MTCS’00 to appear

Real-Time Verification Techniques
for Untimed Systems

Xiaoqun Du, C.R. Ramakrishnan, Scott A. Smolka

Department of Computer Science, SUNY at Stony Brook
Stony Brook, NY 117944400, USA

{vicdu,cram,sas}@cs.sunysb.edu

Abstract

We show that verification techniques for timed automata based on the Alur and Dill
region-graph construction can be applied to much more general kinds of systems,
including asynchronous untimed systems over unbounded integer variables. We
follow this approach in proving that the model-checking problem for the n-process
Bakery algorithm is decidable, for any fixed n. We believe this is the first decidability
proof for this problem to appear in the literature.

1 Introduction

In their seminal paper, Alur and Dill [2] showed how the language-emptiness
problem for timed automata can be decided by partitioning the infinite state
space underlying a timed automaton into a finite collection of regions. The
resulting structure is referred to as a region graph, and the bound on the
number of regions in a region graph is determined solely on the basis of the
maximal constants appearing in the timed-automaton specification.

The key to the success of their method is the observation that timed-
automata transitions preserve the partition induced by a region graph. That
is, for any two points s; and s, in a given region R, s; has a transition into
a region R’ if and only if s; does. In other words, regions are not split on
the basis of the transitions exhibited by any two points in a region. Alur
and Dill show in this case that trace semantics is preserved by region-graph
abstractions, and this provides the basis for their decidability result for the
language-emptiness problem.

Taking a closer look, timed automata are a kind of guarded-command au-
tomaton. Variables are real-valued, representing clocks or timers, and guards
are logical combinations of expressions of the form “x op ¢”, where z is a

This is a preliminary version. The final version can be accessed at
URL: http://www.elsevier.nl/locate/entcs/volume39.html

Du AND RAMAKRISHNAN AND SMOLKA

variable, ¢ is an integer constant, and op is a standard comparison operator. '
, which

reset a prescribed subset of the variables to zero; and “delay transitions”,

Timed-automaton transitions are of two kinds: “discrete transitions”

which uniformly increment all variables by a constant §. Given this restricted
nature of timed automata and their transitions, it is possible to prove, as Alur
and Dill succeeded in doing, that regions indeed are not split by transitions.

In this paper, we show that the region-graph technique can be applied
to a much more general class of systems than for which it was originally in-
tended. In particular, we consider Extended Automata (EA), the variables
of which can range over dense as well as discrete domains such as the inte-
gers. EA guards are as in timed automata, while transitions may update vari-
ables independently and arbitrarily via assignments of the form: (i) z := ¢,
(i) x := y+ec or (iii) V = V+ 7, for any integer ¢. An assignment
of form (iii) is a “random assignment” meaning that there is a constant d
in the domain such that each variable in the set V' of variables of the EA is
incremented by d. This form of assignment can be used to simulate updates
to clock variables caused by the progress of time in timed automata. With it,
it is easy to see that the class EA contains timed automata.

It turns out that the region-graph technique can easily be extended to han-
dle assignments of form (i), and we show how to do this. The same cannot be
said, however, for assignments of form (ii) since, in general, such assignments
may split regions. But for the subclass of EA whose form-(ii) assignments do
not split regions, we can show that the region-graph technique is once again
applicable. We refer to this class of systems as SPPA, for Strongly Partition
Preserving Automata. In particular, we prove that, for SPPA, bisimulation
semantics is preserved under the region-graph abstraction, and hence model
checking of modal mu-calculus formulas is decidable.

Although the proof of the decidability result for SPPA is straightforward,
this class is still of significant interest. First, it represents a class of very gen-
eral automata—which, besides timed automata, includes infinite-state, asyn-
chronous untimed systems over integer variables—for which the region-graph
technique is applicable. Secondly, we show that the n-process Bakery algo-
rithm is in SPPA, for any fixed n, and hence decidable. To our knowledge,
this is the first decidability result for this oft-studied problem to appear in the
literature.

