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Abstract

We present an algebraic framework forevidence explo-
ration: the process of interpreting, manipulating, and navi-
gating the proof structure orevidenceproduced by a model
checker when attempting to verify a system specification for
a temporal-logic property. Due to the sheer size of such ev-
idence, single-step traversal is prohibitive and smarter ex-
ploration methods are required. Evidence exploration al-
lows users to explore evidence through smaller, manage-
ableviews, which are definable inrelational graph algebra,
a natural extension of relational algebra to graph structures
such as model-checking evidence. We illustrate the utility of
our approach by applying the Evidence Explorer, our tool
implementation of the evidence-exploration framework, to
the Java meta-locking algorithm, a highly optimized tech-
nique deployed by the Java Virtual Machine to ensure mu-
tually exclusive access to object monitor queues by threads.

1. Introduction

It is widely believed that formal verification can play
an essential role in the design and development of high-
confidence computer-based systems. While a number of
powerful formal verification techniques exist, their accep-
tance in the industrial sector has been limited in part by a
perceived lack of usability. Research related to improving
usability has targeted various stages of formal verification,
including writing more understandable and less error-prone
specifications, visualizing system dynamics via graphical
languages such as statecharts and message sequence charts,
shortening verification time (efficiency is a usability issue
too), and generating meaningful error diagnostics.

In this paper, we are interested in the latter stages of
model checking: manipulating and interpreting the output
of a model checker, in particular its proof structure. Model
checking [10, 22] can be viewed as the problem of prov-

ing or disproving that a systemM satisfies a propertyφ
specified in some kind of temporal logic. For a decidable
model-checking problem, there exists a proof or disproof of
the goalM |= φ. A proof in this setting consists of a set of
subgoals, including the main goal, and their interrelation-
ships via inference rules. This notion of proof also covers
disproofs since a disproof ofM |= φ is a proof ofM |= ¬φ
if the logic is closed under negation. We refer to such a
proof structure as the model checker’sevidence[28].

Evidence is a rich medium for understanding model-
checking problems. Obviously, an evidence carries much
more information than a one-bittrue or false answer. It
may also provide richer diagnostic information than wit-
nesses or counter-examples, for these tend to be linear in
nature (except for the “multi-path” [8] and “tree-like” [9]
counterexamples for ACTL formulas), and sometimes do
not even exist [6].

On the other hand, users require advanced tool support
to manipulate evidence effectively. In the case of the modal
mu-calculus [19], a very expressive temporal logic, the size
of a model-checking evidence isO(|M | · |φ|); other tempo-
ral logics have similar complexity. Although this complex-
ity is linear, the term|M |, the size of the system specifica-
tion, can easily reach millions of states in practice due to the
state-explosion problem. Thus, if users explore evidence by
simply traversing the links between subgoals, the sheer vol-
ume of evidence can cause myriad usability problems:

• It is difficult for users to build a mental picture from
such a large data set.

• Users may be unable to traverse the entire evidence.

• Even if a user traverses the evidence selectively, he
may spend a lot of time trying to reach the portions
of interest.

• Because evidence incorporates the dynamics of both
the system specification and logical property, users
have to constantly switch between these two contexts
and may become fatigued quickly.
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• Since a formula is typically small with respect to the
size of the system state space, formula-specific pat-
terns may repeat themselves throughout an evidence.
Without the help of distinctive cues, users may quickly
lose track of where they are in the evidence.

Users obviously require smarter exploration methods to
make effective use of evidence. It would be desirable if
users could do the following:

• View evidence from different angles.

• View evidence in different resolutions by zooming in
and zooming out.

• Restrict the scope of exploration according to some
criterion of interest.

• Directly locate a particular portion via an index.

• Extract a representative trace of the system from the
selected portion.

Many of the above methods have been implemented in
our prototype tool, the Evidence Explorer (EE), which vi-
sualizes evidences and enables users to navigate them via
certain state and formula “projection” operations. Our ex-
perience with EE indicates that it can significantly enhance
a user’s ability to analyze the results obtained with a model
checker during system verification.

