Design and Implementation of Jump Tables for
Fast Indexing of Logic Programs

Steven Dawson C.R. Ramakrishnan I.V Ramakrishnan
sdawson@cs.sunysb.edu cram@cs.sunysb.edu ram@cs.sunysb.edu

Department of Computer Science
SUNY at Stony Brook
Stony Brook, NY 11794-4400

Abstract

The principal technique for enhancing the speed of clause resolution in logic programming
languages such as Prolog is indexing. Given a goal, the primary objective of indexing is to
quickly eliminate clauses whose heads do not unify with the goal. Efforts at maximizing the
performance of indexing automata have focused almost exclusively on constructing them with
small depth, which in turn translate into making fewer transitions. Performance of an automata
also critically depends on its ability to make each transition efficiently. This is a problem that
has largely been ignored and constitutes the topic of this paper.

Although using jump tables ensure that each transition can be done in constant time they
are usually very sparse and hence are seldom used in implementations. We describe a novel
method to construct dense jump tables for indexing automata. We present implementation
results that show that our construction indeed yields jump tables that are dense enough to be
practical. We also show that indexing automata that use jump tables based on our method,
improve the overall performance of Prolog programs. We also provide experimental evidence
that our method is a general technique for compressing transition tables of other finite state
automata such as those used in scanners.

Contact author: Steven Dawson
E-mail: sdawson@cs.sunysb.edu
Tel: (516) 632-8470
Fax: (516) 632-8334

1 Introduction

Optimizing clause resolution is a problem of considerable importance for efficient evaluation of
resolution-based logic programs. The principal technique used for enhancing the speed of clause
resolution steps is indexing. When resolving a goal, a clause becomes applicable if its head unifies
with the goal. The sole objective of indexing is to quickly eliminate many clauses that are not
applicable. Indexing can yield substantial gains in speed, since it reduces the number of clauses
on which unification will be performed and can also avoid the pushing of a choice point. These
benefits of indexing have long been recognized, and considerable effort has been made to develop fast
and effective indexing techniques for logic programs (see [CRR92, Car87, HM89, PN91, RRW90]
for example). The typical approach underlying high performance techniques is to preprocess the
clause heads of a logic program into an indexing trie. The essential idea is to partition terms based
upon their structure. A tree is formed, and at each point where two terms have different symbols,
a separate branch for each term is added. (See Figure 1 below.)

p(a,a).
p(a,b).
p(a,d).
p(b,d).
p(b,b).
p(b,e).
plc,e).

Figure 1: Predicate and indexing trie

Observe that the trie is organized as a tree-structured finite-state automaton with the root as the
start state, leaves being the final states, and the edges, denoting transitions, representing elementary
comparison operations. Each state specifies a position in the goal to be inspected upon reaching
that state. The edge labels on the outgoing transitions specify the function symbols expected at
that position. A transition is taken if the symbol in the goal at that position matches the label on an
outgoing edge. We associate with each final state a set of clauses called its indez set. On reaching
a leaf state, the clauses in its index set are selected for resolution with the goal term. Note that the
index set is a superset of the clauses that are applicable. Although our simplistic description above
does not discuss variables, several variants to the indexing trie have been proposed for handling
them (see [RRW90] for example). Such automata are routinely used to index terms in functional
programming [SRR92], automated deduction [McC92] and term rewriting systems [Chr89].

Advances in indexing techniques have resulted in substantial improvement in the execution
time of Prolog programs [DRR195], so much so that indexing time constitutes a significant part
of the overall execution time. Thus, devising faster indexing techniques without compromising
their effectiveness is a problem of considerable importance for implementing high-performance logic
programming systems. Research on fast indexing methods have traditionally focused on techniques
for constructing tries of small depth. Indexing based on such tries translates into making fewer
state transitions for selecting an index set, thereby improving indexing time. Indexing times can be
further improved by executing each transition efficiently. Techniques that facilitate efficient state
transitions for indexing have not been well researched so far and constitutes the topic of this paper.

Recall that, in order to make a transition from the current state, the corresponding goal symbol
in the position specified by the state must match the edge label on one of its outgoing transi-
tions. A simple sequential search of the edge labels for a match is clearly very time consuming.
Therefore, Prolog systems, such as Sicstus, ALS, and XSB, typically resort to hash-based state
transitions. Although hashing reduces the time needed to make a state transition, the possibility
of collisions precludes guaranteeing uniform transition time. To reduce collisions substantially, one
must resort to complex hashing schemes such as perfect hashing, which guarantee no collisions, and
hence, constant transition time [FKS84|. The main problem with such hash functions is that they
involve several time-consuming operations, typically including modulus with respect to prime num-
bers. Furthermore even determining such hash functions is computationally expensive [CHKS85].
Therefore, implementations often use simple hashing methods, such as bit masking. Although such
hash functions can be computed quickly, they lead to frequent collisions, and hence, non-uniform
transition times.

Executing any state transition in constant time can also be guaranteed by directly accessing
the next state through jump tables. In this method each function symbol is assigned a unique
positive integer as its id. Every state is associated with a jump table whose entries either point to
next states or are void (denoted by L). The indexing automaton uses the id assigned to the input
symbol inspected in the current state, to directly index into its jump table to make a transition to
the next state. Note that it is necessary to store only the segment of the jump table containing
valid transitions. If the id of an input symbol indexes into this segment, and the corresponding
transition is valid, this transition is taken. Otherwise, indexing failure occurs. For example, in
Figure 1 suppose we assign integers 1,2, 3,4, and 5 to the symbols a, b, ¢, d, and e respectively. The
ranges of indices for the jump tables in states s1, sp, s3 and s4 are [1..3],[1..4],[2..5] and [5..5],
respectively, and the jump tables are [ss, 33, 54],[S5, S6, L, 37],[S9, L, S8, S10], and [s11].

