
Evidence Explorer: A Tool for Exploring
Model-Checking Proofs

Yifei Dong, C.R. Ramakrishnan, and Scott A. Smolka

State University of New York, Stony Brook, NY 11794-4400, USA
E-mail: {ydong,cram,sas}@cs.sunysb.edu

1 Introduction

We present the Evidence Explorer (http://www.cs.sunysb.edu/~lmc/ee/), a
new tool for assisting users in navigating the proof structure, or evidence, pro-
duced by a model checker when attempting to verify a system specification for a
temporal-logic property. Due to the sheer size of such evidence, single-step traver-
sal is prohibitive and smarter exploration methods are required. The Evidence
Explorer enables users to explore evidence through a collection of orthogonal but
coordinated views. These views allow one to quickly ascertain the overall per-
ception of evidence through consistent visual cues, and easily locate interesting
regions by simple drill-down operations. As described in [3], views are definable
in relational graph algebra, a natural extension of relational algebra to graph
structures such as model-checking evidence.

Our experience in using the Evidence Explorer on several case studies of
real-life systems indicates that its use can lead to increased productivity due
to shortened evidence traversal time. For example, in the case of formally ver-
ifying the Sun Microsystems Java meta-locking algorithm for mutual exclusion
and freedom from lockout [1], we had to spend nearly an hour to expand and
step through one of the generated model-checking proofs using a standard tree
browser. With the Evidence Explorer, we not only cut the process to only a
couple of minutes but also were able to recognize the key elements instantly and
experiment with the specification via more frequent modifications.

2 Features and User Interface

The Evidence Explorer allows users to effectively and intuitively explore the
evidence [8, 3] produced by a model checker. In this context, an evidence is a
directed graph whose nodes are pairs of the form 〈s, φ〉, where s is a state and φ
is a (sub-)formula. Such a node represents the assertion that s satisfies φ. Since
we use a logic that is closed under negation, the assertion s does not satisfy φ is
represented by 〈s,¬φ〉. An edge in the graph from 〈s, φ〉 to 〈s′, φ′〉 means that s
satisfies φ only if s′ satisfies φ′. A global constraint demands that a least fixed
point cannot be the outermost fixed point in a loop, i.e. no circular reasoning is
allowed for least fixed points. Please see [3] for the full definition of evidence.

The views supported by the Evidence Explorer are organized in six windows
as illustrated in Figure 1:



Source Window Evidence Window

from the root to the focus node.

Path Window
highlights lines in source program displays the evidence displays the MSC capturing the state

dynamics of the path in the evidencecorresponding to the focus state. or proof structure.

State Window

of the focus state. of the entire evidence.

Overview Window

of the checked formula.

Formula Window
lists the details displays a zoomed−out view displays the formula graph

focus formula

focus node

focus state

Fig. 1. The six synchronized views of the Evidence Explorer.

– The Evidence and Overview windows display the evidence by its spanning
tree in zoomed-in and zoom-out resolutions, respectively. Edges not covered
by the spanning tree, i.e. cross edges and back edges, are indicated using spe-
cial icons. Each evidence node is painted in the color its formula component
assumes in the Formula window.

– The State window lists the details of the focus state (defined below) in a
table. A state in a concurrent system may be composed of several substates;
each substate may also be a concurrent state having substates. This hierarchy
of parallel composition is depicted as a tree. When the user selects a substate
of a sequential process from the table, the line of source code corresponding
to that process’s control point is highlighted in the Source Code window.
The Path window displays a message sequence chart (MSC) capturing the
state dynamics of the currently visited path where the focus state belongs.

– The Formula window depicts the formula graph of the checked formula.
Several visual cues help users instantly recognize certain properties of the
formula and evidence:

• The shape of each formula-graph node is determined by the type of the
(sub-)formula’s top-level operator, e.g. box for [·] operators, circle-plus
for disjunctions, and double-circle for fixed points.