The rest of the paper is organized as follows. Extended Automata and
Strongly Partition Preserving Automata are defined in Sections 2 and 3,
respectively. Section 3 also establishes the decidability of SPPA, while
Section 4 shows that the n-process Bakery algorithm, for any fixed n,

1 We also consider guards of the form “z op y + ¢”, where z and y are variables and c¢ is
an integer constant.

Du AND RAMAKRISHNAN AND SMOLKA

falls in the class SPPA and its model-checking problem is hence decid-
able. Section 5 discusses related work, while our concluding remarks are
given in Section 6. Due to space limitations, proofs are either sketched
or omitted. Full proofs are available in the online version of the paper at
http://www.cs.sunysb.edu/"viecdu/sppa.ps.

2 Extended Automata

2.1 Syntax and Semantics of Extended Automata

Extended automata (EA) is a general formalism for the representation of
infinite-state systems composed of a finite control and a finite set of variables.
Variables may range over discrete or dense domains, and, in contrast to timed
automata, may be updated independently and in different ways.

Given a set of variables V' and a domain D, a variable valuation m maps
each variable in V' to a value in D. For simplicity of presentation, we restrict
our attention to domains containing only non-negative numbers, although our
result applies to domains containing negative numbers as well. We use II to
represent the set of all variable valuations, and use ., 71, 79, etc. to range over
II. A guarded command is a statement of the form ¢ — asgn for guard ¢ and
assignment asgn. A guard is a boolean combination of expressions of the form
T # corxF#y+c where # € {<,<,=,>,>}, 2,y € V, and ¢ is an integer
constant (possibly negative). An assignment can be a finite combination of
basic assignments of the following forms, where ¢ is an integer constant and
d is an arbitrary constant in D:

(1)z == y+cfor(y+c¢) €D (2) z = ¢
B)V = V47 (4) z =7

The meaning of basic assignments of types (1) and (2) is clear. Basic assign-
ments of type (3) mean that all variables in the EA are incremented by the
same amount d, for some d € D. Basic assignments of type (4) mean that z is
assigned an arbitrary value in D. Note that in assignments of type (1), z and
y may refer to the same variable. Finite combinations of basic assignments,
such as those allowed in guarded commands, represent simultaneous assign-
ments to a subset of variables in V. We shall write 7 |= ¢ if 7 € II satisfies
guard g, and 7, = m[asgn] if m; is the result of applying asgn to m;. Notice
that given my, assignments of types (3) and (4) lead to infinitely many my’s.

Definition 2.1 An extended automaton Ais a 5-tuple (L, 1y, V, Act, §), where
L is a set of locations, [y is the initial location, V' is a set of variables ranging
over a possibly infinite domain D, Act is a finite set of actions, and ¢ is a finite

3

Du AND RAMAKRISHNAN AND SMOLKA

transition relation. A transition in 4 is a 4-tuple (l,a,a,!l’), where [,I" € L,
a € Act, and « is a guarded command.

The semantics of extended automata is given in terms of labeled transition

systems (LTSs).

Definition 2.2 An extended automaton A = (L, ly,V, Act,§) induces the
LTS T = (S7,Act,—7,(lo, m0)) where:

o Sr={{l,m) |l € L,m €1} is the set of states.
o Act is the set of labels of T.

o (lo,mo) is the initial state, with my being the valuation where all variables
have the value 0.

o —7 is the transition relation of T. (ly,m)Sr{ly,m) if {l1,a,(9g —
asgn),ls) € 6, m | g, and mq = m[asgn].

Labels are included in the definition to make our model compatible with
systems that have labeled transitions, and with the modal mu-calculus which
has labels in formulas. We use the modal mu-calculus introduced by Kozen
in [11]. In particular, the only forms of atomic formulas allowed are tt and
ff. Given an extended automaton A and its induced LTS 7, a modal mu-
calculus formula F defines a set of states [F] € S over which F is true. The
model-checking problem for extended automata is, given an EA A and a modal
mu-calculus formula F, determine whether or not (ly, mo) € [F].

2.2 Region Graphs for Fzxtended Automata

We now define an equivalence relation ~ on the set of variable valuations of
an extended automaton. ~ leads to a finite partition of the state space, and
region graphs a la Alur & Dill [2] can be constructed based on this partition.

Given an extended automaton A, let ¢,,,, be the largest absolute value of
the constants appearing in A, and let b,,,, be the largest absolute value of the
constants appearing in comparisons involving two variables in A. Both ¢,,4.
and b,,,, are non-negative integers. Further, we shall write |d]| for the largest
integer less than or equal to d, frac(d) for d — |d], and = (x) for the value of x
in valuation 7.