Although jump tables facilitate fast transitions, they are seldom used in implementations because
they tend to be sparse, i.e., contain many void entries. In the example above the jump tables for
states sy and s3 have void entries. For jump tables to become practical, it is critical that they be
densely populated. Suppose in the example above we had instead assigned 1,2,3,4, and 5 to e,
d, b, a, and c, respectively. The ranges of jump table indices for states s;, s3, s3, and s4 would
be [3..5], [2..4], [1..3], and [1..1]; and the jump tables would be [s3, 32, 4], [37, S6, S5, [S10, S8, S9],
and [s11]. Note that these jump tables contain no void entries. The problem now is to devise a
numbering scheme for symbols that minimizes the total number of void entries in all jump tables.
This has remained open, and is addressed in this paper.

Jump tables can be used in conjunction with hashing. This is particularly useful when, for
example, the best numbering scheme still yields sparse jump tables for some states, or a state makes
transitions on symbols for which numbering is inappropriate (e.g., integers). Thus jump tables with
numbering can be viewed as a complementary scheme to hash tables, and avoids exclusive reliance
on hash tables.

Summary of results

1. We show that the problem of assigning numbers to symbols, such that the total number of
void entries in jump tables is minimized, is NP-complete (Section 2).

2. We present an efficient heuristic, called the Symbol Numbering Method (SNM), that reduces
the number of void entries (Section 3).

3. We provide strong experimental evidence for the practical use of jump tables. The results
show that jump tables improve the overall execution time of Prolog programs. Furthermore,
the space efficiency of jump tables obtained using SNM is often better (and no worse) than
that of hash tables (Section 4).

4. We discuss reasons for the improved space efficiency of jump tables over hash tables and offer
ways of further improving the performance of jump tables (Section 5).

5. We argue that SNM is a useful scheme for compressing transition tables of general finite state
automata, such as those used in scanners and parsers. In particular, we present experimental
results that demonstrates its effectiveness in compressing transition tables (Section 6).

2 Space Minimization of Jump Tables

In this section we formalize the problem of determining the numbering scheme that minimizes the
space of jump tables and study its computational complexity.

Notation An indexing trie is a finite state automaton, with S as its set of states, and whose
symbols are drawn from an enumerable set F. A transition from a state s on input symbol a
to a destination state d is denoted by («,d). There is a special state L € S with no outgo-
ing transitions, called the fail state of the automaton. The set of symbols on which successful
transitions can be made from the state s € S, called the label set of s, is denoted by A,. Let
7s = {(0u, 51), (2, 52), . . . (0, 55,) }, Where a; € F and s; € S denote the set of outgoing transitions
in the state s € S. The set of outgoing transitions is realized as jump tables, formalized as follows.

Jump Tables Let v:F — N be a one-to-one function, called the numbering function, that maps
each symbol in the alphabet to a distinct natural number. Since F is enumerable, clearly such a
function exists. Let min, = min({v(z) | ¢ € A;}), and maz, = max({v(z) | ¢ € A;}). The function
jts : {t € N | min, < i < maz,} — §, that represents the jump table associated with state s, is

defined as:
. T,(x) whenever z € A,
jtv(a) = { (z)

o 1 otherwise

Note that maz, — min, + 1 is the size of the jump table of state s. The number of void elements
in the table is (maz; — min, + 1) — |A].

Let s denote the current state of the automaton and y denote the input symbol inspected in
the current state, i.e., the input symbol. Let next_state(s,y) be the destination state. Using jump
tables, the function nexit_state is defined as:

jts(v(y)) if min, < v(y) < maz,

next_state(s,y) = { L otherwise

Note from the above definition that transition to the destination state can be made in constant
time. Given a numbering function » and an indexing automaton with states S, the total space
occupied by jump tables, Space(v, S) is given by

Space(v, S) = Z(maazs — ming + 1)
s€S

The total size of jump tables, and hence the total number of void entries in the tables, varies
with the numbering function. We now show that the problem of minimizing the total size of jump
tables is NP-complete.

Complexity of Jump Table Space Minimization

The corresponding decision problem of jump table space minimization can be stated as

Given an automaton with states S and a positive integer K, is there a numbering
function v such that Space(v,) < K?

Membership of the above problem in NP is obvious. Using transformation from Optimal Linear
Arrangement [GJ79], we show:

Theorem 1 Jump Table Space Minimization is NP-complete.

Proof: The NP-complete problem of Optimal Linear Arrangement is stated as follows: Given a
graph G = (V, E) and a positive integer M, is there a one-to-one function f: V — {1,2,...,|V|}
such that 35, ,yep [f(u) — f(v)] < M?