EE is highly extensible and customizable, owing to the
fact that users can explore evidence in smaller, manage-
ableviews. Such views are definable in an algebra we call
relational graph algebra, a natural extension of the rela-
tional algebra to graph structures such as model-checking
evidence. We illustrate the utility of our approach by ap-
plying the Evidence Explorer to the Java meta-locking al-
gorithm, a highly optimized technique deployed by the Java
Virtual Machine to ensure mutually exclusive access to ob-
ject monitor queues by threads [2]. In particular, this case
study demonstrates how EE can quickly allow a user to hone
in on the portions of interest of model-checking evidence
from a real-life application.

The rest of the paper is organized as follows. Section 2
defines the modal mu-calculus and its evidence. Section 3
describes the main features of the Evidence Explorer and
the Java meta-locking case study. Section 4 defines rela-
tional graph algebra, while Section 5 formalizes the frame-
work of evidence exploration in terms of this algebra. Sec-
tion 6 contains our concluding remarks and a discussion of
related work.

2. Evidence for the modal mu-calculus

In this section, we first present the syntax and semantics
of the modal mu-calculus, and then formally define the no-

tion of evidence in the context of model checking properties
written in this logic.

We assume a systemM is in the form of a Kripke struc-
ture 〈S, s0,→,L〉, whereS is the set of states,s0 is the
initial state,→⊆ S ×A×S is the set of transitions labeled
by actions inA, andL : S → 2P labels each state with a
set of atomic propositions inP.

2.1. The modal mu-calculus

Syntax. Following [25], the syntax of modal mu-calculus
formulas over a set of variable namesVar is given by the
following grammar, wherep ∈ P, Z ∈ Var , andK ⊆ A:

ϕ → p | Z | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ
| [K]ϕ | 〈K〉ϕ | νZ.ϕ | µZ.ϕ

We useρ to range over the fixed-point operators{ν, µ}. In
a fixed-point formulaρZ.ϕ, every free occurrence ofZ in
ϕ should be positive. Operators∧ and∨, [·] (readbox) and
〈·〉 (readdiamond), andν andµ are three pairs of dual oper-
ators. By De Morgan’s rule, a formula can be converted to
equivalent positive normal form by pushing¬ inward until
it is applied to an atomic proposition. We hereafter assume
that all formulas are automatically converted to positive nor-
mal form.

Semantics. The semantics of the modal mu-calculus is
captured by the satisfaction relation between states and for-
mulas. For a states and a formulaφ, the notations |= φ
indicates thats satisfiesφ. Whenφ is an atomic proposition,
s |= φ if s is labeled byφ. Whenφ is a complex formula,
the meaning ofs |= φ is derived recursively according to the
syntactic structure ofφ. For examples,s satisfiesϕ1 ∧ϕ2 if
s satisfies bothϕ1 andϕ2; s satisfies[K]ϕ (readbox Kϕ) if
all the successors ofs after a transition labeled by an action
in K (K-successors) satisfyϕ; s satisfies〈K〉ϕ (readdia-
mond Kϕ) if there exists aK-successor ofs that satisfies
ϕ.

Formally, given a Kripke structureM = 〈S, s0,→,L〉
and an interpretationV : Var → 2S of the variables, the
setJφKM

V of states satisfying a formulaφ is defined by the
following equations, where the extended transition relation

s
K−→ s′ is defined as∃a ∈ A.(s a−→ s′ ∧ a ∈ K).

JP KM
V = {s ∈ S | P ∈ L(s)}

JZKM
V = V(Z)

J¬ϕKM
V = S − JϕKM

V

Jϕ1 ∧ ϕ2KM
V = Jϕ1KM

V ∩ Jϕ2KM
V

Jϕ1 ∨ ϕ2KM
V = Jϕ1KM

V ∪ Jϕ2KM
V

J[K]ϕKM
V = {s | ∀s′ ∈ S. s K−→ s′ ⇒ s′ ∈ JϕKM

V }

J〈K〉ϕKM
V = {s | ∃s′ ∈ S. s K−→ s′ ∧ s′ ∈ JϕKM

V }
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JνZ.ϕKM
V =

⋃
{S ⊆ S | S ⊆ JϕKV[Z:=S]}

JµZ.ϕKM
V =

⋂
{S ⊆ S | S ⊇ JϕKV[Z:=S]}

M andV are usually dropped fromJφKM
V when the con-

text is clear andφ has no free variable. We writes |= φ if
s ∈ JφK, andM |= φ if s0 |= φ.

