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Abstract

The incorporation of tabulation into resolution methods ([3, 5]) has proven effective for computing
the well-founded semantics in a goal-oriented manner. It has also given rise to an extremely efficient
evaluation method for in-memory deductive databases [12]. Perhaps because these results are quite recent,
the problem of optimizing tabled clause resolution has remained open, despite the fact that optimizing
term indexing has been extensively studied in Functional Programming, and optimizing program clause
unification in Logic Programming.

We address the problem of statically optimizing clauses by using a family of Clause Resolution Au-
tomata (CRA), to characterize the general nature of resolution in tabled programs. The members of the
family exhibit different behavior depending on whether a predicate is tabled, on the information known
about modes, and on whether clause order is to be preserved. We first derive complexity results for the
members of this family. For classes of programs where optimal CRA’s can be constructed in polynomial
time, dynamic programming algorithms are specified for their construction. For those classes of programs
where construction of optimal CRA’s is not known to be polynomial, we develop heuristics for construct-
ing CRA’s and establish their properties. Finally, we present experimental results that show the impact
of our approach on the performance (time and space usage) of a set of representative programs.
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1 Introduction

SLG resolution [4, 6] is emerging as a powerful technique for combining Deductive Databases, Non-monotonic
Reasoning and Logic Programming. SLG is a generalization of SLD resolution with tabling. A form of SLD
with tabling has been shown in [13] to be asymptotically equivalent to a variant of magic templates [11].
Among properties relevant to deductive databases, SLG evaluates programs according to the well-founded
model [16], terminates for programs with bounded term size, and has polynomial data complexity for Datalog
programs with negation. SLG is amenable to efficient implementation, as shown by the performance of the
XSB system [12]. In particular, the XSB system has been shown to compute in-memory deductive database
queries about an order of magnitude faster than current semi-naive methods, and to compute Prolog queries
with little loss of efficiency when compared to well known Prolog systems [14].

Like other tabling methods, SLG evaluates programs by recording subgoals (referred to as calls) and their
provable instances (referred to as answers) in a table. In particular predicates are marked a priori as either
tabled or nontabled, and clause resolution, which is the basic mechanism for program evaluation, proceeds
as follows. For nontabled predicates the subgoal is resolved against program clauses. For tabled predicates,
if the subgoal is already present in the table, then it is resolved against the answers recorded in the table;
otherwise the subgoal is entered in the table, and its answers, computed by resolving the subgoal against
program clauses, are also entered in the table. For both tabled and nontabled predicates, program clause
resolution is carried out using SLD.

Each clause resolution step results in several elementary operations. Specifically, entering a call or an
answer into the table, referred to as call tabling and answer tabling respectively, requires elementary lookup
(to check whether the call or answer already exists in the table) and insert operations. Program clause
and answer clause resolution results in elementary unification operations (match operations and variable
bindings). For example, resolving the goal p([+,a], W)! for the first time against the tabled predicate in
Figure la results in the following operations. To enter it in the table requires 6 table insert operations, one
per symbol.Z The program clause resolution step that follows call tabling results in 4 unification operations
(2 match operations and 2 bindings) to unify the call with the first clause head, an additional 4 unification
operations to unify with the second clause head, and 2 more before failing to unify with the third clause
head. Tabling the answer p([+, a], []) requires 6 table insert operations. Backtracking through this answer
clause on a subsequent call involves 6 unification operations.

Improving the performance of clause resolution steps by reducing the number of elementary operations
is the topic of this paper. For a simple exposition of potential optimizations, consider the above example.
Observe that to unify the goal p([+, a], W) with the first two program clause heads, we need only perform
2 match operations (involving the outermost cons and +) and 4 bindings (for the four head variables), i.e.,
we can share some of the unification operations. Traditionally, in tabling systems the call is always tabled
prior to performing any unification operation [4, 15, 17]. But now suppose that in the above example we
perform tabling operations after unifying the goal with the outermost cons and +. Since all the answers have
the form cons(+,...), and the corresponding unifications have already been performed, we need not enter
these two symbols in the answer table. This saves both table space and associated table insert operations.
Furthermore, since the outermost cons and + have been matched they need not even be entered in the call
table.