Given any instance of the above problem, it can be easily transformed into an instance of Jump
Table Space Minimization as follows: construct an automaton with states S such that for each
edge (u,v) € E there is a unique state s in § with A\, = {u,v}. Let K = |E|+ M. Clearly, the
transformation can be done in polynomial time. We now show that a function f exists iff there is a
numbering function v for the automaton with states S satisfying the constraints of the jump table
minimization problem.

if: Define f(u) = |[{z € V | v(z) < v(u)}|. Clearly, f: V — {1,2,...|V]|} is one-to-one, and
|f(u)—f(v)| < |v(u)—v(v)|. Since v is a solution to the jump table space minimization problem, v is
such that 3 ,cg(v(u)-v(v)+1) < K where {u,v} = A, and u < v. Hence } (,)z [v(u)—v(v)[+1 <
K = Y umyes 1F(8) ~ F0)] € Spunyen #() - (0)| < K — |E| = M.
)

only if: Let g(z) : F — {|V|+ 1,|V| + 2,...} be a one-to-one function. Clearly, such a function
exists since F is enumerable. Define v(z) = f(z) if ¢ € V and v(z) = g(z) otherwise. Now,
v(z) —v(y) = f(z) — f(y) for all z,y € V. Since f is a solution to the optimal linear arrangement
problem, 3 .,)z |f(u) — f(v)] < M = 3 ,cg(maz, — min,) < M from transformation. Hence,

Space(v, §) = ¥ ycs(maz, — min, + 1) < M + |E| = K. |

3 Symbol Numbering Method (SNM)

As shown in the previous section, it is unlikely that there is an efficient algorithm for finding
minimum space jump tables. In this section we describe the Symbol Numbering Method, an
efficient heuristic for reducing jump table size that, in practice, yields small jump tables. The
heuristic is based on two observations. First of all, the space taken by jump tables depends more
on the numbers assigned to frequently occurring symbols than on the numbers assigned to other
symbols. Secondly, the space tends to depend more on tables having fewer entries than on tables
having more entries. This is because larger tables will necessarily have a wider range of numbers,
and hence, more flexibility in the numbering of its component symbols. These attributes of the
symbols and tables are captured naturally by a bipartite graph representation, called the index

symbol graph of the program, where the nodes represent symbols and tables, and the edges denote
membership of the symbols in the tables.

More formally, let C = {Aq,...,A,,} be the collection of label sets of all the states in the
indexing automata of all the predicates in the program. Let A = {a1,...,an} = Ui<cicm Ai be
the set of all symbols in the automata. Let G = (V, E) be an undirected graph, where V =
{v15. - 3 Vny U1y o oy Unpm) and B = {(v;,0n4;) | @i € Aj}. We refer to vertices v1,...,v, as
symbol vertices, and vertices v, 41,...,Vntm as table vertices. Note that the jump table for a state
has valid entries only in positions corresponding to the symbols in the state’s label set. The degree
of symbol vertex v; is equal to the number of label sets in which symbol «; appears, and the degree
of table vertex v, ; is equal to the number of distinct symbols appearing in the label set A;.

For example, consider the seven simple predicates in Figure 2a. The indexing automaton for
each predicate has one state. The index symbol graph of the program is given in Figure 2b. The
symbol vertices are labeled above by the symbols occurring in the predicates. The table vertices
are labeled below by the names of the associated predicates. The edges connect each table vertex
with the symbol vertices of every symbol that is a member of the corresponding label set. For
example, the table vertex labeled “p6/1” has three incident edges, connecting it to symbol vertices
a, e, and f.

The index symbol graph provides a means of extracting certain “binding” relationships among
the symbols. Informally, we say that two symbols are tightly bound to one another if a small
difference between their assigned numbers leads to void entries in the jump tables. The larger
this difference can become without leading to void entries, the less tightly bound the symbols are
considered to be. For example, symbols e and f in Figure 2 are tightly bound, since any difference
greater than 1 in their numbers would lead to void entries in the jump table for p3/1. On the
other hand, symbols h and ¢ are not as tightly bound, since their numbers could potentially differ
by as much as 4 without resulting in any void entries. The heuristic, informally described below,
is designed to account for these binding relationships, based on the two observations mentioned at
the beginning of this section. The heuristic works in two stages.

In the first stage the index symbol graph is used to determine a rough ordering of the symbols,
based on their frequency of occurrence and tightness of binding to other symbols. The result is one
or more tree structures, which are traversed in the second stage to perform the actual numbering.

Stage 1 The first stage of the heuristic consists of a depth-first search of the index symbol graph,
resulting in a spanning tree of each connected component in the graph. Note that, since index
symbol graph is bipartite, in a depth first search we will alternately visit table and symbol vertices.
At each step in the depth-first search, the choice of which vertex to visit next is guided by the two
observations outlined at the beginning of this section. If the next vertex to be visited is a symbol
vertex, then the mazimum degree symbol vertex is chosen; if the next vertex is a table vertex, then
the minimum degree table vertex is chosen. The depth-first search begins at the symbol vertex
of highest degree, say v;. Thus, the next vertex to be visited is the table vertex of lowest degree
connected to v;, and we proceed by alternately visiting symbol vertices of highest degree and table
vertices of lowest degree. When a symbol vertex is visited, the degree of each table vertex to which
it is connected is decreased by one. This reflects the increasing binding among the symbols in the
corresponding label sets that remain to be visited.