Graphical representation. We use formula graphs to
graphically render modal mu-calculus formulas. Besides
capturing formula syntax, formula graphs also convey cer-
tain kinds of semantic information.

Definition 1 The formula graphGφ of a formulaφ is the
minimal directed graph such that each node is a formula,
includingφ, and for each nodeϕ, its out-edges are labeled
by its top-level operator, and the set ofϕ’s successors is

next(ϕ) =


∅ (ϕ = p or ¬p, wherep ∈ P)
{ψ1, ψ2} (ϕ = ψ1 ∧ ψ2 or ψ1 ∨ ψ2)
{ψ} (ϕ = [K]ψ or 〈K〉ψ)
{ψ[ρZ.ψ/Z]} (ϕ = ρZ.ψ)

We refer toGφ’s node set asφ’s closure, denoted by
cl(φ). The Fischer-Ladner closureFL(φ) [13, 27] covers
bothφ and its negation, so it is equal tocl(φ) ∪ cl(¬φ).

2.2. Evidence

An evidence or proof structure of a goal (state-formula
pair) contains a set of subgoals and their interrelationships
defined by logic-specific inference rules. The following def-
inition of evidence for a modal mu-calculus goal is adopted
from the notion of well-founded pre-model given in [27].

Definition 2 Given a Kripke structureM = 〈S, s0,→,L〉
and a formulaφ, an evidencefor M |= φ is a directed
graph whose nodes are state-formula pairs`⊆ S × cl(φ)
containing and reachable froms0 ` φ, under the following
constraints

(1) Each node and its successors match one of the rules in
Figure 1, where the predecessor (above the line) and
the successors (under the line) satisfy the side condi-
tion (in brackets, if it exists).

(2) There is no infinite path where a least-fixed-point for-
mula µZ.ϕ is a common subformula of the formula
components of all the nodes on the path.

A node s ` ϕ stands for the subgoal “states satis-
fies formulaϕ”. Edges stand for the derivation relation
between subgoals. The meaning ofs ` ϕ’s successors
s′1 ` ϕ′, . . . , s′n ` ϕ′ is “s |= ϕ is true becauses′1 |=
ϕ′, . . . , s′n |= ϕ′ are true”.

The second constraint in the definition prevents circular
reasoning of least fixed points. In finite-state systems, this
constraint is equivalent to insisting that a least fixed point
cannot be the outermost fixed point in a loop.

Note that the rules for disjunction (s ` ϕ1 ∨ ϕ2) and di-
amond (s ` 〈K〉ϕ) are nondeterministic. [27] uses achoice
functionto determine which subgoal is derived by the pre-
decessor. Directly adopting the proofs given in [27], we can
establish evidence’s soundness and completeness.

Theorem 1 M |= φ if and only if there is an evidence for
it.

Note that multiple evidences may exist for the same goal.
Also note that although theexistenceof an evidence is a
sufficient and necessary condition forM |= φ, actualma-
terialization of an evidence may not be necessary to solve
the model-checking problemM |=? φ. An extreme example
is when the formula is a tautology, e.g.νX.[−]X. An evi-
dence forM |= φmay need to coverM ’s entire state space,
but the proof for the tautology does not need to deal with a
concrete system at all. Whether there is a most succinct
form of evidence is an interesting open topic.

To make evidence self-contained, we can further label
the edge between nodess1 ` ϕ1 ands2 ` ϕ2 by a tuple
〈α, ω〉, whereω is ϕ1’s top-level operator and ifω is [·]
or 〈·〉 thenα is the label on the transition froms1 to s2;
otherwiseα is ε, indicating no transition occurred.

For the sake of simplicity, we have only defined evidence
for positive goals. For negative goals, recall thatM 6|= φ if
and only ifM |= ¬φ, so the evidence forM 6|= φ can be
defined as the evidence forM |= ¬φ.

3. The Evidence Explorer: a tool for evidence
exploration

We have developed a prototype tool, called the Evidence
Explorer, to visualize evidences and help users navigate
them for better understanding. In this section, we describe
the main features of the Evidence Explorer and illustrate its
utility by an example.

