s performance can
be improved even further bycompilingXL specifications
into a representation of the low-level automata. Another
paper [24] showed how XMC could be extended to handle
the full modal mu-calculus, i.e. with alternating fixed points
of arbitrary nesting depth.

Our experience with XMC raises the following question:
Can tabled logic programming be brought to bear on the
problem of verifyingreal-time systemsand what additional
technologies are required? Given that many reactive sys-
tems of practical interest are real-time in nature, produc-
ing a logic-based framework for the verification of real-time
systems can be viewed as an important next-step in XMC’s
evolution.

In this paper, we present the theory and implementation
of a verification framework for real-time systems using the
logic-based approach. Systems are specified as collections
of timed safety automata [2, 17], a widely used specifica-
tion formalism for real-time systems. Properties are speci-
fied in a real-time extension of the modal mu-calculus intro-
duced in [28] which, for ease of discussion, we refer to as
the “timed modal mu-calculus.” We consider here only the



alternation-free fragment of the timed modal mu-calculus.
As discussed below, this sub-logic is a very expressive one.

The main tangible outcome of this investigation is the
XMC/RT verification tool. Like XMC, XMC/RT is writ-
ten declaratively in XSB Prolog but uses the POLINE poly-
hedra package—a generic constraint solver for linear con-
straints over the reals [15]—for constraint processing. The
combination of XMC and POLINE effectively gives us a
Constraint Logic Programming (CLP) system with tabula-
tion.

Despite its use of tabled resolution, XMC/RT is not sim-
ply an extension of XMC. In particular, it must construct
and manipulateregion graphs[2] in order to analyze timed-
automata-based specifications of real-time systems, a re-
quirement not present in XMC. Moreover, convex sets of
constraints are used to represent regions, and this is the rea-
son that constraint solving is needed in the XMC/RT frame-
work.

Region graphs represent a finite quotient of the inher-
ently infinite state space underlying a timed automaton. In-
spired by [28], XMC/RT constructs region graphslocally,
or on-the-fly, yielding a quotient that isas coarse as pos-
sible in the following sense: refinements of the quotient
are carried out only when necessary to satisfyclock con-
straintsappearing in the logical formula or timed automa-
ton used to represent the system under investigation. The
local approach can result in the exploration of significantly
fewer regions on reasonable examples when compared to a
global algorithm, and is consistent with the use of a top-
down resolution-based strategy for computing fixed points.
This was also the case with XMC in the untimed case.

The advantages of the approach to verifying real-time
systems embodied in XMC/RT lie mainly in its versatility
and include the following:

� Different styles of analysis can be readily implemented
in a single framework, including forward reachability,
backward reachability, and model checking of timed
modal mu-calculus formulas. Even in the alternation-
free case, the expressiveness of the timed modal mu-
calculus goes beyond reachability, allowing one to
specify properties such as liveness and bounded live-
ness.

� Timed infinite-state systems, such as those with un-
bounded message buffers, can be analyzed within this
framework if the set of reachable states is finite. This
is because Prolog terms are used to represent system
states and buffers are encoded as dynamic Prolog list
data structures. We illustrate this point on a real-time
version of leader election.

� Finite-stateuntimedsystems can be analyzed with lit-
tle overhead. In particular, given a specification that
does not utilize clocks, XMC/RT will conduct the anal-
ysis in a fashion virtually identical to the resolution-
based style deployed by XMC. This capability is il-
lustrated on the i-protocol [11] and (untimed) leader
election.

In contrast, most extant tools for verifying real-time sys-
tems focus exclusively on either reachability analysis or
model checking, and cannot handle specifications that are
either untimed or contain unbounded structures. Related
work is discussed in greater detail below.

Somewhat surprisingly, XMC/RT’s versatility is
achieved without incurring a severe performance penalty.
In particular, preliminary experimental data shows that
XMC/RT is competitive performance-wise with HyTech
and Uppaal on several standard benchmarks. For untimed
systems, XMC/RT takes less than 50% additional time
compared to XMC.