The index symbol graph in Figure 2b illustrates the first stage of the heuristic. Each vertex is

1(a) 5(a).
§1 (b) p2(g) . 11:5(1)))
p2(h). pé(a).
pi(c) 2(4) p3(£). p4(g). p5(c). p6(£) p7(g).
p1(d) peial p3(e). p4 (k). p5(d) . : p7 (k).
p1(e) p2(3). ps(e). PSe):
p1(£) p2(k) . p5(£).
f (0)
\
e (1)
| g (0
a (2 \
k (1)
b (3 AN
RN h]

|
(De d@ D) @
(c)

)
(

Figure 2: Seven simple predicates (a), the index symbol graph (b), collapsed spanning trees (c)

labeled according to the order in which it was visited in the depth-first search. The table vertices are
not used in the second stage and are not recorded in the spanning tree. For example, the spanning
trees obtained after stage 1 for the index symbol graph in Figure 2b are shown in Figure 2c.

Stage 2 The numbering of each tree (connected component) can be done independently, since
the differences between numbers of symbols from distinct connected components have no effect on
the size of the jump tables. We begin by assigning the number 0 to the symbol represented by
the root. We then perform a preorder traversal of the tree, numbering each symbol as we visit its
vertex. Note, however, that the actual numbers assigned may not mirror the preorder traversal.
Observe that each chain of vertices between two branch points in the tree is such that a parent
symbol occurs in all label sets that contain the child symbol. We number such groups sequentially,
and “position” the group so that the distance of the group from the first symbol on its parent chain
is minimized. This means that the group will be numbered increasing from the greatest number
yet assigned, or decreasing from the least number yet assigned.

Consider the numbering of the left tree in Figure 2c. There is a chain of symbols f, e, a, b,
numbered sequentially starting from 0. Next, symbol ¢ is numbered —1, minimizing its difference
with f. Finally symbol d is numbered —2, also minimizing its difference with f!. The other tree
is numbered similarly. It is easily verified that this numbering yields jump tables for this example
with no void entries, and hence, no wasted space.

Complexity Let n denote the number of symbols, m the number of tables, and s = X7, |A;| the
total size of all label sets. The number of vertices in G is n 4+ m and the number of edges is s. Note
that n + m < 2s. Thus, the space required for the bipartite graph is O(s). Even if the spanning
trees are constructed separately, the space is increased by at most a constant factor.

The time required to perform the heuristic is given by the time needed to construct the index

!Note that this gives a relative numbering among symbols in one tree. The final, global numbering among all
symbols is easily obtained from the relative numbering simply by adding an appropriate constant to the number of
each symbol in a tree.

symbol graph, plus the time needed to perform the depth-first search, plus the time to traverse
each connected component (for numbering). The time required to build the index symbol graph
is proportional to its size, O(s). The time to select a vertex to visit is bounded by the maximum
degree of any vertex. A symbol may appear in at most m label sets, and any label set may contain
at most n» symbols. Thus, the maximum degree of any vertex is O(max(m,n)), and the time
required for the depth-first search is O(s - max(m,n)). The time required to traverse the trees
for numbering is clearly bounded by the depth-first search time. Thus, the overall time for the
heuristic is O(s - max(m,n)).

4 Performance

The Symbol Numbering Method has been implemented, and the performance of jump tables ob-
tained using SNM was compared to two hash-based indexing schemes in the XSB system on several
benchmark programs?. The programs include a sample of the border predicate from the CHAT-80
system, three queries on the Dutch national flag program (dnf), three simple parsers (111, 112, and
113), a theorem prover (dboyer) and map coloring program (map) from a set of Andorra-I bench-
marks, and three queries on a 5000-fact sample of a chemical database (synchem). Each of the
programs was compiled using unification factoring [DRR195], which, with the exception of dboyer,
substantially improves the performance of the programs, due in large part to improved indexing.

The two hashing methods tested were modulus with respect to a prime number (mod hash) and
bit masking (bit mask hash). Table 1 compares the overall query evaluation times for jump tables
to those of the two hashing schemes. Two times are reported for each hashing method. The first
is the lowest observed time across a large number of runs, and the second is the highest observed

time for which the time increase could be attributed to hash collisions®

. The jump table figures
show the execution time (which is constant across all runs) as well as the speedups compared to
hashing. Observe that jump table indexing is always as fast as the fastest hashing results and is
often substantially faster than the slower hashing results. Mod-based hashing consistently gives the
slowest performance (but more consistent performance than bit mask hashing), due to a particularly
expensive mod operation on Sparc machines. This is, of course, architecture dependent, but it does
indicate that perfect hashing schemes, which rely even more on mod operations, are unlikely to
perform well in practice. Bit mask hashing, while offering performance comparable to jump tables

in the best case, gives varying results due to (unpredictable) hash collisions.

Further light can be shed on these numbers by the considering the execution time of the different
indexing instructions. On average, a single mod-based hashing required 2.20 us, while one bit mask
hashing instruction took 0.50 us. The jump table indexing instruction, which involves two bounds
checks followed by a table lookup operation, took 0.62 us. However, note that any hashing scheme
requires some means of verifying the value of the hashed symbol. In the absence of any collision,
this verification takes an additional 0.32 us. Jump table indexing needs no such verification, and
hence is faster than either hashing instruction, even in the absence of collisions. The speed of jump
table indexing is more apparent in programs where a relatively large portion of the time is spent
in indexing (e.g., map).

2 All benchmarks were executed on a Sun SPARCstation 20 running SunOS 5.3, using XSB version 1.4.2. The
benchmarks programs are available by ftp from ftp.cs.sunysb.edu in pub/XSB/benchmarks
3Hashing in XSB is performed on symbol pointers whose values can vary from one run to another.

