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Abstract. Vacuity arises when a logical formula is trivially true in a
given model due, for example, to antecedent failure. Beer et al. have re-
cently introduced a logic-independent notion of vacuity and shown that
certain logics, i.e., those with polarity, admit an eÆcient decision proce-
dure for vacuity detection. We show that the modal mu-calculus, a very
expressive temporal logic, is a logic with polarity and hence the results
of Beer et al. are applicable. We also extend the de�nition of vacuity to
achieve a new notion of redundancy in logical formulas. Redundancy cap-
tures several forms of antecedent failure that escape traditional vacuity
analysis, including vacuous actions in temporal modalities and unneces-
sarily strong temporal operators. Furthermore, we have implemented an
eÆcient redundancy checker for the modal mu-calculus in the context of
the XMC model checker. Our checker generates diagnostic information
in the form of all maximal subformulas that are redundant and exploits
the fact that XMC can cache intermediate results in memo tables be-
tween model-checking runs. We have applied our redundancy checker to
a number of previously published case studies, and found instances of
redundancy that have gone unnoticed till now. These �ndings provide
compelling evidence of the importance of redundancy detection in the
design process.

1 Introduction

Model checking [7, 19, 8] is a veri�cation technique aimed at determining whether
a system speci�cation possesses a property expressed as a temporal-logic formula.
Model checking has enjoyed wide success in verifying, or �nding design errors
in, real-life systems. An interesting account of a number of these success stories
can be found in [9, 15].

Most model checkers produce a counter example when the system under
investigation does not satisfy a given temporal-logic formula. Such a counter
example typically takes the form of an execution trace of the system leading to
the violation of the formula. Until recently, however, standard practice was to
move on to another formula when the model checker returned a result of true.

Starting with [3] and continuing with [4, 17, 5], researchers have been working
on the problem of \suspecting a positive answer." In particular, this pioneering
work shows how to detect situations of vacuity, where a model checker returns



true but the formula is vacuously true in the model. Vacuity can indicate a
serious underlying 
aw in the formula itself or in the model. The most basic
form of vacuity is antecedent failure, where a formula containing an implication
proves true because the antecedent, or pre-condition, of the implication is never
satis�ed in the model. The work of [4, 17, 5] has shown that this notion extends in
a natural way to various temporal logics. This work also considers the problem
of generating \interesting witnesses" to valid formulas that are not vacuously
true.

The point that we would like to reinforce in the present paper is that a
vacuously true formula may represent a design problem as serious in nature as a
model-checking result of false. In fact, we present compelling anecdotal evidence
that redundancy checking|a more encompassing form of vacuity detection that
we discuss below|is just as important as model checking, and a model-checking
process that does not include redundancy checking is inherently incomplete and
suspect.

Our investigation of redundancy checking has been conducted in the context
of XMC [20, 21], a model checker for systems described in XL, a highly expressive
extension of value-passing CCS [18], and properties given as formulas of the
modal mu-calculus. We have both implemented a redundancy checker for XMC
that extends the approaches put forth [17, 5] in several signi�cant ways, and
assessed its performance and utility on several substantive case studies. Our
main contributions can be summarized as follows.

{ We extend the vacuity-checking results of [17, 5] to the modal mu-calculus
[16], a very expressive temporal logic whose expressive power supersedes that
of CTL* and related logics such as CTL and LTL (Section 2). In particular,
[5] presents an e�ective procedure for vacuity checking for any logic with
polarity . We prove that the modal mu-calculus is also a logic with polarity
and therefore the results of [5] apply.

{ We introduce a notion called redundancy that extends vacuity and iden-
ti�es forms of antecedent failure that escape traditional vacuity analysis
(Section 3). For example, consider the modal mu-calculus formula [a; b]�,
meaning that in the given model, � holds necessarily after every a- and
b-transition. This formula is trivially true if the formula [�]� also holds,
meaning that regardless of the type of transition taken, necessarily �.

{ The algorithm of [5] pursues a bottom-up approach to vacuity checking in
logics with polarity, replacing minimal subformulas by true or false. In con-
trast, our algorithm returns all maximal redundant subformulas. Such in-
formation can assist in isolating and correcting sources of redundancy in a
model and its logical requirements. Our algorithm for redundancy checking
is described in Section 4.