We present a technique called clause resolution factoring that improves the efficiency of clause resolution by
sharing some unification operations and avoiding some table lookup/insert operations by suitably interleaving
the unification and tabling operations, as illustrated in the above example. Clause resolution factoring is a
compile time technique and is presented as a source transformation. For instance, the program in Figure la
can be transformed to the program in Figure 1b by clause resolution factoring. Resolving the goal p([+, a], W)
for the first time in the transformed program results in 7 unification operations and 8 tabling operations to
insert both the goal (p2([a], W)) and the answer (p2([a], [])) into the tables. In general there are different ways
to share and interleave operations in a program, yielding transformed programs with differing performance.
The design of optimal clause resolution factoring, i.e., factoring that yields a program that has the best
performance, is addressed in this paper.

1We assume Prolog syntax for lists. e.g. the list [+, a] denotes the list cons(+, cons(a, nil)).
2We assume that each tabled predicate is associated with its own table. Hence we need not store p in the table.



:— table p2/2.

:- table p/2. p([XI1Y1,Z) :- p1(X,Y,Z).
p([+1X1,Y) :- p(X,Z), p(Z,V). pl(+,X,Y) :- p2(X,Y).
p([+1X]1,Y) :- p(X,Y). pi(a,X,Y) :- X =Y.
p([alX],Y) :- X =Y. p2(X,Y) :- p(X,Z), p(Z,Y) .

p2(X,Y) :- p(X,V).

(a) (b)

Figure 1: Sample program before (a) and after (b) clause resolution factoring

We model the resolution process in SLG by a clause resolution automaton (CRA) whose states and tran-
sitions capture elementary unification and tabling operations. By associating appropriate costs with these
states and transitions, a least cost CRA would correspond to optimal clause resolution. We present the-
oretical results related to the construction of optimal CRA’s and provide strong experimental evidence of
the effectiveness of CRA’s in practice. This paper significantly generalizes very recent work in [7] where we
developed a technique for sharing unification operations in Prolog-style SLD clause resolution. But SLG’s
tabling mechanisms add a new and difficult dimension to factoring clause resolution. Moreover, we had left
open the problem of efficiently sharing unification operations in SLD resolution when the modes of arguments
in the call are known. This problem is also addressed here. The paper is organized as follows. Section 2
formalizes CRA, and Section 3 describes appropriate cost measures for it. Complexity results concerning
construction of optimal CRA’s appear in Section 4. The table below is a summary of these results.

Without mode information With mode information
Computing optimal CRA Computing CRA cost (Seq. or Nonseq.)
Sequential Nonsequential For given CRA For optimal CRA
Nontabled t N .
Datalog P NP-complete NP-complete NP-hard
Nontabled Pt NP-complete NP-complete NP-hard
general
Tabled . " . .
Datalog P NP-complete NP-complete NP-hard

The column labeled Sequential refers to the Prolog-style textual-order clause selection strategy used for
program clause resolution, while Nonsequential refers to arbitrary clause selection. Results independently
proved in this paper are marked with “+”, while results marked with “}” were proved in [7]. Each of
the remaining results is a direct consequence of one of the other results in the table. In Section 5 we
develop heuristics for those cases where optimal CRA construction is computationally difficult and provide
experimental evidence about their effectiveness. Discussion appears in Section 6.

2 Clause Resolution Automata

A clause resolution automaton provides a formal framework for clause resolution factoring. It is structured
as a tree, with the root as the start state, and the edges, denoting transitions, representing elementary
unification operations. Every state is labeled either Tabled or Nontabled, and call and answer tabling
operations are done only in the tabled states. Every leaf state represents a program clause, and states
encountered and transitions made on the path from the root to a leaf are the tabling and elementary
unification operations needed to unify the head of that clause with a goal. CRA’s elegantly capture sharing
of unification and tabling operations in program and answer clause resolution®. Specifically, shared edges
represent common unification operations that are needed to unify the goal with two or more clauses, and
shared tabled states represent tabling operations common to the clauses. Note that since the transitions
represent unification operations, all possible transitions out of a state are attempted; i.e., the automaton is
non-deterministic. Below, we formalize the CRA, following (and generalizing) our formalism in [7].