Related Work

Several researchers have also used constraint logic pro-
gramming for the verification of real-time and other infinite-
state systems. Pontelli and Gupta [14] model real-time sys-
tems as CLP programs, and safety properties are verified us-
ing reachability queries. Other kinds of correctness proper-
ties, such as liveness, are not considered. Their formulation
exploits CLP’s handling of constrained variables and hence
can verify parametric systems (computing, for instance, val-
ues of parameters for which a given property holds). Since,
however, their tool is based on a traditional Prolog system
with constraints, no termination guarantees are given.

Delzanno and Podelski [8] encode discrete, infinite-state
systems (e.g. the bakery algorithm) as CLP programs, and
verify CTL properties by computing least and greatest fixed
points of the logical consequence operator. The fixed-point
computations are implemented as meta-programs in SIC-
Stus Prolog. While these computations are intrinsically
global, Magic Set transformations [27] are used to make
them more goal-directed. In contrast, we use XSB’s eval-
uation strategy to directly compute fixed points in a goal-
directed manner, but add constraint processing via meta-
programming. This approach enables XMC/RT’s perfor-
mance to approach that of a finite-state model checker
(XMC) when the system to be verified has no real-time
components. It should be noted that timed systems can
be expressed (via explicit manipulation of clocks) using
the notation in [8]. Mukhopadhyay and Podelski [25] give



sufficient conditions under which reachability analysis ter-
minates without constructing region graphs. However, the
timed modal mu-calculus model checker in XMC/RT can
verify a larger class of formulas (such as livelock-freedom)
compared to the CTL model checker of [8] or the reachabil-
ity checker of [25]. As discussed in Section 3, this differ-
ence is a significant one computationally.

Urbina [30] models hybrid systems as CLP programs.
Various properties of hybrid systems can then be veri-
fied by top-down or bottom-up evaluation of the CLP pro-
grams. This approach is also based on CLP systems without
tabling.

Bjorner et al. [4] and Kesten et al. [21] use deductive ap-
proaches to verify real-time systems. They model systems
using Clocked Transition Systems, which are fair transition
systems extended with clock variables, and use verification
rules and verification diagrams to establish the validity of
Linear Temporal Logic formulas.

Kwak et al. [22] show how process-algebraic methods
can be used to reduce the schedulability problem for real-
time systems to a set of equations, a solution to which yields
the values of the parameters that make the system schedu-
lable. Equations are solved using integer programming or
constraint logic programming.

Another class of model checkers, including Uppaal [23],
and the Concurrency Factory [28], usedifference bound
matrices(DBMs) to represent constraints. While a DBM
is a well-tuned data structure for representing constraints
that relate at most two variables, and hence ideal for real-
time system verification, its use limits these tools to non-
parametric analysis. In contrast, HyTech [16] and Kro-
nos [33] are based on a general (polytope) representation
for linear constraints over reals. As noted above, XMC/RT
also uses a generic constraint solver for linear arithmetic
constraints over reals, namely POLINE [15].

Organization We begin in Section 2 with a brief
overview of timed safety automata, the timed modal mu-
calculus, and tabled logic programming. We introduce the
constraint-logic-based formulation of XMC/RT and its im-
plementation in Section 3. Experimental results for real-
time benchmarks, unbounded real-time systems, and un-
timed systems appear in Section 4. We offer some conclud-
ing remarks in Section 5.

A full version of the paper can be found in [13]. A
prototype of XMC/RT is available from the authors upon
request, and will be included in the XMC distribution at
www.cs.sunysb.edu/˜lmc
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Figure 1. Timed Safety Automaton for one
process of Fischer’s mutual exclusion proto-
col.

2. Preliminaries

In this section, we recall the notion of timed safety au-
tomaton, give the syntax and semantics of the timed modal
mu-calculus, briefly review tabled logic programming, and
sketch the issues that arise in integrating constraints with
tabled resolution.

2.1. Timed Safety Automata

A Timed safety automaton(TSA) is a finite-state automa-
ton extended with real-valued clocks. States of the automa-
ton are associated with identifiers calledlocations. Each
transition has anaction label drawn from a finite alphabet,
and may also specify a subset of clocks that are reset upon
taking the transition. The conditions under which a tran-
sition is enabled are given byconstraintson clock values.
A constraint is a (possibly empty) conjunction of base con-
straints of the formx � c wherex is a clock,c is an integer
constant, and� is taken from the setf�;�; <;>g. Each
state of the automaton also has an associatedlocation in-
variant: a constraint on clock values that must be satisfied
for the automaton to remain in that state.