{ XMC uses the XSB logic-programming system [23] as its underlying reso-
lution engine, which, in turn implements tabled resolution. It is therefore
possible when using XMC to cache intermediate results in memo tables be-
tween model-checking runs. As pointed out in [5], this is likely to signi�cantly
improve the performance of a vacuity checker, as the process of vacuity de-
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tection for a logic with polarity requires a series of model-checking runs,
all involving the same model and highly similar formulas. Our performance
results bear out this conjecture (Section 5).

{ We have applied our redundancy checker to a number of previously published
case studies, and found instances of redundancy that have gone unnoticed
till now (Section 5). These case studies include the Rether real-time ethernet
protocol [13]; the Java meta-locking algorithm for ensuring mutually exclu-
sive access by threads to object monitor queues [2]; and the safety-critical
part of a railway signaling system [10]. These �ndings provide compelling
evidence of the importance of redundancy detection in the design process.

2 Vacuity in the Modal Mu-Calculus

In [5], Beer et al. describe an eÆcient procedure for vacuity checking in logics
with polarity. In this section, we �rst show that the modal mu-calculus is a logic
with polarity, and hence the results of [5] are applicable. We then expand the
notion of vacuity to one of redundancy to handle subtle forms of antecedent
failure that are not considered vacuous. We begin by recalling the pertinent
de�nitions and results from [5].

2.1 Vacuity and Logics with Polarity

We use ', possibly with subscripts and primes, to denote formulas in a given
logic, and  to denote subformulas of a formula. In the following, identical sub-
formulas that occur at di�erent positions in a formula are considered to be
distinct. We use '[   0] to denote the formula obtained from ' by replacing
subformula  with  0.

Consider a formula ' of the form  1 )  2 and a model M such that  1 does
not hold in M . Note that ' holds in M (due to antecedent failure) regardless
of the whether  2 holds or not. This form of \redundancy" is captured by the
following de�nitions.

De�nition 1 (A�ect [5]) A subformula  of formula ' a�ects ' in model M
if there is a formula  0, such that the truth values of ' and '[   0] are
di�erent in M .

De�nition 2 (Vacuity [5]) Formula ' is said to be  -vacuous in model M if
there is a subformula  of ' such that  does not a�ect ' in M .

Although De�nitions 1 and 2 capture a notion of vacuity independently of
any particular logic, they cannot be directly used to check vacuity. Beer et
al. describe a procedure to check vacuity of formulas in logics with polarity,
where the candidate  0 chosen as a replacement in De�nition 1 is drawn from
ftrue; f alseg.

These ideas are formalized in [5] as follows. Let S be a set of subformulas of
' and min(S) be the subset of S of formulas that are minimal with respect to
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the (syntactic) subformula preorder. Also, let [[']] denote the set of all models in
which formula ' is valid ([[']] = fM jM � 'g).

De�nition 3 (Polarity of an operand [5]) If � is an n-ary operator in a
logic, the i-th operand of � has positive (negative) polarity if for every formula
'1; : : : ; 'i�1; 'i+1; : : : ; 'n, and two formulas  1 and  2 such that [[ 1]] � [[ 2]]
([[ 2]] � [[ 1]]) we have that

[[�('1; : : : ; 'i�1;  1; 'i+1; : : : ; 'n)]] � [[�('1; : : : ; 'i�1;  2; 'i+1; : : : ; 'n)]]

An operator has polarity if every one of its operands has some polarity (pos-
itive or negative). The notion of polarity is extended from operands to formulas
as follows. The top-level formula ' is assumed to have positive polarity. Let  be
some subformula of ' with Æ as its top-level operator. Let  i be the i-th operand
of Æ in  . Then  i has positive polarity if the polarities of  and the i-th operand
of Æ are identical (i.e. both positive or both negative);  i has negative polarity
otherwise. For instance, let ' =  1 ^ :( 2 _ : 3). Note that both operands of
`^' and `_' have positive polarity and the operand of `:' has negative polarity.
The subformulas of ' have the following polarities: ';  1 and  3 have positive
polarities;  2 has negative polarity.