3.1. Features of evidence explorer

The main idea of the Evidence Explorer is to let users
navigate an evidence through smaller views. Aview of an
evidence is either a subgraph or a projection, representing a
portion of either the graph or its attributes.

The Evidence Explorer, whose architecture is depicted
in Figure 2, consumes the evidence generated by a model
checker. Once model checking is completed, Evidence Ex-
plorer allows users to explore the proof in the following six
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s ` p
− (p ∈ L(s))

s ` ¬p
− (p 6∈ L(s))

s ` ϕ1 ∧ ϕ2

s ` ϕ1 s ` ϕ2

s ` ϕ1 ∨ ϕ2

s ` ϕ1

s ` ϕ1 ∨ ϕ2

s ` ϕ2

s ` [K]ϕ
s1 ` ϕ s2 ` ϕ . . .

({si} = {s′ | s K−→ s′}) s ` 〈K〉ϕ
s′ ` ϕ (s K−→ s′)

s ` ρZ.ϕ
s ` ϕ[ρZ.ϕ/Z]

Figure 1. Predecessor-successors relation in evidence.

Model
Evidence

Evidence /

Source Code

Formula

State

Pathevidence
checker
model

formula

model

source code

formula graph
Overview

Figure 2. Architecture of the Evidence Ex-
plorer.

windows. A node in the evidence, initially the root, is cho-
sen as thefocus nodeto synchronize these windows. The
state and formula components of the focus node are called
the “focus state” and “focus formula”, respectively.

1. The Source Codewindow contains the source pro-
gram. The lines corresponding to the focus state’s sub-
process control points are highlighted.

2. The Formula window displays the formula graph of
the checked formula. Formula graphs are designed to
provide users with several visual cues about the nature
of the formula and evidence. Each node’s shape is de-
termined by its top-level operator, and its border color
reflects the validity of the formula in the proof (blue
for true, red forfalse). Nodes within the scope of the
same fixed point are painted with the same color. If a
subformula does not appear in the proof (and hence is
vacuous [6]), its interior is painted transparent and its
border is dotted.

3. The Overview window depicts the whole evidence.
Because of an evidence’s branching nature, we trans-
form the evidence, originally a directed graph, to tree
form (the graph’s spanning tree) and mark cross edges
and back edges by special symbols (arrow and cir-
cle, respectively). For easy recognition, each node is
painted the color its formula component assumes in the
Formula window. A box encloses the portion of the
proof shown in the Evidence window.

4. The Evidencewindow depicts exactly the same ev-
idence pictured in the Overview window, but in

zoomed-in scale. If the whole evidence cannot be
drawn inside the window, users can scroll the view port
using the scroll-bar, or click on the Overview window
to jump directly to a certain portion. Users can set a
new focus node by clicking on the desired node or by
navigating via arrow keys.

5. TheStatewindow lists the details of the focus state.
The hierarchy of parallel composition is depicted by
a tree, where each node is labeled by the name of the
corresponding subprocess. Variable bindings are listed
for each sequential subprocess.

6. ThePath window displays a message sequence chart
capturing the state dynamics of the path in the evidence
from the root to the focus node.

These six windows are synchronized by the focus node
of the evidence, such that if the focus is changed in one
window, the other windows will automatically update their
display. Users can change the focus directly in the Evidence
window, or indirectly by selecting a state in the Path win-
dow or a formula in the Formula window; then a new focus
will be set to match the selected state or formula.

3.2. Case study: the Java meta-locking algorithm

We use the Java meta-locking algorithm as an example to
illustrate the utility of the Evidence Explorer. Meta-locking
is a highly optimized technique deployed by the Java Vir-
tual Machine (JVM) to ensure that threads have mutually
exclusive access to object monitor queues [2]. An abstract
specification of the meta-locking algorithm was verified in
[5], and a more detailed version of this specification is con-
sidered in [4]. Because access to object monitor queues is
not necessarily first-in-first-out, certain liveness properties
may be violated.