Intuitively, a TSA operates by taking transitions from lo-
cation to location. Executing a transition takes no time. If
no transitions are taken, time progresses by uniformly in-
crementing every clock value by an arbitrary real number.

For conciseness of expression, TSAs are usually ex-
tended withdiscretevariables, which are non-clock vari-
ables that take values over finite domains. This does not
increase the expressive power of TSA, since discrete vari-
ables can be eliminated by expanding the automaton’s state
space.

The example TSA depicted in Figure 1 corresponds to
one process (with process idi) in Fischer’s mutual exclu-
sion protocol [1]. The automaton has one clockxi and one
discrete variablek. Its start state has locationl0 and the



state labeledlCS represents the process’s critical section.
The clockxi is reset on transitions froml0 to l1 and l1 to
l2. The transitionl1 to l2 is enabled only when the value of
clockxi is less than or equal to2. Statel1’s location invari-
ant decrees that the automaton cannot remain inl1 once the
clock value exceeds 2.

The semantics of a TSA is given in terms of a densela-
beled transition system(LTS) whose states correspond to
a location in the TSA along with a unique valuation of its
clocks. The LTSs are dense since the number of states, as
well as the number of transitions from any state may be un-
countable. For example, the LTS induced by the TSA in
Figure 1 has distinct states of the formhl1; vi for each real
numberv � 2. It has transitions fromhl1; vi to hl1; v + Æi

for all real valuesv and Æ such thatv < v + Æ � 2;
hl1; v + Æi is called atime successorof hl1; vi. The LTS
also has transitions fromhl1; vi to hl2; 0i for eachv � 2

andhl2; vi to hlCS ; vi for eachv � 4. The destinations of
these transitions are known as thetransition successorsof
the respective sources.

2.2. Timed Modal Mu-Calculus

The timed modal mu-calculus, introduced in [28] and de-
rived from the real-time logics of [17, 18], adds time modal-
ities h�i and[�] and resettable formula clocks to the modal
mu-calculus. Our encoding of the alternation-free fragment
of the timed modal mu-calculus uses the following syntax
for formulas:

F --> tt | ff | atomic(C) | form(X) |
and(F, F) | or(F, F) | neg(F) |
diam(Act,F) | box(Act,F) |
epsdiam(F) | epsbox(F) | reset(Z,F)

X is a logical variable andtt andff are propositional con-
stants;atomic(C) is a base formula whereC is either an
atomic proposition or a constraint over system and formula
clocks;and , or , andneg are standard logical connectives;
diam(Act,F) (formula F holds in a state reached after
actionAct is takenwithout any delay, i.e. passage of time)
and box(Act,F) (formula F holds in all states reached
after actionAct without delay) are dual discrete modal op-
erators;epsdiam(F) (after some delay formulaF holds)
and epsbox(F) (after every delay formulaF holds) are
dual real-time modal operators;reset(Z,F) defines a
new clock local to formulaF.

Logical variables are provided for definitions using
fixed-point equations of the formX += F (least fixed
point) and orX -= F (greatest fixed point). If the defin-
ing equations are stratified with respect to greatest and least

fixed point operators, the equation system is called non-
alternating.

Given a TSAT , the semantics of a formula� is given
with respect to the dense LTS induced by the new TSAT 0

constructed fromT by adding the clocks defined in�. As
with untimed modal logics, the semantics of a timed modal
mu-calculus formula� is given by the set of states in the
LTS that model�, and this state set is defined inductively on
the structure of�. We can derive a computational procedure
for evaluating the semantics of� by choosing an appropriate
(constraint) representation of the states sets.