Mod hash | Bit mask hash Jump tables
Program Time Time Time | Speedup (mod) | Speedup (bit)

Low/High Low/High Low/High Low/High
border 4.29/4.29 | 3.70/3.70 3.63 | 1.18/1.18 1.02/1.02
dnf(s1) 4.43/4.43 3.75/5.88 3.68 1.20/1.20 1.02/1.60
dnf(s2) 4.31/4.31 3.66/5.63 3.59 1.20/1.20 1.02/1.57
dnf(s3) 5.05/5.05 4.25/5.00 4.18 1.21/1.21 1.02/1.20
11 4.93/6.44 4.24/5.70 4.23 1.17/1.52 1.00/1.35
112 5.06/5.06 4.15/5.20 4.13 1.23/1.23 1.00/1.26
113 4.24/4.24 3.57/4.40 3.55 1.19/1.19 1.01/1.24
dboyer 4.20/4.20 4.10/4.10 4.03 1.04/1.04 1.02/1.02
map 4.44/5.48 2.58/3.62 2.33 1.91/2.35 1.11/1.55
synchem(alc) | 4.49/4.49 3.99/3.99 3.88 1.16/1.16 1.03/1.03
synchem(eth) | 4.32/4.32 3.26/3.26 3.21 1.35/1.35 1.02/1.02
synchem(CC) | 5.05/5.05 4.65/4.65 4.40 1.15/1.15 1.06/1.06

Table 1: Comparing CPU times for jump table indexing with two hashing schemes

It might be expected that the fast, guaranteed time performance of jump tables must come at
some expense in space, and with a naive numbering of the symbols, this might be true. However,
our experiments show that, using SNM, even space utilization can be improved. Table 2 compares
the space usage and efficiency of jump tables with that of the two hashing methods. Efficiency
was computed as the ratio of the minimum space required by any indexing table to the space
actually used. For the above benchmarks, jump tables were always at least as space efficient as
either hashing method and often gave 100% efficiency. To achieve comparable space performance
in the hashing schemes wherever possible, more collisions would necessarily result, giving worse
time performance. On the other hand, for hashing to approach the consistent time performance of
jump tables would require an even greater sacrifice in space.

It should be pointed out, however, that examples can be constructed for which the space required
by even the smallest possible jump table may be too great. Furthermore, due to the presence of
symbols that cannot be numbered, such as integers, it may not be possible to compress the jump
tables further. In such cases it is reasonable to use a fast hashing method (such as bit masks) as an
alternative. For example, in the synchem benchmark, nearly half the tables contained integers and
hash-based indexing was used in these cases. The jump tables obtained by SNM for the remaining
cases were more than 90% space efficient. The use of jump tables for these cases improved query
evaluation times, while increasing the overall space efficiency to over 60%.

Finally, it should be noted that SNM itself, which is done at predicate load time, adds little
overhead. In the worst case (synchem), SNM and jump table creation added less than 20% to the
(small) load time. In summary, the performance results show that

e jump tables offer guaranteed time performance, and this performance is as good as or better
than even the simplest hashing methods;

e using SNM, jump tables need not incur a large space penalty, and may even improve space
efficiency;

Mod hash Bit mask hash Jump tables
Program Bytes Efficiency Bytes Efficiency || Bytes | Efficiency
Low/High | Low/High | Low/High | Low/High
border 68/68 0.47/0.47 64/64 0.50/0.50 32 1.00
dnf 28/28 0.43/0.43 32/32 0.50/0.50 12 1.00
111 56/88 0.27/0.43 32/80 0.30/0.75 24 1.00
112 60/108 0.22/0.40 48/64 0.37/0.50 24 1.00
113 60/108 0.22/0.40 48/64 0.37/0.50 24 1.00
dboyer 912/1000 0.41/0.45 864/904 0.46/0.48 764 0.54
map 188/188 0.34/0.34 96/144 0.44/0.67 72 0.89
synchem | 72792/85640 | 0.35/0.41 | 59080/71640 | 0.42/0.51 || 48436 0.62

Table 2: Comparing space usage for jump tables with two hashing schemes

e jump tables are more practical than perfect hashing schemes — perfect hashing functions are
expensive to derive at compile/load time and, since they depend on mod operations, expensive
to use at run time.

5 Space Utilization of Jump Tables

Traditional Prolog implementations do not use jump tables, primarily because of possible space
degradation. However the experimental results presented in Section 4 show that indexing using
jump tables usually outperforms hash-based schemes even in terms of space efficiency. In this
section, we characterize the space utilization of the hashing methods used in well-known Prolog
systems, and compare them with the space behavior of jump tables. We identify situations where
jump table based schemes perform very well and where degradation is possible. We also suggest
ways to prevent such degradation.

5.1 Hash Tables vs. Jump Tables

In a hash-based indexing scheme, the size of the hash table and the number of collisions determine
the space needed to represent all the outgoing transitions. In Prolog implementations, the hash
function (and hence the size of the hash table) is chosen based on the number of transitions. Note
that in order to reduce the possibility of collisions, the size of the table must be considerably larger
than the number of transitions. Thus the space efficiency, denoted by e, which is the ratio of
number of transitions to the total space needed to represent all the transitions, is bounded for hash
tables. The bounds themselves may vary, depending on the hash function used and how collisions

are handled.