De�nition 4 (Logic with polarity [5]) A logic with polarity is a logic in
which every operator has polarity.

Theorem 5 ([5]) In a logic with polarity, for a formula ' and a set S of sub-
formulas of ', for every model M , the following are equivalent:

1. ' is S-vacuous in M
2. There is a  such that:

M � ' () M � '[  ? ]

where

{ ? = f alse if M � ' and  is of positive polarity, or
M 2 ' and  is of negative polarity;

{ ? = true otherwise

Theorem 5 directly yields a procedure to check vacuity of a formula with
complexity O(j'j � CM (j'j)), where CM (n) denotes the complexity of model
checking a formula of size n with respect to model M .

2.2 The Modal Mu-Calculus is a Logic with Polarity

In order to be able to apply the vacuity-detection procedure of [5] to mu-calculus
formulas, we need to show that every operator in the mu-calculus has a polarity.
Following [6], the syntax of modal mu-calculus formulas over a set of variable
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names V ar, a set of atomic propositions Prop, and a set of labels L is given by
the following grammar:

'! Prop j V ar j ' ^ ' j :' j [a]' where a 2 L

j �Z:' if every free occurrence of Z in ' is positive

Additional derived operators, such as h�i, _ and � (the duals of [�], ^ and �,
respectively), are introduced for convenience. Moreover, the h�i and [�] modalities
may be speci�ed with sets of action labels: [S]' stands for

V
a2S [a]', and [�S]'

stands for
V
a62S[a]'.

A mu-calculus structure T (over Prop, L) is a labeled transition system with

set S of states and transition relation )� S � L � S (also written as s
a
�! t),

together with an interpretation VProp : Prop) }S for the atomic propositions.

Proposition 6 The modal mu-calculus is a logic with polarity.

Proof. The polarity of ^ and : has been shown in [5]. It remains to show that
operators [a] and � also have polarity.

Polarity of [a]. Given a mu-calculus structure T and an interpretation V :
V ar ) }S of the variables, the set of states satisfying [a]' is de�ned as:

[[[a]']]TV = fs j 8t:s
a
�! t) t 2 [[']]TV g

For '1, '2 such that [['1]] � [['2]], [[[a]'1]] = fs j 8t:s
a
�! t) t 2 [['1]]g. But this

means that t 2 [['2]] and, thus, s 2 [[[a]'2]]. Therefore, [[[a]'1]] � [[[a]'2]], and so,
[a] has positive polarity.

Polarity of �. Similarly, the meaning of �Z:' is given as:

[[�Z:']]TV =
[
fS � S jS � [[']]TV[Z:=S]g

where V [Z := S] maps Z to S and otherwise agrees with V .
For '1, '2 such that [['1]] � [['2]], [[�Z:'1]] =

S
fS � S jS � [['1]]V[Z:=S]g.

This implies that S � [['2]]V[Z:=S] and therefore [[�Z:'1]] � [[�Z:'2]], which
demonstrates positive polarity of �. �

3 Redundancy

Proposition 6 permits us to directly apply the vacuity-detection procedure of [5]
to mu-calculus formulas. However, in the case of mu-calculus, the notion of vacu-
ity does not capture subtle forms of antecedent failure. For example, the action
labels in modal operators can be a source of antecedent failure. In this section,
we extend the notion of vacuity to take into account sources of antecedent failure
that escape traditional vacuity analysis.
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Consider the mu-calculus formula '1 = �X:(p_hfa; bgiX) which states that
proposition p holds eventually along some path containing action labels a or
b. Now consider the formula '2 = �X:(p _ haiX) which states that p holds
eventually along some path containing only label a. The formula '2 is more
speci�c that '1: if '2 holds in a model M , so does '1. Hence there are syntactic
elements in '1 that are not needed for its validity in M .