Definition 2.3 For all n, 7’ € II, 7 ~ 7’ if the following holds:
(i) Vo € V, either |m(z)] = |n'(x)] or both n(x) and 7'(x) are greater than
cmal? —I_ bmal"
(ii) Ve € V, if m(2) < ¢nax + bmaz, then frac(m(z)) = 0 if and only if
frac(w'(z)) = 0.

Du AND RAMAKRISHNAN AND SMOLKA

(iii) Yo,y € V,if m(2) < ¢rmaztbmar and 7(y) < oz +bmaz, then frac(m(x)) <
frac(m(y)) if and only if frac(n'(x)) < frac(n'(y)).

(iv) Y,y € V, either |(n(z) —n(y))] is equal to [(7'(x) — 7'(y))], or both
(m(z) —m(y)) and (7'(x) — 7'(y)) are greater than b, or both (7w (z) —
m(y)) and (7'(z) — 7'(y)) are smaller than —b,,4,.

It is obvious that ~ is an equivalence relation. We shall refer to a block of
the partition induced by ~ as a region, and use R, Ry, Ry, etc. to range over
regions. There are only a finite number of regions for an extended automaton:
each region is formed by a finite conjunction of constraints of the form = = ¢,
c<r<c+1l,x=Char+bnaz, T> Caz T oo, t—y=c,e<x—y<e+1,
T — Y = bpay, and x — y > b4, Where ¢ is an integer such that 0 < ¢ <
Cmaz + bmaz, and e is an integer such that 0 < e < by,

Notice that the definition of ~ extends the equivalence relation defined
for timed automata in [2] by taking into consideration comparisons involving
two variables and assignments of non-zero constants to variables. In partic-
ular, Condition (4) ensures that comparisons involving two variables do not
distinguish variable valuations belonging to the same region. We distinguish
between ¢,,,, and b,,,, to ensure that an assignment of the form x := ¢ where
¢ # 0 does not split regions.

Definition 2.4 Given an extended automaton A and its induced LTS T, the
region graph G of T is the LTS (Sg, Act, —¢, (o, Ro)) where:

Sg, the set of states of G, is such that V regions R and locations [, (I, R) € Sg.
The set of labels Act of T is also the set of labels for G.

The transition relation —g of G is defined as follows: (/y, Rl>i>g<l2, Ry) if
dm € Ry and my € R, such that <11,7T1>i>7‘<l2,7'f'2> is a transition of T .

(lo, Ro) is the start state of G, where (ly,m) is the start state of 7 and
Ty € Ro.

Since the number of regions, locations, and action labels are all finite, the
region graph of an extended automaton is finite.

3 Strongly Partition Preserving Automata

Extended automata can be used to simulate two-counter machines. Therefore,
in general the model-checking problem for extended automata is undecidable.
We now define a subclass of extended automata for which region graphs can
be used to yield decidable model-checking problems.

Definition 3.1 Let A be an extended automaton and 7 its induced LTS with
states S7. A is a strongly partition preserving automaton (SPPA) if the follow-

5

Du AND RAMAKRISHNAN AND SMOLKA

ing holds: Y(I,m), (I, m3) € S7 such that my ~ 79, Va € Act and (I',7,") € S,
if (I,m)=7(',m), then ' my') € Sr such that (I, m)=+(I',) and
’7T1/ ~ 7T2/.

In the definition, two states of 7 having the same location and variable
valuations in the same region have successors in the same target regions. That
is, the partition induced by the equivalence relation ~ is preserved by the
transitions of the SPPA; hence the name partition preserving.

Let A be an SPPA, T its induced LTS with states Sy, and G the region
graph of T with states Sg. To show the decidability of SPPA, we define the
relation B € S5 x Sg and show that B is a bisimulation:

B={{l,m),(l,R)) | ([,m) € S7,{l,R) € Sg,m € R}

Theorem 3.2 The relation B is a bisimulation.

B is a bisimulation due to the following key observation: the definition of SPPA
ensures that —7 can simulate —¢, i.e., Y({l,7), (I, R)) € B and a € Act, if
(', R') such that (I, RY%(l', R"), then 3n’ € R, such that (I, 7)+(l', 7).