2.3. Tabled Logic Programming with Constraints

Tabled-resolution methods in logic programming [5, 29,
6] address the well-known shortcomings of the SLD eval-
uation mechanism of Prolog, namely, susceptibility to in-
finite looping, redundant subcomputations, and inadequate
semantics for negation. When tabled resolution is used in
XSB (by declaring particular predicates to be tabled), the
system automatically maintains a table of predicate invo-
cations and answers, using the table for all equivalent in-
vocations after the first one. Many programs that would
loop infinitely in Prolog will terminate in XSB because XSB
calls a tabled predicate with the same arguments only once,
whereas Prolog may call such a predicate infinitely often.
XSB computes the well-founded model for programs with
negation: we exploit this ability to compute greatest fixed
points as the negations of least fixed points.

The XSB system has no in-built support for constraint
processing. Hence, we integrate an external constraint
solver with the native logic programming engine. Our in-
tegration separates constraint processing from the control
aspects of fixed-point evaluation. The constraint solver de-
termines an internal representation for constraints, and as-
signshandlesto constraints. The XSB engine identifies
constraints only by these handles, and invokes the solver
for any operation that involves constraint handles.

3. CLP-Based Formulation and Implementa-
tion

In this section, we describe the CLP-based formulation
of the verification framework for real-time systems that
forms the basis for XMC/RT.

Reachability: Consider the XMC system for verifying
(untimed) properties of finite-state systems. There we en-
coded reachability analysis and the semantic equations for



the modal mu-calculus in Horn-clause notation, and evalu-
ated the logic program using tabled resolution. The clauses
from the XMC model checker [26] for reachability analysis
are as follows:

:- table reach/2.
reach(X,Y) :- trans(X,_,Y).
reach(X,Y) :- reach(X,Z), trans(Z,_,Y).

reach/2 indicates thatreach is a binary predicate.
trans(X,_,Y) means that there is a transition fromX
to Y by any label.

diam formulas can be handled similarly to the case of
reachability analysis. The semantic equation for adiam
formula is:

[[diam(�; F )]]e = fs j 9t s
�
!t andt 2 [[F ]]eg

The corresponding clause from XMC is:

:- table models/2.
models(S, diam(Act,F)) :- trans(S, Act, T),

models(T, F).

specifying that a stateS models a formuladiam(Act,F)
if there exists a stateT such that there is transition fromS
to T with labelAct andT modelsF.

This encoding can be used as is for timed systems if
one interprets the predicatesreach andmodels as con-
straint logic programs; i.e. we interpretS not as a single
state, but as a (finite) representation of a (possibly infinite)
set of states. For example, consider the (infinite) LTS in-
duced by the TSA in Figure 1. A finite representation such
ashl2; xi � 4i represents the infinite set of LTS states with
location l2 and with value ofxi no less than4. This en-
coding can be evaluated by using any complete inference
procedure for logic programs, such as bottom-up evaluation
or tabled resolution, as long as thetrans relation produces
only finitely many distinct constraintsT for any given con-
straintS.

We use this encoding for verifying reachability and
safety properties in the timed case. This approach is similar
to the approaches taken in [14, 8] for safety properties and
CTL formulas, respectively. Backward reachability analy-
sis for real-time systems can also be encoded in a similar
fashion, with the help of a predicate that computes transi-
tions between constraints backwards, i.e. given a constraint
representing a set of target states, it computes a constraint
representing the set of source states.

The formulation of forward and backward reachability
as well asdiam formulas for real-time systems has been
implemented in XSB using an external library for con-
straint solving. Specifically, we used POLINE, a library

for manipulating convex polyhedra overn-dimensional real
space [15] for constraint solving, and connected to it using
XSB’s foreign-language interface.

Timed Modal Mu-Calculus: Reachability analysis and
diam formulas involve only existential quantifications. We
now consider universal quantifications. Thebox formulas
in untimed modal mu-calculus contain universal quantifica-
tions over finite number of target states by transitions la-
beled byAct . These formulas can be handled using the
Prolog constructfindall , which is used to collect all tar-
get states of a given state. However, the semantics of the
epsbox modality is defined as:

[[epsbox( F ) ]]e = fhl; �i j 8Æ � 0 hl; �i
�
!hl; � + Æi

) hl; � + Æi 2 [[F ]]eg

Since the universal quantification is over (uncountable)
clock values, the operational encoding usingfindall is
not applicable.