The above example is actually a form of antecedent failure. To see this, notice
that hfa; bgiX � haiX _ hbiX which may be written as :haiX ) hbiX . Clearly,
the antecedent in this implication fails whenever haiX holds. Since syntactic
elements such as action labels in the mu-calculus are not subformulas, they
are not covered by vacuity de�ned in [5]. Section 5 describes several previously
published case studies that su�er from antecedent failure due to unnecessary
actions in modal operators. Thus, this is a problem that occurs in practice and
tends to obscure bugs in system models.

To capture these other forms of antecedent failure, we extend the notion
of vacuity to one of redundancy. Vacuity detection can be seen as determining
whether a formula can be strengthened or weakened without a�ecting its validity.
For example, let ' =  1 _  2, and let M be a model such that M j= '. If
M j=  1, then ' can be replaced by  1. Since [[ 1]] � [[']], this replacement
has in e�ect strengthened the formula. Vacuity checking, as de�ned in [5], does
precisely this by checking for the validity of '[ 2  f alse], which is same as
 1. Similarly, the vacuity of a formula invalid in M is detected by testing the
validity of a weaker formula. However replacement of subformulas by true or
f alse alone is insuÆcient in the case of mu-calculus. Let M be a structure such
that M j= hfa; bgi , but M 6j= hfa; bgif alse. Following [5], hfa; bgi is not  -
vacuous in M . However, if M j= hai , there is antecedent failure in the proof of
M j= hfa; bgi as explained in the previous paragraph. We can show that b in
the above formula is super
uous if we can strengthen hfa; bgi to hai .

Checking for vacuity by strengthening (for valid formulas) or weakening (for
invalid formulas) needs to be done judiciously. For instance, if ' holds in M ,
even if a stronger formula '0 holds in M , there may be no redundancy in '.
Consider a model M that satis�es the formula �X: p _ h�iX in two steps, i.e.,
as h�ih�ip. Note that X can be written as :p) h�i(:p) h�i(:p) h�iX)),
and hence the antecedent of the innermost `)' fails in M . However, X is not
trivially true in M , and hence should not be considered redundant. Hence we
de�ne a syntactic preorder over formulas, and restrict the choices of replacements
during vacuity detection to only formulas related by this preorder.

The preorder � on which we base redundancy checking in the mu-calculus
captures a notion of syntactic simpli�cation and is de�ned as follows:

{ f alse � ', and true � ' for any ' 62 ftrue; f alseg
{ [S]' � [T ]' and [�S]' � [�T ]' for any ' if S � T .
{ hSi' � hT i' and h�Si' � h�T i' for any ' if S � T .

Intuitively, '1 � '2 means that '1 is syntactically simpler than '2. A formula
' is redundant with respect to a modelM if it can be strengthened or weakened
by replacing a subformula  with a simpler one without changing ''s validity.
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De�nition 7 (Redundancy) A formula ' is said to be redundant with respect
to model M if there is a subformula  such that

M j= ' () 9 0 �  such that M j= '[   0]

where

{ [[ 0]] � [[ ]] if M j= ' and  has positive polarity or M 6j= ' and  has
negative polarity in ',

{ [[ ]] � [[ 0]] otherwise

De�nition 7 speci�es an e�ective procedure for �nding redundancy. The test
for [[ 0]] � [[ ]] (or its dual) for formulas  ,  0 such that  0 �  is straightforward
based on the following identities that hold for all ':

{ [[f alse]] � [[']] and [[']] � [[true]]
{ [[[�S]']] � [[[�T ]']] if S � T
{ [[[T ]']] � [[[S]']] if S � T
{ [[hSi']] � [[hT i']] if S � T
{ [[h�T i']] � [[h�Si']] if S � T

Observe that the notion of redundancy extends vacuity, since the constants
true and f alse are de�ned to be simpler than any formula, and hence are always
candidates for replacement. Hence we have:

Proposition 8 For all formulas ' in modal mu-calculus, if ' is vacuous then
' is redundant.

The simpli�cation preorder de�ned above can be further re�ned by introduc-
ing additional cases. For example, we can stipulate that:

{ [�]' � [T ]' for any '.
{ h�i' � hT i' for any '.

For an illustration of the rationale behind these additions, consider the formulas
'1 = [a] and '2 = [�] . If M j= '2 then clearly also M j= '1, but the label a
itself plays no role, and hence is redundant.