Theorem 3.2 implies that the initial state (ly, 7o) of T and the initial state
(lo, Ro) of G are bisimilar. Since G is a finite LTS, the modal mu-calculus
model-checking problem for G is decidable. On the other hand, bisimilar
states satisfy exactly the same set of modal mu-calculus formulas [18]. This
yields the following result:

Corollary 3.3 The model-checking problem for SPPA is decidable.

4 The Multi-Process Bakery Algorithm is in SPPA

In this section we prove that, for any fixed n, the n-process Bakery algorithm
is in SPPA and thus decidable. The Bakery algorithm [12,3] is an n-process
mutual-exclusion algorithm. Associated with each process is an integer vari-
able representing the ticket held by that process. When a process wants to
enter the critical section, it gets a ticket numbered higher than all the ticket
numbers held by other processes. The process with the lowest ticket number is
granted access to the critical section. The Bakery algorithm, even for n = 2,
is an infinite-state system because the values of its variables may increase
without bound.

The n-process Bakery algorithm is given in Figure 1. n discrete variables
Y1, Y2, ..., Yp are used to control the access to the critical section. The initial
value of these variables is 0. In Figure 1, the operator max returns the maxi-
mum value of its arguments, while the operator non0_min returns the smallest
non-zero value of its arguments. The conditional test y; = non0_min (yi, ..., yn)
can be regarded as a sequence of comparisons of the form y; > 0 or y; < y;.

6

Du AND RAMAKRISHNAN AND SMOLKA

loop forever do
lo: non-critical
ly: yi == max (y1, ..., yn) + 1
ly: await ((Vj #4,y; =0) V (y; = nonO_min (y1,...,Yn))
[3: critical
ly: y; =0

Fig. 1. Process ¢ in the n-process Bakery algorithm. max returns the maximum
value of its arguments. non0O_min returns the smallest non-zero value of its argu-
ments.

The assignment y; := max (y1,...y,) + 1 is executed atomically. The max op-
erator can be implemented through the use of assignments of boolean constants
to turn variables [3], comparisons involving two variables, and assignments of
the form y; := y; + 1. It can thus be seen as an EA-implementable operation
“in disguise”.

Theorem 4.1 The transitions of the n-process Bakery algorithm preserves
the partition of its state space induced by ~.

Proof. For each n > 0, the n-process Bakery algorithm—which we shall refer
to as Bakery(n)—can be represented by an extended automaton with variables
ranging over the domain of non-negative integers. In Bakery(n), ¢pna = 1 and
bmar = 0. By the definition of ~, if g is a guard and 7 ~ 7/, then 7 satisfies ¢
if and only if 7’ satisfies g. Hence transitions that leave the values of variables
unchanged are partition-preserving.

Bakery(n) contains only assignments of form (1) and (2) as defined in
Section 2.1. We now show that these assignments, performed respectively at
locations [; and [in Figure 1, preserve the partition of the state space induced
by ~.

Let my ~ mq, and let " and m,’ be the respective variable valuations that
arise from subjecting m; and 72 to an assignment. We use a case analysis on
the possible forms of the assignment to show that the partition is preserved,

i.e. m’ ~ my'. Since the system is over the integers, we need only consider
Conditions (1) and (4) of the definition of ~.

o Iy y; =0
Consider Condition (1) of the definition of ~ for m;" and my'. Vj, if j = 1,
then m'(y;) = ma'(y;) = 0. If j # ¢, then m'(y;) = m(y;), m'(y;) = maly;).
Since m1(y;) and my(y;) satisfy Condition (1) of ~, so do m; (y]) and 7' (y;).
Thus Condition (1) of ~ is true for m" and 5.
Consider Condition (4) of ~. Let j # 1. m'(y;) — m1'(y;) = —m1(y;), and
o' (y:) — m'(y;) = —ma(y;). Since m ~ ma, mi(y;) = m2(y;), or both m1(y;)

7

Du AND RAMAKRISHNAN AND SMOLKA

and m(y;) are greater than ¢az + bpmar = 1. Thus m'(y;) — m1'(y;) is either
equal to mo'(y;) — m2'(y;), or both are less than —b,,,,. Thus Condition (4)
of ~ holds for m/(y;) — m'(y;) and m'(y;) — m2'(y;). A similar argument
shows that Condition (4) also holds for m1'(y;) —m/(y:) and 7' (y;) — w2’ (ys).