We overcome this problem by encoding the elimination
of the universally quantified variable directly as a built-
in constraint operation. LetS be a set of states with
the common locationl and inv(S) be the location invari-
ant of l. Let v, v0 represent states andD be a variable
such thatD =2 C, whereC is the set of clock variables.
Furthermore, letv + D represent a state where the value
of all clock variables inv is incremented byD. We de-
fine univ_elim(D, S, Goal, SD, SS) such that,
given SD, a set of states that is the set of all solutions to
a Prolog predicateGoal , SS is the set of statesfv j v 2

S ^ 8D2 R(v0 = v + D^ v0 2 inv(S)) ) (v0 2 SD)g.

The univ_elim operation can be implemented
through two difference operations over polyhedra and ex-
istential elimination. Notice that theuniv_elim operator
requires direct manipulation of the solutions toGoal . Typ-
ically Goal is a call to the predicatemodels . Thus in-
stead of using a binary predicatemodels and let the CLP
system implicitly return answers by binding additional con-
straints, we modify the binarymodels predicate to derive
a ternary predicatemodels(S, F, SS) . Given a set of
statesS, and a formulaF, the ternarymodels explicitlyre-
turnsSS, which contains only states inSS that modelsF.
in order for the correct computation of the elimination of
universal quantification,models(S, F, SS) must also
return all states inS that modelF all at once. We ensure
this by definingmodels as an aggregation over another re-
lationmodels1 , which is identical tomodels except that
it is not required to return all states inSS that modelsF at
once. The most interesting fragments of the definition of
models andmodels1 are given below.



:- table models/3.
models(S, F, SS) :-

union(T, models1(S, F, T), SS).

% formula recursion with lfp
models1(S, form(F), SS) :-

F += E, models(S, E, SS).

% negation (due to greatest fixed points)
models1(S, neg(F), SS) :-

models(S, F, NegSS), diff(S, NegSS, SS).

models1(S, or(F1, F2), SS) :-
models(S, F1, SS) ; models(S, F2, SS).

% universal transition modality
models1(S, box(Act, F), SS) :-

split(S, Act, LS),
member(S1, LS),
findall(TS, trans(S1, Act, T), TS),
all_models(TS, F, S1, Act, SS).

all_models([], _, _, _, []).
all_models([T0|Rest], F, S, Act, SS) :-

models(T0, F, TS0),
inverse_trans(TS0, Act, S, SS1),
all_models(Rest, F, S, Act, SS2),
conjunction(SS1, SS2, SS).

% universal time modality
models1(S, epsbox(F), SS) :-

univ_elim(D, S,
(trans(S, e(D), T),

models(T, F, TS),
), TS, SS).

In the above definitions,union(V, G, R) is a rela-
tion such that, given a goalGthat contains a variableV, R is
the canonical representation of all statess such thatG[s=V ]

is true; diff computes the difference between two con-
straints;inverse_trans(TS, Act, S, SS) is such

thatSS represents all statess in S such thats
Act
! t andt is

a state represented byTS; split(S, Act, LS) is such
that, given a constraintS, LS is a finite list[c1; c2; : : : ; cn]
that represents a partition ofS such that81 � i � n

(a) ci ) S, and (b) all states represented byci are iden-
tical w.r.t. Act ; conjunction(SS1, SS2, SS) is
such thatSS is the conjunction of constraintsSS1 and
SS2. all_models(TS, F, S, Act, SS) is such
that,SS is a subset ofS such that the targets ofSSby Act -
transitions, which are in the listTS, modelsF.

Correctness of the model-checking algorithm The key
to the correctness proof is the definition of a semantic func-
tion h lifting the point-based semantics of the timed modal
mu-calculus to a region-based semantics. Intuitively, given
a formula� and a set of statesS, h returns the subset of
states inS that models�. The Horn clauses appearing in
the formulation of the model checker can be seen as a di-
rect translation of the semantic functionh. See [13] for the
details.

Optimizations The logic program implementing the
model checker can be subjected to several optimizations,
two of which are described below.