3The degree of sharing in answer clause resolution is limited to portions common to program and answer clauses.



Preliminaries We assume the standard definitions of term and the notions of substitution and subsump-
tion of terms. A position in a term is either the empty string A that reaches the root of the term, or =.i,
where 7 is a position and i is an integer, that reaches the i** child of the term reached by 7. By t|, we denote
the symbol at position = in ¢. For example, p(a, f(X))|2.1 = X. We denote the set of all positions by II.
Terms are built from a finite set of function symbols F and a countable set of variables VUI}, where V is a set
of program variables and Vis a set of position variables. The variables in the set V are of the form X, where
7 is a position, and are used simply as a notational convenience to mark certain positions of interest in a
term. The symbol ¢ (possibly subscripted) denotes terms; a, @', ... denote elements of the set FUYV; v,%', ...
denote elements of the set ZFUVUII; and f, g, h denote function symbols. The arity of a symbol « is denoted
by arity(a); note that the arity of variable symbols is 0. Simultaneous substitution of a term ¢’ at a set of
positions P in term ¢ is denoted t[P — t']. For example, p(X1, f(X2.1), X3)[{2.1,3} — b] = p(X1, f(b),b).

Operationally, a CRA is the computational vehicle for performing clause resolution. At any given state in
a CRA’s computation, we need to capture the operations that have been performed, as well as those that
remain to be done. The partial computation of unification is captured by a skeleton, which is a term over
FUVYUYV. Elements of FU YV in a skeleton represent unification operations that have been performed.
Position variables denote portions of the goal where the remaining operations will be performed. Given a
skeleton, its fringe defines the positions to be explored for unification to progress. Formally,

Definition 2.1 (Skeleton and Fringe) A skeleton is a term over F UV U V. The fringe of a skeleton S,
denoted fringe(S), is the set of all positions 7 such that S| = X, and X, € V.

For example, for the goal q(f(U), V, W) the skeleton ¢(X1,Y,9(Xs.1, X33, X3.3)) captures the fact that the
substitution for W has been partially computed (to be g(Xs.1, X3.3, X3.3)), the head variable Y has been
unified with the second argument of the goal (V'), and that the first argument of the goal has not yet been
explored. The fringe of this skeleton is {1, 3.1, 3.3}.

With each state, either tabled or nontabled, we associate a skeleton that represents the partial computation
of unification, and a subset of clauses, called the compatible set of the state. The clauses in the compatible set
share the unification and tabling operations on the path from the root to that state. Recall that the fringe ofa
skeleton represents the positions in the partially unified goal that remain to be explored. A state then specifies
one such position, and each outgoing transition represents a unification operation involving that position.
We label the transition by <+, where « is either a function symbol or variable in the clause head, or another
position in the (partially unified) goal. For example, in Figure 2 the label on the transition from s; to s3
specifies unifying position 1.1 of the goal with +. The compatible set for state s3 consists of clauses 1 and 2.

Let the skeleton of the current state be S and the position examined be w. The skeleton of the desti-
nation state reached by a transition labeled v is obtained by extending the skeleton S using the operation
extend(S, 7,v) defined below. Intuitively, S is extended by replacing all occurrences of X in S by the term
corresponding to v. If v is a function symbol, this term has v as root and position variables representing
new fringe positions as its children. If v is a position, this term is the position variable X,. Otherwise, this
term is the variable « itself.