Now let 57 # @ and k # i. Then m'(y;) — m'(yx) = mi(y;) — m1(yx),
7o' (y;) — 7o' (yx) = ma(y;) — m2(yx). Thus Condition (4) also holds in this
case. Since both Condition (1) and (4) of ~ still hold after the assignment
y; := 0, this assignment preserves the partition.

Iy = max (Y1, ..o, Yn) + 1

Since m; ~ my, they agree on the ordering of the variables. Let y; be the

variable with the largest value in both 7; and m3. Consider Condition (1) of

~ for m" and my'. Vj,if j =4, then m'(y;) = m(yx) + 1, m'(yi) = ma(yr) + 1.

Since my ~ my, either m1(yx) = ma(yx), or both m1(yx) and 72(yx) are greater

than ¢nap4bmaz. Thus m1'(y;) = m3'(y;) or both are greater than ¢,az+bmas-

If j # 4, then since the value of y; is unchanged, m'(y;) = m2'(y;) or both

are greater than ¢qz + bpas. Thus Condition (1) of ~ holds.

Consider Condition (4) of ~. There are four cases based on the variables
involved:

- mi'(yi) — m(yr) = 7' (yi) — 7o' (yx) = 1. Condition (4) is true in this case.
It is also true for m'(yx) — m'(y:) and mo'(yx) — 7' (v:)-

- Forj # kand j # i, m'(yi)—mi/(y;) = mi(ye) +1—mi(y;), m' (yi) —m2'(y;) =
mo(yr) + 1 — m2(y;). Since my ~ my, and y; is the variable with the largest
value in both 7y and mq, mi(yx) — m(y;) = ma(yx) — m2(y;) or both are
greater than b,,,,. Thus m'(y;) — m'(y;) and 7o' (y;) — 7o' (y;) are either
equal or are both greater than b,,,,. Thus Condition (4) holds in this
case.

- For j # kand j # 4, m'(y;) — m'(yi) = mi(y;) — mye) — 1, m'(y;) —
7o' (yx) = maly;) — m2(yx) — 1. Since m ~ mq, and yy is the variable with
the largest value in both 71 and 7y, m1(y;) — m1(yx) = m2(y;) — ma(yx) or
both are less than —b,,q,. Thus m/(y;) — 71’ (y;) and 7o' (y;) — m2'(y:) are
either equal or are both less than —b,,,,. Thus Condition (4) holds in this
case.

- Forj #vandm # i, m'(y;)—m'(ym) = m1(y;) =71 (ym), 72" (y;) =2 (ym) =
ma(y;) — Ta(Ym). Since my ~ w3, Condition (4) of ~ holds in this case.

Thus 7" ~ my'. Therefore, Theorem 4.1 is true. O

To illustrate the proof, consider Bakery(2), the two-process instance of
Bakery, which has been widely used as a benchmark for the verification of
infinite-state systems [5,7,16,17]. Its pseudo-code, which is given in Fig-
ure 2(a), has a straightforward translation into the single-label extended au-
tomaton depicted in Figure 2(b). For succinctness, locations Iy, I3, mg, ms
and the label are omitted from this figure. The finite partition of the set of

8

Du AND RAMAKRISHNAN AND SMOLKA

y2 =0V

. . =gy +1 <
non-negative integer: AR/ Wt
y1="0,52=0

loop forever do loop forever do

y2 =31+ 1

lp: non-critical mg: non-critical =0V

=y 1 n <y
hiyri=y2+1 mit Y2 ==y + 1 pim0 G\ fama) l)y =0
ly: await (y2 =0 mg: await (y; =0 u=0

Vyr < y2) Vyz < y1) oy o
l3: critical ms3: critical v:<n \yz<y1
laz y1:=0 my: Yo =0 lymy

=y +1 Uw:OV

Y1 <Yz

(a) (b)

Fig. 2. The two-process Bakery algorithm.