Call abstraction: Logically speaking, a query of the form
p(t) is equivalent to the queryp(X), X = t, for any
term t. In a tabled logic programming environment, such
an abstraction can improve performance since two distinct
queries of the formp(t1) and p(t2) with overlapping an-
swer sets now share the answer computations. In our model
checker, a call tomodels(S,F,SS) can be replaced by
models(S’,F,SS’) whereS’ is the set of states ob-
tained by abstracting fromS all clock constraints except the
location invariants.

Early completion: The aggregation predicateunion
collects answers fromall the rules that match the cur-
rent call to models1 . Clearly, answer generation can
be stopped as soon as the partial union covers the so-
lution space. For instance, consider a call of the form
models1(S, or(X1, X2), SS) , which results in a
call to models(S, X1, SS) . If this call results in an
answerSS such thatS ) SS, then the subsequent call to
models(S, X2, SS) can be eliminated.

4. Experimental Results

In order to gauge XMC/RT’s performance as a real-time
verification tool, we consider two example systems that
have become widely accepted benchmarks in the real-time
community: (1) Fischer’s mutual exclusion protocol [1] for
2, 3, and 4 processes; and (2) a bridge-crossing system,
adapted from [32]. Specifically, we compare XMC/RT’s
performance on these benchmarks to that of HyTech ver-
sion 1.04, and UPPAAL version 3.0.40. These are the latest
versions of HyTech and UPPAAL currently available. Both
tools perform reachability analysis: forward and backward
reachability in the case of HyTech; forward reachability
only in the case of UPPAAL.



Fischer’s mutual exclusion protocol Fischer’s mutual
exclusion protocol controls access to a critical section us-
ing a turn variablek and by imposing timing constraints
on when the turn variable can be modified. The protocol
is modeled as the parallel composition ofn TSAs, each of
which has the structure of the TSA depicted in Figure 1. We
verify three properties of the protocol.

� Safety: at most one process is in the critical section at
any time.

� Possibility: from all statess reachable from the initial
state, a state with exactly one process in the critical
section can eventually be reached.

� Liveness: from all statess reachable from the initial
state, every evolution of the system eventually reaches
a state with exactly one process in the critical section.

The bridge-crossing system In the bridge-crossing sys-
tem, a controller schedules the crossing of two trains across
a bridge that has only one track. The system is modeled as
the parallel composition of three TSAs: a controller process
and two train processes. The controller uses synchroniza-
tion signals to control the movement of the trains, and it
keeps a listL of trains on the bridge or waiting to cross the
bridge. Initially, both trains are far away, the bridge is free,
andL is empty. Traini emits the signalappr

i
as it nears the

bridge. If the bridge is free, the controller allows the train to
proceed. Otherwise, the controller sends the signalstopi to
stop the train. It will send the signalgoi to let the train cross
the bridge when the the bridge eventually becomes free.

We consider three correctness properties.

� Safety: the trains are not on the bridge at the same time.

� Liveness: a train will always eventually cross the
bridge.

� Bounded Liveness: a train leaves the crossing within
50 time units of its approach.

Benchmarking results Table 1 contains the running
times we obtained for Fischer’s mutual exclusion protocol
and the bridge-crossing system. In the case of Fischer’s pro-
tocol, we considered 2, 3 and 4 processes. All properties of
interest can be expressed in the timed modal mu-calculus
and can thus be verified using XMC/RT’s model checker
for that logic. Safety can also be verified using forward or
backward reachability, while the possibility property can be
verified by combining forward and backward reachability.
Because UPPAAL does not support backward reachability,

possibility results are not given for that tool. By introducing
a monitor automaton into the bridge-crossing system, the
bounded-liveness property can also be verified using for-
ward or backward reachability.

Liveness cannot be verified using reachability analysis
and thus results in this case are presented only for XMC/RT.
Because for both HyTech and XMC/RT, backward reacha-
bility is much faster than forward reachability, we present
the data obtained from backward reachability whenever a
property can be verified using either technique.