The following two properties are used in this case study.

deadlock = µX.[−]ff ∨ 〈−〉X

meaning that there exists a path to a state where no transi-
tion is possible, in other words, a deadlock; and

livemon = νX.([requesting monitor]
(µY.(〈got monitor〉tt ∨ [−]Y )) ∧ [−]X)
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(a) deadlock

(b) livemon

Figure 3. Screen-shots of the Evidence Explorer.
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meaning that it is globally true that after anyre-
questing monitor transition, along all paths eventu-
ally got monitor is enabled.

Figure 3(a) is a screen-shot of the Evidence Explorer for
the deadlock property. Because there is no deadlock in
the system, all the states must be visited, leading to an very
large evidence. Users can examine its details in the Evi-
dence window.

Figure 3(b) is the screen-shot for the propertylivemon .
This property is violated due to starvation, so a counterex-
ample exists. The proof of the violation is mostly linear and
consists of two parts: the upper part is a straight line whose
subformulas are in the scope of the outer fixed point (i.e.,
νX), and the lower part is a cycle (with small branches)
certifying the falsity of the inner fixed point (µY ). Users
may click at the bottom of the Overview window to jump
directly to the end of the proof, study the most critical steps
of the starvation, and then go upward to see the whole trace.

Our experience in using the Evidence Explorer on the
meta-locking case study shows a gain in user productivity
due to shortened evidence traversal time. We had to spend
nearly an hour to traverse the above proof using a standard
tree browser. With the Evidence Explorer, we cut the pro-
cess to only a couple of minutes and were able to experi-
ment with the specification via more frequent modifications.
Of course, we need to conduct more rigorous usability tests
to fully evaluate the tool’s effectiveness and to reveal poten-
tial improvements.

3.3. Extending the tool

The main idea behind the Evidence Explorer is that users
explore evidence through smallerviews, either statically
generated (as in the Formula window) or dynamically up-
dated according to the user’s input (as in the Source, State,
and Path windows). To extend the tool, we can simply de-
fine more views. Furthermore, we feel obliged to develop
a general framework of evidence exploration to let not only
us, the tool developers, but also users systematically define
new views.

Views in some sense reflect the user’s focus, and they
vary from user to user and from system to system. As it is
impossible to predict every user’s focus, pre-defined views
may be either too general or too specific. Allowing users
define their own views will better serve their needs.

4. Queries on graphs: relational graph algebra

We want to find an appropriate data structure for evi-
dence views. Observe that both evidences and systems are
graphs whose node sets are relations: an evidence node is
state-formula pair; a state in a concurrent system is a tuple
of substates. We call this kind of graph arelational graph.

We also want to find appropriate operations on views. In
databases, views are the (non-materialized) result of queries
on relations. Similarly in evidence exploration, we define
views as the result of queries on relational graphs: evi-
dences and existing views. We simply lift the operators of
relational algebra to relational graphs, and call the lifted al-
gebrarelational graph algebra.

First, we formally define relational graphs. AdomainD
is either a primitive domain such as the integers or reals, or a
Cartesian product of domainsD1, . . . , Dn. A domaind is
said to be asubdomainof D (d v D) if d is the Cartesian
product of a subsequence of(D1, . . . , Dn). A setR is a
relation on a sequence of domains(D1, . . . , Dn) if R ⊆
D1 × · · · ×Dn. We assume each domain contains a special
tupleε representing the null tuple.

Definition 3 A relational graphon node-label domainDV

and edge-label domainDE is a directed graphG = 〈V,E〉
whose node setV is a relation onDV , and whose set of
edgesE is a relation on(DV , DE , DV ) andE ⊆ V ×
DE × V .

The graphG cannot be represented by the edge relation
E alone, because there may exist nodes not attached to an
edge. The clauseE ⊆ V × DE × V is a constraint that
the source and destination nodes of an edge must be inV .
We useGDV ,DE to denote the complete graph〈DV , DV ×
DE ×DV 〉.

Basic operators. The basic operators of the relational
graph algebra are defined in Table 1. In this definition, we
assume that the inputs are relational graphsGi = 〈Vi, Ei〉
on domainsDV

i andDE
i for i = 1, 2, and the result is

the relational graphG = 〈V,E〉 on domainsDV andDE .
The requirement thatG1 andG2 are union-compatible (for
the union (∪), intersection (∩), node-difference (−V ), and
edge-difference (−E) operators) means that they have the
same node-label and edge-label domains.

A few comments about the definition are in order.