In XSB and ALS Prolog, which use mod hashing, the hash table size is a prime number greater
than the number of transitions. In Sicstus Prolog, which uses bit mask hashing, the table size
is a power of two, usually larger than three times the number of transitions?. ALS and Sicstus

explicitly maintain set of buckets for each hash entry. While ALS stores the buckets in a binary

*We use Sicstus v2.1 #9 (compact code) for all these comparisons. Larger table sizes are needed to offset the
number of collisions incurred by the simpler masking hashing function.

Method Space Efficiency (e) ‘
Jump Table 0<e<l1
Sequential Search e=10.5
Hashing - XSB 0.167<e <1
- ALS 0.20 < e < 0.25
— Sicstus | 0.136 < e < 0.214

Figure 3: Bounds on Space Efficiencies.

tree, Sicstus uses a list. In XSB, however, the hash table points directly to code, instead of pointing
to a list of buckets. When there is no collision on a hash entry, the table points to the code for
the corresponding clause, which contains unification instructions for all positions in the head of the
clause. This code is a part of the try-retry-trust chain that is invoked when the indexed position in
the goal is a variable, and hence does not contribute to any additional space overhead. When there
is a collision on some entry, a new try-retry-trust chain is created for all the colliding symbols.

Based on the hash functions and the collision management strategy used, we can readily compute
the bounds on the space efficiencies of the various hashing schemes. These bounds, as well as those
on sequential search and jump table strategies, are given in Figure 3. Observe, from the table,
that hash tables guarantee a definite lower bound on space efficiency whereas jump tables offer no
such lower limit. On the other hand, the upper bound efficiencies of hash tables are low, while
jump tables can achieve 100% efficiency. More interestingly, the performance results in section 4
indicate that, using SNM, jump tables often achieve 100% efficiency. We now discuss the reasons
underlying their good space performance, and suggest ways to further improve their space as well
as time performance.

5.2 Impact of Type Discipline on Performance of Jump Tables

In the case of well-typed programs, the set of symbols on which transitions are made from any
state belong to the same type. Hence, symbols of a given type can be numbered independently of
symbols of a different type. This degree of freedom enables SNM to yield jump tables with nearly
100% space efficiency on well-typed programs. It turns out that, although Prolog is an untyped
language, programs generally follow an implicit typing discipline. This is the main reason that the
jump tables of indexing automata for Prolog programs attain high space efficiencies using SNM.

We can exploit knowledge of types in a program for improving the access time of jump tables
even further. For instance, consider a state with the labels a, b and ¢ on its outgoing transitions.
If we have type information that whenever this state is reached, the symbol inspected in the input
goal belongs to the set {a,b,c} (another characteristic of well-typed programs), we can omit the
bounds check, and directly index into the jump table. Note that transitions thus made cost no
more than a table lookup.

5.3 Inter-module Application of SNM

Our development of SNM was based on complete knowledge of the label sets of all the states in the
indexing automata for every predicate in the program. Hence SNM cannot be used at compile time
in systems that support separate compilation. However, if all modules are loaded statically, :.e.,

10

before the program is executed, SNM can be used at load time. We now naturally extend SNM to
systems where modules are loaded dynamically as follows.

When a new module is being loaded, symbols numbered in previously loaded modules cannot
easily be renumbered. Hence SNM assigns numbers, distinct from numbers previously used, only to
the new symbols in the current module. Due to a loss of type discipline across modules, incremental
application of SNM to each load module may yield sparse jump tables. In practice, such loss occurs
primarily due to “accidental” synonyms — when the same symbol is used to represent different
objects in different modules. Note that accidental synonyms arise only in module systems that are
not atom-based, .e., where all function symbols are drawn from a global space. An atom-based
module system that allows the user to intuitively specify the scope of symbols greatly reduces the
frequency of this phenomenon, and improves the space efficiency of jump tables with SNM.

6 Generality of SNM

In the previous sections, we have shown the effectiveness of SNM in making jump tables practical
for indexing in Prolog programs. We now demonstrate the utility of this technique for compressing
transition tables of finite state automata that arise in applications such as parsers and scanners.
In these applications, transitions can be stored in a two-dimensional table, indexed by the pair
(state, input symbol) and transitions can be made with one table lookup operation. However, since
transition tables are large in general, a suite of table compression techniques with various time-space
tradeoffs have been developed (see [DDH84| for a good introduction). In the following, we first
argue why these techniques are not applicable for minimizing jump tables in indexing automata.

6.1 Table Compression Methods

We start with a brief description of compression techniques, currently in widespread use, that
guarantee fast constant-access times. These techniques can be broadly classified into content-based
methods and structure-based methods.

Content-based Compression Methods Content based methods exploit the similarity between
transitions in different states or on different input symbols. An important compression technique
used in scanners, called the Equivalent Symbols method (ESM), is based on the observation that
many sets of symbols exhibit identical lexical properties. For instance, in many scanners the digits
‘0%, ‘1%, ..., ‘9’ are indistinguishable; 7.e., from any state, the destination states on the transitions
on ‘0, ..., ‘9’ are the same. Such symbols are put in one equivalence class, and the transitions on
these symbols are replaced by one transition labeled by the corresponding equivalence class. The
compressed table is represented as a two-dimensional array, indexed by state and equivalence class
of symbols.