Redundancy of Temporal Operators For the mu-calculus, we do not need addi-
tional rules for simplifying �xed-point operators. For example, consider formula
' = �X:p_h�iX (EFp in CTL) and a modelM where ' holds. Replacing h�iX
by f alse we get �X:p, which is equivalent to p, as the strengthened formula. In
terms of CTL, this is as if we check the vacuity of EF operator. The explicit
nature of the �xed-point operators lets us check for their redundancy with no
additional rules.

To check for redundancy in temporal logics without explicit �xed-point oper-
ators, such as CTL and CTL*, a simpli�cation preorder over temporal operators
must be speci�ed. For example, in the case of CTL, the natural simpli�cation
preorder would stipulate that f alse � AG' � EG' � ' � AF' � EF'. Such
a simpli�cation preorder would therefore enable one to detect redundancies that
arise from subformulas as well as temporal operators.
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4 Algorithm for Redundancy Detection

Our algorithm for redundancy checking is based on De�nition 7: a subformula
 in ' is redundant if there is a \simpler"  0 (i.e.  0 is smaller than  in the
simpli�cation preorder �) such that M j= ' � M j= '[   0]. When  

does not contain modal operators, only true and f alse are simpler than  and
hence the de�nition of redundancy collapses to the de�nition of vacuity in [5].
For a formula  with modal operators, the number of simpler formulas  0 is
exponential in the number of action labels in the modal operator of  . However,
not every simpli�cation of  needs to be considered for checking the redundancy
of  0. Below we de�ne a set of possible replacements for each modal formula that
is suÆcient for the redundancy check.

De�nition 9 (Replacement Set) Given a model M , formula ', and a sub-
formula  of ', the replacement set of  with respect to ' and M , denoted by
�( ), is the set:

{ if M j= ' and  has positive polarity or M 6j= ' and  has negative polarity

�(hT i�) = fhT � fagi�ja 2 Tg

�(h�T i�) = ;

�([T ]�) = f[�]�g

�([�T ]�) = f[�(T � fag)]�ja 2 Tg

{ if M j= ' and  has negative polarity or M 6j= ' and  has positive polarity

�(hT i�) = fh�i�g

�(h�T i�) = fh�(T � fag)i�ja 2 Tg

�([T ]�) = f[T � fag]�ja 2 Tg

�([�T ]�) = ;

It should be noted that the replacement set for a formula  with modal operators
is linear in the number of action labels in the operators,

The rationale for the above de�nition of � is two-fold. First, it incorporates
the semantic condition [[ 0]] � [[ ]] (or its dual) into the syntactic check. Second, it
picks only maximal candidates for replacement, ignoring those that are \covered"
by others. For instance, let  = hT i 1 be a subformula of '. Furthermore let  
have positive polarity and M j= '. Formulas of the form hSi 1 for some subset
S � T are simpli�cations of  . From the polarity of  , we have M 6j= '[  
hSi 1]) 8S0 � S M 6j= '[  hS0i 1]. Hence if some S is insuÆcient to show
the redundancy of T then no S0 � S can show the redundancy of T . Therefore it
is suÆcient to consider the maximal sets S such that S � T in the replacement
formula hSi 1. The following proposition can be readily established considering
the di�erent cases in the de�nition of �.

Proposition 10 A modal subformula  is redundant in ' with respect to model
M if there is some  0 2 �( ) such that M j= ' �M j= '[   0].
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Algorithm 1 Redundancy detection by subformula simpli�cation

algorithm �nd redundancies(M; ')
N onV ac keeps track of non-redundant subformulas;
subs returns a formula's immediate subformulas.

1: mck(M;')
2: N onV ac = f'g
3: Red = ;
4: while N onV ac 6= ; do
5: remove a  from N onV ac
6: for all � 2 subs( ) do
7: if  [� ?�] () ? then

8: add � to N onV ac
9: else

10: mck(M;'[� ?�])
11: if '[� ?�] has the same value as that of ' then

12: add � to Red
13: else

14: add � to N onV ac
15: if � is a modal formula then
16: for all �0 2 �(�) do
17: mck(M;'[� �0])
18: if '[� �0] has the same value as that of ' then

19: add � to Red
20: if Red = ; then
21: report \' is not redundant in M"
22: return Red

We can further reduce the number of model-checking runs needed to deter-
mine redundancy by exploiting the relationship between vacuity of a formula
and its immediate subformulas. Since '[�  ?�] � '[   [� ?�]] when �
is a subformula of  , applying Theorem 5 we have the following proposition.