• There are two kinds of difference operators [16]:
G1 −V G2, the node differenceof G1 andG2, ex-
cludes nodes ofG2 and their attached edges fromG1;
G1−EG2, theedge differenceofG1 andG2, excludes
only edges ofG2 fromG1.

• Let fv be a Boolean function onDV
1 and fe be

a Boolean function onDV
1 × DE

1 × DV
1 . Then

σfv,fe(G1), theselectionof G1 w.r.t. fv andfe, is the
subgraph ofG1 whose nodes satisfy the constraint rep-
resented byfv and whose edges satisfy the constraint
represented byfe.

• Let dv be a subdomain ofDV
1 andde be a subdomain

of DE
1 . Thenπde,de(G1), the projection of G1 on
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Table 1. Relational graph algebra operations
ResultG Precondition DomainsDV , DE Node setV Edge setE

G1 ∪G2 V1 ∪ V2 E1 ∪ E2

G1 ∩G2 G1 andG2 are DV = DV
1 = DV

2 V1 ∩ V2 E1 ∩ E2

G1 −V G2 union-compatible DE = DE
1 = DE

2 V1 − V2 E1 − V2 ×DE × V2

G1 −E G2 V1 E1 − E2

σfv,fe
(G1) fv : DV

1 → {0, 1},
fe : DE

1 → {0, 1}
DV = DV

1 , D
E = DE

1 σfv
(V1) σfe

(E1) ∩ V ×DE × V

πdv,de(G1) dv v DV
1 , d

e v DE
1 DV = dv, DE = de V = πdv (V1) E = πdv×de×dv (E1)

− V × {ε} × V
G1 ×G2 DV = DV

1 ×DV
2 V1 × V2 {((v1, v2), (e1, e2), (v′1, v′2))|

DE = DE
1 ×DE

2 ∀i = 1, 2 ((vi, ei, v
′
i) ∈ Ei ∨

(vi = v′i ∧ ei = ε)
∧ ∃i = 1, 2 (vi, ei, v

′
i) ∈ Ei}

dv andde, is obtained by projectingG1’s nodes and
edges onto the respective subdomains and removing
the edges labeled byε.

• G1 × G2, the product of G1 andG2, is obtained as
follows: its node set is the product ofG1 andG2’s
nodes, and each edge embeds at least one edge from
G1 orG2 and keeps the remaining idle (labeled byε).

Derived operators. Derived operators such as join, ex-
tension, and grouping [12], can be defined in terms of the
basic operators in a similar way as they are defined in rela-
tional algebra. Supposed is a subdomain of a domainD.
We useD\d to represent the remaining subdomain ofD by
removingd fromD, andt[d] to represent thed-component
of a tuplet.

• Let dv be a common subdomain ofDV
1 andDV

2 , and
de be a common subdomain ofDE

1 andDE
2 . The nat-

ural join of G1 andG2 by dv andde is defined as the
relational graph on domainsDV = (DV

1 × DV
2 )\dv

andDE = (DE
1 ×DE

2 )\de as follows:

G1 ondv,de G2 = πDV ,DE (σfv,fe(G1 ×G2))

where

fv = λv.(v[dv
1] = v[dv

2])
fe = λe.(e[de

1] = e[de
2])

• Theextensionof G1 by functionsxv : DV → dv and
xe : DV ×DE ×DV → de

εxv,xe
(G1) = σfv,fe

(G1 ×Gdv,de)

where

fv = λv.(xv(v[DV
1 ]) = v[dv])

fe = λe.(xe(e[DE
1 ]) = e[de])

• Using the same parameters of extension, themapping
of G1 by mapping functionsxv andxe is defined as

ρxv,xe
(G1) = πdv,de(εxv,xe

(G1))

• Thegroupingof G1 based on an equivalence function
q : DV

1 → d is defined as

γq(G1) = ρλv′.σλv.(q(v)=v′)(G1)
(ρλv.q(v)(G1))

Selecting a single element. Sometimes we want to select
a single element from a relation or graph, for example the
nearest node from the root. We use the functionpick to
represent such a selection. Formally, letD andD′ be do-
mains andR be a relation onD. Given a weight function
w : D → D′ and an aggregate functiona : 2D′ → D′,
selecting a single tuple fromR by a andw is defined as

picka,w(R) ∈ σλv.w(v)=a({w(v′)|v′∈R})(R)

If there is more than one tuple inσ...(R), pick nondeter-
ministically returns one tuple. Thepick operator is lifted to
a relational graph such thatpicka,w(G), selecting a node
from a relational graphG, is defined aspicka,w(VG). So
the nearest node from root ispickmin,λv.dist(root,v)(G),
wheredist(v1, v2) computes the distance from nodev1 to
v2.