All data was obtained on a Sun Enterprise 4000 with
2GB memory running Solaris 5.2.6. Two sets of data were
obtained for UPPAAL: without the -D option (UPPAAL1)
and with the -D option (UPPAAL2). The -D option causes
UPPAAL to disable deadlock warnings, and results in
markedly lower execution times in some of the benchmark-
ing runs. Overall, the data indicates that XMC/RT is com-
petitive with HyTech on the Fischer and bridge-crossing
benchmarks but significantly less so with UPPAAL, with
the exception of the 4-process Fischer’s protocol when the
-D option is not used. This is to be expected in the fol-
lowing sense. Both XMC/RT and HyTech rely on PO-
LINE as a general constraint solver for convex polyhedra.
UPPAAL, on the other hand, uses clock difference diagrams
(CDD), a BDD-like data structure for representing and effi-
ciently manipulating certain non-convex subsets of the Eu-
clidean space, such as those encountered during verification
of timed automata. The use of a general (polytope) repre-
sentation for linear constraints over the reals permitspara-
metric analysis(available in HyTech planned for XMC/RT)
to be performed, while more restricted data structures such
as DBMs (difference bound matrices) and CDDs do not.
DBMs and CDDs, however, are more efficient.

In further comparing XMC/RT and HyTech, both tools
exhibit similar performance on backward reachability.
Comparable performance is also obtained in these cases us-
ing XMC/RT’s model checker and this is likely attributable
to the call-abstraction optimization discussed above. The
table also shows that XMC/RT is slower than HyTech for
verifying the the possibility property of the 4-process Fis-
cher’s protocol. This is due to an inefficient subsumption
check in our prototype implementation. In particular, ev-
ery time a region is visited, a table lookup is performed to
ascertain whether the region has been visited previously. In-
dexing techniques that can speed up this check are currently
under investigation. We plan to implement them as a part
of a fully integrated tabled logic-programming system with
constraints.

The verification of bounded liveness using XMC/RT’s
timed mu-calculus model checker is slower than the corre-



System Property XMC/RT HyTech UPPAAL1 UPPAAL2
mu-calc reach w/o -D with -D

Fischer Safety 0.08 0.05 0.11 0.01 0.01
2 proc Possibility 0.24 0.20 0.44 - -

Liveness 0.36 - - - -

Fischer Safety 0.84 0.46 0.99 0.30 0.08
3 proc Possibility 4.13 4.08 5.30 - -

Liveness 1.54 - - - -

Fischer Safety 11.4 9.0 8.7 21.6 2.24
4 proc Possibility 105 201 103 - -

Liveness 33.4 - - - -

Bridge Safety 0.19 0.17 0.14 0.03 0.02
Crossing Bounded Liveness 7.0 1.19 1.19 2.18 0.04

Liveness 0.8 - - - -

Table 1. Running times (seconds) for the verification of Fischer’s mutual exclusion protocol and the
bridge-crossing system. “reach” stands for reachab ility.

sponding (unbounded) liveness analysis. This is because the
time bound in the formula induces extra splitting of regions
and also reduces the potential for the early-completion op-
timization.

4.1. A Real-Time Version of Leader Election with
Unbounded Message Queues

In a leader-election protocol [10],n nodes, connected
by unboundedbuffers, form a ring. The nodes are identi-
cal except they have unique identifiers. Each node sends
messages to its neighbor on the right and receives mes-
sages from its neighbor on the left, comparing the messages
with its local variables, until eventually exactly one node
is elected as the leader. Although the protocol uses un-
bounded buffers as the communication media,each buffer
in fact holds only a finite number of messages during the
protocol’s execution.

We extend the leader-election protocol by placing timing
constraints on the sending actions of the nodes so thateach
message must be transmitted within 5 time units. This real-
time protocol has the property that there is an upper bound
on the elapsed time before a leader will be elected.

In our specification of the protocol, there is one process
per node and one process per medium;each process is mod-
eled as a TSA. Once a buffer becomes non-empty, the corre-
sponding TSA is required to send a message within 5 time
units. The unbounded buffers of the medium processes
are modeled naturally in XMC/RT using Prolog lists. To il-
lustrate this technique, the following clause of thetrans
predicate describes how the local variableBuf of a medium
process is updated when messageMsg is received over

channelchan . The process moves from locationempty
to nonempty upon this transition.

trans((empty(Buf),R), in(chan(Msg)),
(nonempty([Msg|Buf]),R)).