Proposition 11 If � is a subformula of  and  [� ?�] () ? , then ' is
not �-vacuous in M i� ' is not  -vacuous in M .

Since redundancy extends vacuity, if ' is  -vacuous in M , then all subformulas
of  are redundant in '.

Note that the proof of the if-direction of the above proposition follows from
Lemma 3 of [5]. Whether  [� ?�] is equal to ? can be checked by syntactic
transformation techniques such as partial evaluation, using rules such as f alse^
X () f alse and �X:p ^ h�iX () f alse.

The pseudo-code for the redundancy-checking algorithm is presented in Al-
gorithm 1. For a given model M and formula ', the algorithm returns the set of
maximal subformulas that are redundant in '. Finding the maximal subformula
of ' for which ' is redundant is accomplished by traversing ''s syntax tree in
a top-down manner. For each subformula  , we �rst check if ' is  -vacuous
by model checking '[  ? ], as required in [5]. If ' is  -vacuous, we do
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not traverse the children of  since we know from Proposition 11 that they are
all vacuous. If ' is not  -vacuous and ' contains a modal operator, we check
whether it is redundant by model checking ' after replacing  by some formula
from �( ). Note that in the worst case we will visit all subformulas and hence
use O(j'j) model-checking runs.

5 Case Studies and Performance Measurements

Below we describe how we applied the redundancy checker to case studies pro-
vided with the XMC and CWB-NC [11] distributions. In summary, we found
nontrivial redundancies in modal mu-calculus formulas taken from XMC's Meta-
lock and Rether examples and from CWB-NC's railway example. We also used
the Meta-lock example as a performance benchmark for our redundancy checker.

5.1 Case Study 1: Java Meta-lock (XMC)

Meta-locking is a highly optimized technique to ensure that threads have mutu-
ally exclusive access to object monitor queues, and forms an important compo-
nent of the Java virtual machine [1]. An abstract speci�cation of the Meta-lock
algorithm was veri�ed in XMC [2] and has since been distributed as a part of the
XMC system. The speci�cation, whose top-level process is denoted by metaj(M,

N) is parameterized with respect to the number of threads (M) and number of
objects (N) that are accessed by these threads.

One of the properties veri�ed was liveness(I,J), which states that a thread
I requesting a meta-lock to object J, will eventually obtain this meta-lock:

liveness(I,J) -= [requesting_metalock(I,J)] formula(I,J)

/\ [-] liveness(I,J).

formula(I,J) += <got_metalock(I,J)> tt

\/ form(I,J)

\/ [-] formula(I,J).

form(I,J) += <got_metalock(I,J)> tt

\/ [-{requesting_metalock(_,_)}] form(I,J).

Our checker detected redundancy in the subformula [-] formula(1,1) with
respect to the transition system generated by metaj(2,1). In particular, our
checker found that subformulas <got metalock(1,1)> tt of formula(1,1),
and <got metalock(1,1)> tt of form(1,1) were redundant. In retrospect, the
problem with the Meta-lock liveness formula is that it attempted to use the
alternation-free fragment of the mu-calculus supported by XMC to incorporate
a notion of strong fairness into the property. Unfortunately, alternating �xed
points must be used to express strong fairness.
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Performance of Redundancy Checking. Performance results for the redundancy
checker on the liveness formula are given in Table 1 for various values of M
and N. The formula's syntax tree is depicted in Figure 1, and associates the
DFS number of each node with the corresponding subformula. Each row of the
table corresponds to a subformula  (indexed by its DFS number in the syntax
tree) and contains the time (in seconds) and space (in MB) needed to check the
redundancy of  ; i.e., model-check '[   0]. Model checking is not needed for
two kinds of subformulas: those that can be determined to be non-redundant
by Proposition 11 (marked by an `x'), and those that can be determined to
be redundant because they are subformulas of formulas that have already been
determined redundant (marked by `-').