To model user interaction, we subscriptpick with user
to denote a user selecting an element from a relation or
a graph:pickuser (R) picks a tuple from relationR, and
pickuser (G) a node from graphG. pickuser is the only
interactive operator in our formalism.

Path operators. Path is an important graph concept.
Hereafter, a path specifically refers to a connected subgraph
where each node has exactly one successor. Under this defi-
nition, in finite graphs, although a path may contain a cycle,
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there are only a finite number of paths and each path is fi-
nite.

For convenience, we assume the following functions are
pre-defined:paths(v1, v2) returns the set of paths from
nodev1 to nodev2, andreachable(v1, v2) is boolean func-
tion that checks whether there is a path from nodev1 to node
v2.

5. An algebraic framework of evidence explo-
ration

The concepts of system, formula graph, and evidence can
be expressed as relational graphs. SupposeM = 〈S, s0,→
,L〉 is a Kripke structure,φ is a formula, andE is an ev-
idence ofM |= φ. ThenM is a relational graph whose
node-label domain isS, the state space, and edge-label do-
main isA, the set of action labels; formula graphGφ is a
relational graph whose node-label domain isF , the set of
all modal mu-calculus formulas, and edge-label domain is
O, the set of all operators; and an evidence forM |= φ is
a subgraph ofM andGφ’s product, under the constraints in
Definition 2.

5.1. Formalization of Evidence Explorer actions

In the Evidence Explorer, the Path window shows a se-
lected trace of evidence, the Formula windows shows the
formula projection of evidence, and clicking a formula in
the Formula window resets a new focus evidence node. We
use two variables,root – the nodes0 ` φ in E , andfocus –
the focus node interactively selected by the user, to formal-
ize these views and actions.

Trace extraction. The trace embedded in the shortest
path from the evidence’s root to the focus node is extracted
by

πstate(pickmin,λp.length(p)(paths(root , focus)))

whereπstate(E ′), thestate projectionof a subgraphE ′ of
evidenceE is defined as

πstate(E ′) = πS,A(E ′)

SinceE is a subgraph ofM×Gφ,πstate(E) is a subgraph
of the systemM .

Formula projection. The formula projection of evidence
E is defined as

πformula(E) = πF,O(E)

Similar to state projection,πformula(E) is a subgraph of
φ’s formula graphGφ. When the subgraph relation is proper,

it implies that some subformula ofφ does not contribute to
the validity ofM |= φ, and thereforeM vacuously satisfies
φ [6]. Note that the formula projection of a particularE be-
ing a proper subgraph ofGφ is only a sufficient condition of
the vacuity ofM |= φ; the sufficient and necessary condi-
tion is that thereexistsanE whose formula projection is a
proper subgraph ofGφ.

Formula graph as an index to evidence. Becauseφ is
usually much smaller thanM , users can useπformula as
an index to directly locate a node with a particular formula,
such as an inner fixed point, without going through long
sequence of nodes of outer formulas. This is done in two
steps: First, the user chooses the formula he wants:ϕ =
pickuser (πformula); then the software selects the nearest
node from nodefocus whose formula component isϕ:

pickmin,λv.dist(focus,v)(σλv.(formula(v)=ϕ)(E)

The user may keep jumping to the next desired node by re-
settingfocus by the above operation.

5.2. Guidelines

Views are the core of our framework for evidence explo-
ration. We study two aspects of using views: defining single
views and organizing multiple views.

Defining views. We expect views be smaller than the evi-
dence. Three relational graph algebra operators—selection,
projection, and grouping—generate smaller graphs than the
input. They represent three ways to observe a big graph:

• Selection returns a subgraph. It can be used to restrict
the scope of exploration, or to locate a portion of inter-
est. Examples of usage include looking at the part of
the evidence that involves a certain sub-formula, and
searching for paths containing transitions with certain
actions or states with certain properties.