We used XMC/RT’s model checker for the timed modal
mu-calculus to verify both unbounded and bounded live-
ness for a two-node leader-election system. The unbounded
liveness property requires that a leader is eventually elected,
while the bounded liveness property requires that a leader is
elected within 40 time units. The time bound is 40 because
the protocol requires two rounds of message passing before
a leader can be elected. In each round, the nodes simul-
taneously transmit two messages each; this, plus the time
required by the medium processes, leads to the requirement
of 20 time units per round.

XMC/RT needed 1.1 seconds for the verification of
the unbounded liveness property and 13.4 seconds for the
bounded liveness property. As discussed above, although
there are unbounded buffers in the protocol, XMC/RT was
able to verify these properties because it combines local
model checking with the dynamic data structures (lists) of-
fered by the XSB tabled logic programming system.

4.2. XMC/RT for the Verification of Untimed Sys-
tems

Recall (Section 3) that in XMC/RT, each predicate invo-
cation of the formmodels(SS,F,SR) computes a maxi-
mal subset of states inSS that models formulaF. More pre-
cisely,SS is a set of states (from the dense LTS representing



System Version Formula XMC XMC/RT

Leader one leader 14.2 18.3
Election 7 processes af leader 14.1 15.4

ef leader 11.4 14.1

W=1, buggy livelock 0.05 0.07
i-Protocol W=1, fixed livelock 12.1 17.6

W=2, buggy livelock 0.32 0.41
W=2, fixed livelock 201.7 305.8

Table 2. Running times (seconds) for the ver-
ification of untimed systems.

the semantics of the TSA under investigation) correspond-
ing to a pairhl; Ri, wherel is a location in the TSA andR is
a region (constraint). In contrast, in XMC, the correspond-
ing invocation is of the formmodels(S,F) which simply
succeeds or fails depending on whether the single state rep-
resented byS modelsF. Now, whenmodels(SS,F,SR)
is invoked and the Prolog variable representing the region
underlyingSS is unbound, this region will be interpreted
as the constraint “true”. In this case, the rules in XMC/RT
for the untimed operators of the timed modal mu-calculus
do not perform any computations on regions, and the be-
havior of XMC/RT thus closely resembles that of XMC.
That is, XMC/RT can effectively analyzeuntimedsystems
by ensuring that region variables are unbound. In order
to estimate the overhead attributable to this more com-
plex formulation of themodels predicate as well as to
XMC/RT’s constraints interface, we compared the perfor-
mance of XMC/RT with that of XMC for verifying untimed
systems.

Table 2 documents the performance of XMC and
XMC/RT on the 7-process leader election protocol (adapted
from the Spin benchmark suite), and on the sliding-window
protocol found in GNU uucp called the i-protocol. Three
basic properties of leader election were verified. For the i-
protocol, we checked for the existence of a livelock error,
for “fixed” (correct) and “buggy” versions of the protocol,
window sizes 1 and 2. The data for XMC in Table 2 is taken
from [12].

Our results indicate that the performance of the real-time
model checker XMC/RT approaches that of the finite-state
model checker XMC. It should be noted that XMC’s per-
formance for the i-protocol is comparable to that of Spin
and Mur' [11, 12, 19]. Thus, we see that in XMC/RT, the
structures for handling real-time verification lead to very lit-
tle overhead when applied to finite-state systems.

5. Conclusions

We have shown how a careful integration of tabled res-
olution and constraint processing can yield a computational
framework that is well suited to model checking real-time
systems. Our real-time model checker, XMC/RT, is written
in a highly declarative manner (approx. 350 lines of Pro-
log code, not counting, of course, the POLINE package),
utilizes a local approach to region-graph construction, and
can handle real-time and untimed systems with unbounded
structures.

Future work includes integrating constraints directly
into the XSB tabled logic programming system, i.e.at the
engine level[7]. We expect considerable improvement in
performance in an XMC/RT built on top of such a CLP sys-
tem, and would like to verify this conjecture experimentally.
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