From Table 1 we notice that model checking is is quicker when a subformula
is not redundant (corresponding to a model-checking result of false), than when
a formula is redundant (a model-checking result of true). This is due to the
combination of the formula structure and the fact that XMC's model checker is
local ; i.e., it operates in a goal-directed manner, examining only those portions
of the state space needed to prove or disprove the formula. In particular, the
liveness formula has universal modalities, causing the entire state space to be
searched to establish its truth. In contrast, if it is false, this can be determined
after visiting only a small fraction of the reachable state space.

E�ect of Caching. Redundancy checking involves multiple runs of the model
checker, each involving the same model and formulas similar up to subformula
replacement. Recognizing this situation, we exploited the memo tables built
by the underlying XSB resolution engine to share computations across model-
checking runs. Although retaining memo tables after each model-checking run
resulted in the memory usage growing monotonically, the additional memory
overhead is low compared to the savings in time: up to 25% savings.

5.2 Case Study 2: Rether (XMC)

Rether is a software-based, real-time ethernet protocol [1]. Its purpose is to
provide guaranteed bandwidth for real-time (RT) data over commodity ethernet
hardware, while also accommodating non-real-time (NRT) traÆc. This protocol
was �rst formally veri�ed by Du et al. [12] using the Concurrency Factory.

Among the properties listed in [12], we found redundancies in a group of
formulas that specify a \no starvation for NRT traÆc" property. For each node
i, a formula NSi is de�ned as

NSi = �X:([�]X^ [start]�Y:([�fnrti; cycleg]Y ^ [cycle]�Z:([�nrti]Z^h�itt)))

which means that if during a particular cycle (between actions start and cycle)
node i does not transmit any NRT data (signaled by action nrti), then eventually
node i will transmit some NRT data after the cycle. Our checker shows the
actions in the box modalities [start], [�fnrti; cycleg], and [cycle] are redundant.
Indeed, the simpler formula

NS0i = �X:([�]X ^ �Z:([�nrti]Z ^ h�itt))

11
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11

0

1
[req(I,J)]formula(I,J)

req(I,J)
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formula(I,J)

[−]formula(I,J)form(I,J)

[−req(_,_)]form(I,J)<got(I,J)>tt

got(I,J)

or

req(_,_)

[−]liveness(I,J)

and

and

or

12

13

form(I,J) \/ [−]formula(I,J)

liveness(I,J)

Fig. 1. Syntax tree of liveness property. Action labels requesting metalock and
got metalock are abbreviated to req and got respectively.

which means always eventually nrti will occur, holds for the protocol. Hence the
cycle-based argument is unnecessarily complicated.

Redundancy checking also helped us �nd a bug in the XMC model of Rether.
At �rst we found another formula was also redundant:

RT0 = �X:([�]X ^ [reserve0]�Y:([�cycle]Y ^ [rt0]ff ^

[cycle]�Z:(h�itt ^ [�rt0]Z ^ [cycle]ff)))

Redundancy was detected in the �Y subformula by showing that �X:([�]X ^
[reserve0]ff) is true. That implies action reserve0 is never enabled, i.e. node 0
never reserves a real-time slot. Examining the XMC model, we found a bug that
causes node 0, which initially holds a real-time slot, to never release it, and hence
has no need to reserve one! RT0 became non-redundant after we �xed the bug.

5.3 Case Study 3: Railway Interlocking System (CWB-NC)

The CWB-NC's railway example models a slow-scan system over a low-grade link
in British Rail's Solid State Interlocking system [10]. We found several instances
of redundancy in this case study. The properties in question use the following
four actions: fail wire and fail overfull report link failure due to a broken
wire or due to a bu�er over
ow in a channel; det signals the detection of a
failure; recovered marks the system's reinitialization to the correct state.