TV,
A

4 Corner points: e.g. [(0,1)]

I —
1® i 5 line segments: e.g. [1 <z =1y]
2 regions: e.g. [z >y, y>1]
€ S
0 1 h

Fig. 3. The finite partition for the two-process Bakery algorithm.

variable valuations of Bakery(2) induced by ~ is illustrated in Figure 3 and
has a total of 11 regions.

To see that this partition is preserved by the transitions of Bakery(2),
consider the two possible forms of assignments: y; := 0 and y; := y; + 1,
1 <@ # 35 < 2. For any of the four regions containing single points, these
assignments obviously will result in target variable valuations within the same
region. It is also easy to see that the other regions are not split. For example,
consider the region {1 < y; < yo}. The effect of the two types of assignments
is as follows:

o y; := 0. Then the region in question becomes the region {y; = 0,y; > 1}.

o Let y; := y; + 1. Then the region in question becomes the region {l <
yi,yi = y; + 1}. This is a subset of the region {1 < y; < y;}.

9

Du AND RAMAKRISHNAN AND SMOLKA

In both cases the region is not split and the partition is preserved by the
transitions of the system.

Theorem 4.1 leads to the following corollary:

Corollary 4.2 The n-process Bakery algorithm is in SPPA.

General techniques for establishing membership in SPPA

In examining the proof of Theorem 4.1, several general techniques for es-
tablishing membership in SPPA emerge. First, transitions that do not change
values of variables are partition-preserving, and hence need not be considered.
Secondly, we have the following lemmas on various forms of assignments:

Lemma 4.3 Given an KA A, an assignment of the form x := ¢ appearing in
A preserves the partition induced by ~.

Lemma 4.3 can be proved using arguments similar to those used in the
proof of Theorem 4.1 for assignments of the form y; := 0.

Lemma 4.4 Given an FA A, a region R of A, a positive constant ¢, and an
assignment of the form x := y+ ¢ in A, R cannot be split by the assignment
if the following invariant holds for R: ¥Ym € R, Yv € V such that v # x and

v#£y, m(y) — m(v) > —bnas.

Lemma 4.4 can be proved using arguments similar to those used in the
proof of Theorem 4.1 for assignments of the form vy, := max (yi1,...,yn) + 1.
In the case of Bakery(n), the desired invariant is true as the operator max
always chooses the y; with the maximal value as the variable y in assignments
of the form = := y + .

Lemma 4.5 Given an KA A, an assignment of the form x := y appearing in
A preserves the partition induced by ~.

Lemma 4.5 is true because of the following: Vmy, w9 such that m; ~ mg, let
m' = mz :=y| and 7y’ = myx := y|. Then the conditions imposed on m;'(x)
and m'(x) by ~ can be expressed in terms of the conditions imposed on 7 (y)
and my(y) by ~. Since m; ~ mq, it immediately follows that m" ~ /.

5 Related Work

The decidability of the class SPPA can be attributed to the existence of an
equivalence relation that finitely partitions the infinite state space of an ex-
tended automaton. A related approach is taken in [9,1] where the class of
Well-Structured Transition Systems (WSTS) is defined. An infinite-state sys-
tem is in WSTS if there exists a simulation relation < (a “well ordering”)

10

Du AND RAMAKRISHNAN AND SMOLKA

that induces a finite partition of the state space. WSTS is a very general
class of infinite-state systems; timed automata, vector addition systems with
states (VASS) [10], normed BPA [4], and rational relational automata [6] are
all contained in WSTS. SPPA is also a subclass of WSTS. The main difference
between SPPA and WSTS is that SPPA is based on an equivalence relation
~ that defines a bisimulation over the set of states. Moreover, ~ is pre-
determined according to the constants that appear in the system, while there
are no general rules about how to find the desired well-ordering <. SPPA also
enjoys decidability for model checking of the full modal mu-calculus, while
WSTS is decidable for a limited class of properties, such as reachability and
eventuality.

In other related work, various semi-decision procedures and approximation
techniques for infinite-state systems have been proposed, and applied to the
two-process Bakery algorithm [17,7.8.,5]. Our decidability results target the
multi-process Bakery algorithm, of which the two-process version is a partic-
ular instance. In [17], logic formulas are used to represent (possibly infinite)
sets of states, and the satisfiability of the input temporal logic formula is
computed via a tableau of the input formula and system; the tableau is suc-
cessively refined based on the transition relation. This approach requires user
intervention and gives no termination guarantee.