Two effective content-based techniques for compressing parser tables are Line Elimination
[Bel74] and Graph Coloring [DDH84]. The Line Elimination method is based on the observa-
tion that there are many states in an LR parser in which there is only one valid action, regardless
of the input symbol. Similarly, there are many input symbols such that the same valid action is
performed, regardless of the current state. The rows and columns representing such states and
input symbols are removed from the transition table, and the valid actions themselves are stored

11

with the corresponding state or symbol. This process is repeated until the table is irredundant.
The Graph Coloring method is based on the following observation: if two states do not perform
contradictory valid actions on any input symbol, then their outgoing transitions can be represented
by a single row. Note that this method compresses the transition table by reducing the number of
states.

Structure-based Compression Methods Structure-based methods compress the tables based
only on which positions in the table that represent valid transitions, and not on the transitions
themselves. In a commonly used structure-based method, called the Row Displacement method
(RDM) [AU77], the transition table is mapped to a linear array. Each row in the table is represented
by a sequence of consecutive elements in the array such that valid entries of one row do not overlap
with the valid entries of another row. The basic idea is to minimize the number of invalid entries in
the linear array. All entries in the array are tagged with the corresponding row number, and each
access now involves checking the tag to ensure the validity of the transition. The tags are usually
maintained in a separate array. Methods such as the RDM are typically used to further compress
tables resulting from content-based methods such as ESM.

Applicability to Indexing Automata It appears that the above table compression meth-
ods are not applicable for minimizing the jump table space of indexing automata. Firstly, the
content-based compression methods exploit the sharing inherent in the automata used by scanners
and parsers. But traditional trie-based indexing automata (e.g., path automata and first string
automata [RRW90]) are tree structured. This means that no two transitions lead to the same
destination state, and hence none of the content based methods apply. Secondly, since the num-
ber of possible input symbols is unbounded for indexing automata, fast access schemes for tables
compressed using RDM are infeasible.

Even when the indexing automata are structured as DAGs [KS91], the above compression meth-
ods cannot be readily applied. Note that the graph coloring method is essentially a state minimiza-
tion technique and hence yields no further compression on a DAG in which the number of states is
already minimized. The line elimination method is applicable only when there is some symbol on
which all states make a transition to the same destination state. Clearly, such transitions are not
representable without cycles® and hence line elimination method is inapplicable. It is not clear if
the indexing DAGs exhibit the symmetry needed for ESM to be effective. In any case, we show (in
section 6.2 below) that SNM naturally generalizes ESM.

6.2 SNM as a Compression Technique

We now provide experimental evidence of the effectiveness of SNM for compressing transition tables
used in scanners. It should be noted that SNM can be applied to tables already compressed using
other methods, and that these methods can also be used to compress the tables produced by SNM.
This interoperability makes SNM a valuable tool in the suite of compression strategies used in
scanners and parsers.

®Transition tables may exhibit this property after factoring out error entries. However, note that error factoring
involves maintaining an independent array that records which positions in the transition table contain valid transitions,
and is not suited for making fast transitions.

12

Program | Full Table ESM | ESM + RDM | SNM | Min. Space |

Cdecl 109568 | 29140 (73.40%) | 23872 (78.21%) | 14208 (87.03%) | 10724 (90.21%)
Coral 79872 | 32644 (59.13%) | 25944 (67.52%) 8940 (88.81%) 8460 (89.41%)
Course 92160 | 43268 (53.05%) | 36380 (60.53%) | 12628 (86.30%) | 11676 (87.33%)
Detex 143360 | 55708 (61.14%) | 40628 (71.66%) | 19236 (86.58%) | 15132 (89.42%)
Equals 154112 | 57424 (62.74%) | 59684 (61.27%) | 23288 (84.89%) | 18884 (87.75%)
Flex 161280 | 56288 (65.10%) | 21076 (86.93%) | 14140 (91.23%) 9168 (94.32%)
Postgres 95232 | 38024 (60.07%) | 38076 (60.02%) | 17588 (81.53%) | 14016 (85.28%)
Storm 66048 | 24064 (63.57%) | 23220 (64.84%) | 12172 (81.57%) | 10296 (84.41%)
Web2C 134656 | 56568 (57.99%) | 52728 (60.84%) | 29092 (78.47%) | 19324 (85.65%)

Table 3: Space usage (in bytes) of various scanner table compression methods.

SNM, as presented thus far in the paper, is a structure-based compression technique. However,
it can be easily generalized to become a content-based method as follows. The numbering function
was defined as a one-to-one function from the set of symbols to a set of integers. We now generalize
the numbering function to be a many-to-one function with the constraint that two symbols are
mapped to the same integer if and only if the they make the same transitions from every state.
Two symbols are mapped to the same integer if and only if they belong to the same equivalence
class (as defined by ESM), thus generalizing ESM.

Table 3 compares the space compression obtained by SNM to those obtained by traditional
methods on different scanners. All scanners were automatically generated using Flex. The table
lists the total space used to represent the transition tables and includes support structures, such
as the tag table for RDM and the bounds tables for SNM. The scanners listed in the table were
taken from various systems: Cdecl, a system for encoding C and C++ type-declarations; Coral,
a deductive database system; Course, a compiler for a Pascal-like language (used in a compilers
course); Detex, an utility to remove TeX commands from a text file; Equals, a functional lan-
guage compiler; Flex, a scanner generator; Postgres, a database management system; Storm, an
equational theorem prover; and Web2C, a Web to C translator.

In the table, the space requirements of the uncompressed transition tables are listed under
Full Table. Columns ESM and ESM+RDM list the space used to represent the transition tables
after applying ESM and ESM followed by RDM respectively. Column SNM lists the space used
after applying SNM. The last column, Min Space, lists the minimum space needed to represent
the valid transitions, and indicates the sparseness of the transition tables. Each column also lists
the percentage reduction in space achieved by the compression technique (compared to the space
occupied by the full table).