The �rst property is \a failure is possible":

failures possible = �X:hfail overfull; fail wireitt

_ h�recoverediX

12



(2,2) (2,3) (3,1) (3,2)
 Truth Time Mem Truth Time Mem Truth Time Mem Truth Time Mem

0 true 2.15 11.9 true 28.24 142.00 true 1.44 10.29 true 55.27 285.47
1 x x x x x x x x x x x x
2 false 0.79 12.11 false 10.27 144.4 false 0.50 10.45 false 18.90 289.82
3 true 1.36 12.51 true 17.79 148.15 true 0.88 10.69 true 34.82 296.88
4 - - - - - - - - - - - -
5 false 0.81 12.76 false 10.41 150.60 false 0.51 10.85 false 19.23 301.24
6 true 0.93 13.08 true 11.47 152.95 true 0.70 11.18 false 21.16 307.34
7 - - - - - - - - - true 51.81 325.95
8 - - - - - - - - - - - -
9 - - - - - - - - - false 21.07 330.91
10 - - - - - - - - - false 21.07 335.88
11 true 0.82 13.64 true 10.67 158.79 true 0.55 11.50 true 20.75 340.29
12 true 1.71 14.31 true 22.18 165.34 true 1.02 11.84 true 40.22 349.39
13 x x x x x x x x x x x x

total 8.58 14.31 111.11 165.34 5.61 11.84 304.63 349.39

Table 1. Redundancy checker performance measurements.

Since hfail overfull; fail wireitt = hfail overfullitt _ hfail wireitt,
failures possible can be converted to the disjunction of two stronger formu-
las: fail overfull possible = �X:hfail overfullitt _ h�recoverediX and
fail wire possible = �X:hfail wireitt _ h�recoverediX , which both turn
out to be true. Therefore either fail overfull or fail wire (but not their
simultaneous occurrence) does not contribute to the truth of failure possible.
This also holds for the derived formula

failure possible again = �Y:failure possible ^ [�]Y

The second property is \a failure can be detected only after an occurrence
of a failure":

no false alarms = �X:([det]ff _ hfail overfullitt)

^ [�fail overfull; fail wire; recovered]X

which means that along a path without failure and recovery, either it is impossi-
ble to detect a failure or there is a failure. Removing recovered from the formula
means that even if recovery occurs, the property still holds. Furthermore, the for-
mula is redundant in hfail overfullitt: �X:[det]ff ^ [�fail overfull; fail wire]X
is also true. Two types of redundancies also exist in the derived formula:

no false alarms again = �Y:no false alarms ^ [�]Y

These case studies illustrate that subtle redundancies can creep into compli-
cated temporal properties. In some cases, the redundancies hide problems in the
underlying system model. Redundancy detection provides signi�cant guidance
in deriving simpler and stronger temporal formulas for the intended properties.
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6 Conclusions

In this paper, we have extended the notion of vacuity to the more encompassing
notion of redundancy. Redundancy detection, unlike vacuity detection, can han-
dle sources of vacuity that are not adequately treated by subformula replacement
alone. The main idea behind redundancy checking is that a formula ' is redun-
dant with respect to a modelM if it has a subformula  that can be \simpli�ed"
without changing its validity. For this purpose, we have de�ned a simpli�cation
preorder for the modal mu-calculus that, among other things, addresses vacuity
in the action structure of modal operators.

A simpli�cation preorder for CTL that enables detection of unnecessarily
strong temporal operators can also be de�ned. A simpli�cation-based notion of
redundancy addresses an open problem posed in [5], which was prompted by a
question from the audience by Amir Pnueli at CAV '97.

We have also implemented an eÆcient redundancy checker for the XMC
veri�cation tool set. The checker exploits the fact that XMC can be directed to
cache intermediate model-checking results in memo tables, addressing another
open problem in [5]. We have revisited several existing case studies with our
redundancy checker and uncovered a number of instances of redundancy that
have gone undetected till now. Like XMC, our redundancy checker is written
declaratively in 300 lines of XSB tabled Prolog code.

For future work we are interested in pursuing the problem of generating
interesting witness to valid formulas that are not vacuously true, �a la [4, 17, 5].
The approach we plan to take to this problem will be based on traversing the
proof tree generated by XMC's justi�er [22, 14].
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