[7,8] encode discrete, infinite-state systems as CLP programs, and verify
CTL properties by computing least and greatest fixed points of the logical con-
sequence operator. While these computations are intrinsically global, Magic
Set transformations [15] are used to make them more goal-directed. The
widening operator can also be used as an approximation technique when the
fixed-point computation does not terminate.

In [5], Presburger formulas are used to encode sets of states as well as the
transition relations of systems under investigation. The Omega Library, which
is a fast Presburger solver, allows efficient manipulation of these formulas,
including the computation of the set of predecessors of a set of states. CTL
model checking can be performed by computing fixed points of the predecessor
relation over these formulas.

In [14], an approach to verifying infinite-state systems using program trans-
formations is proposed. Given a program P, they essentially attempt to com-
pute a finite partition of P’s state space in a top-down manner, starting with
the initial set of constraints in P (i.e. conditional tests) and iteratively gen-
erating new constraints. This approach is quite general and can be applied
to any system having a finite simulation- or bisimulation-equivalent abstract
program. For example, they show that in the case of the two-process bakery
algorithm, only finitely many new constraints are generated and their tech-
nique thereby correctly computes the (finite) bisimulation-induced partition.

11

Du AND RAMAKRISHNAN AND SMOLKA

lock =0
m ¢ =1
LJ L t:=t+1
lock # i t—e <2
lock :=0 c =1t
lock :=1
Critical [| [
section
t—c > 2
lock =1

() (b)

Iig. 4. The n-process Fischer’s protocol as described in [13]. ¢ is a global timer.
lock is a shared variable, and ¢;’s are local variables.

For some systems, however, infinitely many new constraints may be gen-
erated unless an appropriate bound is placed on the number of iterations. An
example of such a system is the version of the n-process Fischer’s mutual ex-
clusion protocol described in [13] and reproduced here as Figure 4. On the
other hand, this protocol is in SPPA, for any fixed n. It has three forms of
assignments: (1) lock := i, where 7 is a constant; (2) ¢; :=¢; and (3) t := ¢4 1.
Techniques for determining membership in SPPA as discussed in Section 4 can
be directly used to show that assignments of the forms (1) and (2) preserve the
partition induced by ~. Assignments of form (3) also preserve the partition,
as the invariant ¢ — ¢; > 0 holds for the system.

6 Conclusions

We have shown how region graphs, originally intended for timed automata,
can be fruitfully deployed in the verification of infinite-state untimed systems.
Our results were framed in terms of SPPA. a decidable class of extended
automata, which we showed contains the n-process Bakery algorithm, for any

fixed n.

We have also shown that SPPA contains Cerans’s rational relational au-
tomata [6,1], modulo constant conversion; and we have identified a generaliza-
tion of SPPA called WPPA (Weak Partition Preserving Automata) in which
sequences of transitions (rather than individual transitions, as in SPPA) are
partition-preserving. These additional results will appear in the full version
of the paper.

12

Du AND RAMAKRISHNAN AND SMOLKA

So how is membership in SPPA decided? Let A be an extended automaton.
Since A has a finite number of transitions and the partition induced by ~ has
a finite number of regions, all regions can be inspected against all transitions
to determine whether the partition is preserved.? Such a brute-force approach
clearly requires time exponential in the number of variables in A. It would thus
be desirable to obtain a syntactic characterization of an interesting subclass of
SPPA that could be checked efficiently. Research in this direction is ongoing.

In other future work, the Ticket algorithm [3], like the Bakery algorithm, is
a discrete, infinite-state system widely used as a benchmark for the verification
of infinite-state systems. Its extended automaton, however, is not in SPPA
nor WPPA. This is because the Ticket algorithm contains assignments of the
form s := s+1, for which the desired invariants relating the variable s to other
variables in the algorithm cannot be proved. Nevertheless, a finite partition of
its state space can be constructed by hand, and this partition is preserved by
the transitions of its extended automaton. It would therefore be interesting to
see how the notion of partition-preservation can be extended to accommodate
such problems.