Observe from Table 3 the effectiveness of SNM in reducing space usage. In particular, SNM
results in compression factors of over 78% in all the examples, and obtains better compression than
any other compression scheme. Furthermore, the compression achieved by SNM is close to the
maximum possible.

Recall that compression techniques trade table space for access time. Accessing tables com-
pressed using ESM takes typically 20% longer than accessing full (uncompressed) tables, while
compression using ESM+RDM incurs an overhead of 50%. Tables compressed using SNM typically
take 65% longer time to access than uncompressed tables. Scanner generators usually compress

13

ESM tables using methods that do not guarantee constant access times. Such methods can achieve
compression factors of more than 80% but result in access time overheads of more than 120%. Note
that SNM offers a good compromise with 80% space compression and 65% access time overhead.
Thus, SNM is a useful compression technique that can be added to the suite of methods currently
used to compress scanner tables.

7 Conclusion

Efficient indexing is crucial for high performance logic programming systems. Advanced techniques
such as unification factoring have resulted in substantial reduction in program execution times.
With the increase in proportion of time spent in indexing, it is even more important that the ele-
mentary indexing operations themselves are as fast as possible. Jump tables are an effective means
of achieving fast, constant-time transitions in indexing automata. In fact, as our experimental re-
sults show, indexing based on jump tables is significantly faster than hash-based indexing. Thus in
programs that rely heavily on indexing, the overall execution times can be substantially improved.
However, jump tables are seldom used in implementations since they are usually sparse. In this
paper, we have addressed the problem of improving the space efficiency of jump tables, thus making
the use of jump tables practical.

We devised a scheme that makes jump tables dense, by suitably numbering the symbols. We
showed that the problem of determining the numbering scheme that minimizes the total space of
jump tables is NP-complete, and presented an efficient heuristic, called the Symbol Numbering
Method, to reduce the total space. Experimental results indicate that jump tables improve the
overall execution time of Prolog programs, even compared to the fastest hashing method. Further-
more, the space efficiency of jump tables obtained using SNM is often better (and no worse) than
that of hash tables. Moreover, SNM is general in the sense that it provides an effective scheme for
compressing transition tables of finite state automata, such as scanners and parsers.

References

[AUTT] A H. Aho and J.D. Ullman. Principles of Compiler Design. Addison-Wesley, Reading,
Mass., 1977.

[Bel74] J.R. Bell. A compression method for compiler precedence tables. In Proc. of the IFIP
Congress 74, pages 359-362, Stockholm, August 1974.

[Car87] M. Carlsson. Freeze, indexing and other implementation issues in the WAM. In Inter-
national Conference on Logic Programming, pages 40-58, 1987.

[CHK85] G.V. Cormack, R.N.S. Horspool, and M. Kaiserswerth. Practical perfect hashing. The
Computer Journal, 28(1):54-58, 1985.

[Chr89] J. Christian. Fast Knuth-Bendix completion : Summary. In RTA’89, pages 551-555.
Springer-Verlag LNCS 355, 1989.

[CRR92] T. Chen, I. V. Ramakrishnan, and R. Ramesh. Multistage indexing algorithms for
speeding Prolog execution. In Joint International Conference/Symposium on Logic Pro-
gramming, pages 639-653, 1992.

14

[DDH84]

[DRR+95]

[FKS84]

(GI79)

[HMS9]

[KS91]

[McC92]

[PN91]

[RRW90]

[SRR92]

P. Denker, K. Diirre, and J. Heuft. Optimization of parser tables for portable compilers.
ACM Transactions on Programming Languages and Systems, 6(4):546-572, October
1984.

S. Dawson, C. R. Ramakrishnan, I. V. Ramakrishnan, K. Sagonas, S. Skiena, T. Swift,
and D. S. Warren. Unification factoring for efficient execution of logic programs. In
ACM Symposium on Principles of Programming Languages, pages 247-258, January
1995.

L. Fredman, J. Komlés, and E. Szemerédi. Storing a sparse table with O(1) worst case
access time. Journal of the ACM, 31(3):538-544, July 84.

M. Garey and D. Johnson. Computers and Intractibility: A Guide to the Theory of
NP-Completness. W.H. Freeman and Company, 1979.

T. Hickey and S. Mudambi. Global compilation of Prolog. Journal of Logic Program-
ming, 7:193-230, 1989.

S. Kliger and E. Shapiro. From decision trees to decision graphs. In North American
Conference on Logic Programming, pages 97-116, 1991.

W. McCune. Experiments with discrimination-tree indexing and path indexing for term
retrieval. Journal of Automated Reasoning, 9:147-167, 1992.

D. Palmer and L. Naish. NUA-Prolog: An extension to the WAM for parallel Andorra.
In International Conference on Logic Programming, pages 429-442, 1991.

R. Ramesh, I. V. Ramakrishnan, and D. S. Warren. Automata-driven indexing of Prolog
clauses. In ACM Symposium on Principles of Programming Languages, pages 281-290.
ACM Press, 1990.

R. C. Sekar, I. V. Ramakrishnan, and R. Ramesh. Adaptive pattern matching. In
International Conference on Automata, Languages, and Programming, number 623 in
LNCS, pages 247-260. Springer Verlag, 1992. To appear in SIAM J. Comp.

15