• Formula nodes are partitioned into groups according to the scope of
their fixed points. Nodes in the same group are painted with the same
background color.

• The border color of a formula node indicates the truth value of the
evidence nodes associated with the formula: blue, if the truth value is
true; red, otherwise.

• When a formula does not occur in an evidence, the background of the
corresponding node is set to transparent so that the user immediately
knows that the formula is vacuous [2].

Views are synchronized by the focus node in the evidence, consisting of the
focus state and focus formula. If the focus is changed in one window, the other
windows will automatically update their displays accordingly. Users explore ev-
idence via various ways of changing the focus node:

– Change the focus node directly in the Evidence window. The focus node
is highlighted by a red square. The user can move the focus to the parent,
children, or siblings of the current focus by pressing arrow keys, or set the
new focus to any node by clicking at that node.

– Change the focus state in the Path window. When the user clicks a state in
the MSC, the new focus node is set to the node in the evidence path whose
state component is the selected state.

– Change the focus formula in the Formula window. When the user clicks on a
formula, the new focus is set to an evidence node whose formula component
matches the selected formula.

A typical run of the Evidence Explorer starts with the user observing the
overall structure of the evidence in the Overview window. He may click the in-
teresting portion to obtain a zoomed-in view in the Evidence window, or explore
the evidence by the methods listed above. For debugging purposes, he may also
examine the interesting witness/counterexample represented by the MSC in the
Path window or key states in the State and Source Code windows.

3 Implementation and Extensions

The Evidence Explorer is implemented mainly in Java using the AT&T dot pack-
age as the graph-layout processor. It uses the XMC verification system [7] as the
model-checking back-end. XMC supports the specification of systems in a lan-
guage based on value-passing CCS and properties in the modal mu-calculus. The
architecture of the Evidence Explorer follows the model-view-controller (MVC)
paradigm [4] as illustrated in Figure 2.

We have designed the Evidence Explorer to be highly extensible and cus-
tomizable. A planned API will allow tool developers to extend the tool along
the following lines:

– utilize alternative graphical components to visualize views;



Model
Evidence

Evidence /

Source Code

Formula

State

Path
checker
model

Overview

source code

formula

model

formula graph

evidence

Fig. 2. Architecture of Evidence Explorer.

– define customized views and operations;
– explore multiple evidences;
– plug in other model checkers;
– support compact data structures.

Regarding the last two items, note that we use a conceptual definition of evi-
dence; the physical storage, e.g. in a symbolic model checker, can be compressed.
When compact data structures are adopted, we map them to the conceptual defi-
nition on demand during exploration, without compromising the model checker’s
efficiency. With this technique, we can also easily incorporate other forms of ev-
idence such as those in [5, 6].

References

1. S. Basu, S. A. Smolka, and O. R. Ward. Model checking the Java Meta-Locking
algorithm. In ECBS 2000, pages 342–350.

2. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity in
temporal model checking. Formal Methods in System Design, 18(2):141–163, 2001.

3. Y. Dong, C. Ramakrishnan, and S. A. Smolka. Model checking and evidence explo-
ration. In ECBS 2003, pages 214–223.

4. G. Krasner and S. Pope. A description of the model-view-controller user interface
paradigm in the Smalltalk-80 system. J. Object Oriented Prog., 1(3):26–49, 1988.

5. K. S. Namjoshi. Certifying model checkers. In CAV 2001, LNCS 2102, pages 2–13.

6. D. Peled, A. Pnueli, and L. Zuck. From falsification to verification. In FSTTCS
2001, LNCS 2245, pages 292–304.

7. C. Ramakrishnan, I. Ramakrishnan, S. A. Smolka, Y. Dong, X. Du, A. Roy-
choudhury, and V. Venkatakrishnan. XMC: A logic-programming-based verification
toolset. In CAV 2000, LNCS 1855, pages 576–580.

8. L. Tan and R. Cleaveland. Evidence-based model checking. In CAV 2002, LNCS
2404, pages 455–470.