Acknowledgments

The authors are grateful to the anonymous MTCS 2000 referees, especially
the one who provided us with an extremely helpful and detailed report on our
submission. This research was supported in part by NSF grants CCR-9505562
and CCR-9705998.

References

[1] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability
theorems for infinite-state systems. In Proceedings of LICS’96, pages 313-321.
IEEE Computer Society Press, 1996.

[2] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183-235, 1994.

[3] G. R. Andrews. Concurrent Programming: Principles and Practice. Addison-
Wesley, Menlo Park, CA, 1991.

[4] A. Bouajjani, R. Echahed, and P. Habermehl. Verifying infinite state processes
with sequential and parallel composition. In Proceedings of POPL’95, pages
95-106. ACM Press, 1995.

2 Typically, however, such an exhaustive check is not needed; rather, a case analysis on the
types of assignments that appear in .4 can be used instead. Indeed, this is the approach we
followed in the case of the n-process Bakery algorithm.

13

Du AND RAMAKRISHNAN AND SMOLKA

[5] T. Bultan, R. Gerber, and W. Pugh. Symbolic model checking of infinite-state
systems using Presburger Arithmetics. In Proceedings of the 9th International
Conference on Computer-Aided Verification (CAV '97), volume 1254 of Lecture
Notes in Computer Science, pages 400-411, Haifa, Israel, July 1997. Springer-
Verlag.

[6] K. Cerans. Deciding properties of integral relational automata. In Abiteboul
and Shamir, editors, Proceedings of ICALP’9j, volume 820 of Lecture Notes in
Computer Science, pages 35-46. Springer-Verlag, 1994.

[7] G. Delzanno and A. Podelski. Model checking in CLP. In Proceedings of the
Fifth International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS ’99), Lecture Notes in Computer Science,
volume 1579, pages 223-239, Amsterdam, March 1999.

[8] G. Delzanno and A. Podelski. Constraint-based deductive model checking in
CLP. International Journal on Software Tools for Technology Transfer, 2000.
To appear.

[9] A. Finkel and P. Schnoebelen. Fundamental structures in well-structured
infinite transition systems. In Proceedings of the 3rd Latin American Theoretical
Informatics Symposium (LATIN ’98), volume 1380 of Lecture Notes in
Computer Science, pages 102-118, Campinas, Brazil, April 1998.

[10] J. Hopcroft and J. J. Pansiot. On the reachability problem for 5-dimensional
vector addition systems. Theoretical Computer Science, 8:135-159, 1979.

[11] D. Kozen. Results on the propositional p-calculus. Theoretical Computer
Science, 27:333-354, 1983.

12] L. Lar pOl’t. A new solution of Dijkstra’s concurrent programr i problel .
g g
Communications Of the 146’]‘47 17(8)453*4557 August 1974.

[13] D. Lesens and H. Sadi. Automatic verification of parameterized networks of
processes by abstraction. In Proceedings of the 2nd International Workshop on
Verification of Infinite State Systems (INFINITY’97), Bologna, July 1997.

[14] K. S. Namjoshi and R. P. Kurshan. Syntactic program transformations for
automatic abstraction. In Proceedings of the 12th International Conference on
Computer-Aided Verification (CAV ’00). Springer-Verlag, 2000. To appear.

[15] R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Efficient bottom-
up evaluation of logic programs. In P. De Wilde and J. Vandewalle,
editors, Computer Systems and Software Engineering: State-of-the-Art. Kluwer
Academic, 1992.

[16] V. Rusu and E. Singerman. On proving safety properties by integrating static
analysis, theorem proving and abstraction. In W. R. Cleaveland, editor, Tools
and Algorithms for the Construction and Analysis of Systems (TACAS °99),
volume 1579 of Lecture Notes in Computer Science, pages 178-192. Springer-
Verlag, March 1999.

14

Du AND RAMAKRISHNAN AND SMOLKA

[17] H. B. Sipma, T. E. Uribe, and Z. Manna. Deductive model checking. Formal
Methods in System Design, 15(1):49-74, July 1999.

[18] C. Stirling. The joys of bisimulation. In Proceedings of the 23rd International
Symposium on Mathematical Foundations of Computer Science, MFCS 98,
volume 1450 of Lecture Notes in Computer Science, pages 142-151. Springer-
Verlag, 1998.

15