• Projection trims the attributes. Different projections
provide different angles of observation. In addition to
the above-mentioned state and formula projections, we
can project the evidence by subprocesses to study the
dynamics of a subsystem in a concurrent system.

• Grouping partitions the graph. It can be used to pro-
vide a logical overview of the evidence, or to summa-
rize the evidence by aggregate attributes. Navigation
through the evidence by big jumps instead of single
steps becomes possible.

Other operations may also be used to define views, but
the above three must be the outermost operations in a defi-
nition to get smaller views.
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Organizing views. Views can be used independently for
orthogonal observations. Through different views gener-
ated from the same evidence or existing views, users study
the evidence from different angles and focus their attention
on only one dimension at a time without interference from
other dimensions. As we have already seen, users can sep-
arately study system dynamics by state projection and/or
formula dynamics by formula projection.

Multiple views can also be used cooperatively to accom-
plish complex tasks. For examples,

• Views can be defined on other views, forming a hierar-
chy of views. In particular when a grouping is built
upon another, the hierarchy yields layers of finer to
coarser logical resolutions.

• By selecting the subgraph corresponding to a node in
a grouping, we do the reverse of grouping: zooming in
to see the finer details. We can explore up and down
a hierarchy of different logical resolutions by alterna-
tively zooming out and zooming in.

• An entry in a projection corresponds to several entries
in the view being projected. By selecting nodes or
edges corresponding to an element in a projection, we
effectively use the projection as an index to the base
view.

6. Conclusions

We have described an algebraic framework and associ-
ated tool support for evidence exploration. Our focus has
been on the exploration’soperationalaspects. For the vi-
sual aspects, we have drawn on the results of graph drawing
[17] and information visualization [24] in building our tool.

Related work. There is some similarity between our ap-
proach and work in theorem proving and logic program-
ming on proof visualization and navigation (see e.g. [1,
14]). However, our work is more concerned with proof in-
terpretation, while the latter mostly deals with proof gener-
ation.

Various forms of evidence have appeared in the litera-
ture. One of the earliest is the tableau [11, 26, 29], which
can be considered an unfolding of evidence to a tree whose
leaves can point back to their ancestors. Conversely, an ev-
idence can be obtained from a tableau by merging sequents
(nodes in a tableau) that share the same state and formula
components. Among others, [7] introduces a proof struc-
ture called “and-or Kripke structure”; [20] develops a sym-
bolic proof system in terms of alternating automata and par-
ity games; [21] defines a proof system for LTL using a com-
putational model called “just discrete system”; [28] defines
“support set” on Boolean equation systems.

We did not discuss how to generate evidence and simply
assumed it is readily available as the byproduct of model
checking, an assumption validated by Theorem 1 (sound-
ness and completeness of evidence). In explicit-state model
checking, evidence is materialized and can be extracted in
time linear in its size. Some examples of evidence gen-
eration during or after model checking are: [18] extracts
evidence from global model checking to produce witnesses
and counterexamples; [23] uses logic-programming justifi-
cation to regenerate evidence from memo tables; the per-
formance of this approach is improved by [15]; and [28]
shows how to modify an automaton-based model-checking
algorithm for the purpose of evidence generation.

Although the exact phrase “relational graph algebra” has
never been spelled out before, the concept is not new, and is
inherently classical since both graph and relational algebra
are classical. Graphs are naturally expressed by relations in
database applications. To support applications on network
structures, the operators of relational algebra have been ex-
tended to manipulate large graphs and define new graph
views upon existing ones (see e.g. [16]). The terminology
in the field of image pattern recognition is slightly differ-
ent, where relational graph refers to encoding a relation by
a graph, and the term corresponding to our relational graph
is “attributed” relational graph whose nodes and edges are
labeled with attributes [3].

The Evidence Explorer has enhanced the usability of ev-
idence exploration by a few simple predefined views, but it
does not yet allow users to specify their own views. When
the potential of the framework is fully exploited, Evidence
Explorer will make it a more pleasant experience to under-
stand model checking by manipulating and interpreting ev-
idences.
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