Definition 2.2 (Skeleton extension) The eztension of a skeleton S at fringe position 7 by v, denoted
extend(S, 7,v), is the skeleton S’ such that

S' = S[P —1t] where P={r'|S|p =Xr}
Y(Xr1y---, Xxr) (v € F and k = arity(y))

and t=<( v (vev)
Xy (y € 1)

For example, in the skeleton ¢(X1, g(X2.1, X2.3, X2.3)), the operation of unifying position 1 with f/1 results
in extending the skeleton to g(f(Xi1.1),9(X2.1, X2.3,X2.3)). The operation of unifying position 1.1 with
position 1.2 further extends the skeleton to q(f(X2.1), 9(X2.1, X2.3, X2.3)).

Definition 2.3 (Clause Resolution Automaton) A clause resolution automaton for a set of clauses C
and a skeleton S is an ordered tree whose edges are labeled with elements of the set UV UII, and with
each node s (a state) is associated a label L,, a skeleton S;, a position «, € fringe(S,) (if s is not a leaf),
and a non-empty compatible set C; C C of clauses such that:
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Figure 2: Clause resolution automaton for program in Figure la

L, € {Tabled, Nontabled},
Every clause head in C, is subsumed by S;,

the root state has S as the skeleton and C as the compatible set,
for each edge (s,d) with label v, Sg = eatend(S,, 7,,7), and

TR W N =

the collection of sets {Cq | (s, d) is an edge} is a partition of C,.

The partitioning of the compatible set C, at a fringe position 7, in the above definition ensures that
transitions specify unification operations involving =, in the goal, and either: 1) a function symbol or
variable appearing at =, in at least one of the clause heads in C,; or 2) another (fringe) position in the
goal. Each set in the partition is a compatible set of one of the next states of S,, and all the clause heads
in it share the unification operation specified by the corresponding transition. Note that, for a nontabled
predicate, all states in the CRA will be labeled as Nontabled. We call such a CRA as a nontabled CRA.

Construction Using the program in Figure 1 (p. 2) and the corresponding automaton in Figure 2 for
illustration, we informally describe the construction of a clause resolution automaton. For a predicate p/n
an automaton is built incrementally starting with the skeleton p(X1,..., X,) for the root state s; and the
set of clauses defining p/n as its compatible set. If p/n is a tabled predicate, we can choose the label of the
start state to be Tabled, in which case no other state in the automaton need be tabled. If we label the start
state as Nontabled, then some descendent states in each of the root-to-leaf path in the automaton need to be
labeled as Tabled. From a given state s we “expand” the automaton as follows. We first choose a position
w, from the fringe of its skeleton S,. We then partition the compatible set C, into sets Cyq,,...,Cq4, such
that in each Cy;,, all clause heads specify the same operation of unifying v; at w,%.

For example, at state s, in Figure 2, the compatible set, containing all three clauses, is partitioned into a
set containing clauses 1 and 2, which share the operation of unifying position 1.1 in the goal with +, and
a set consisting of clause 3, which has the operation unifying position 1.1 with a. We create new states
d1,...,dy such that for each state d;, Cy; is its compatible set, Sg; = eatend(S,, 7,,7;) is its skeleton, and
the edge (s, d;) is the transition into d;, labeled with +;. The process of expanding the automaton is repeated
on all states that have non-empty fringes. The CRA in Figure 2 is an example of applying this construction
process to the program in Figure 1. Tabled states in the CRA are shaded (e.g.,s3). Observe that our
formalism allows us to model selective tabling of clauses in a predicate. For example, only the first two
clauses of predicate p are tabled in Figure 2. It is quite straightforward to transform a CRA into a tabled
logic program (see Fig. 1b). The details are omitted.

Operation Unification of a goal with the clause heads of program clauses begins at the root of the automa-
ton. From each state, a transition is made to the next state by performing the specified unification operation
on the partially unified goal. If more than one transition is possible, the first such transition is made, and

*Variable symbols in distinct clauses are assumed to be distinct



the remaining transitions are marked as pending. When a leaf is reached, the body of the corresponding
program clause is invoked.

With each tabled state we associate a call table that records all goals encountered by this state. With each
goal in the call table, we associate an answer table that holds all the answer substitutions computed for the
goal. When a tabled state is reached, the partially unified goal is checked against the call table associated
with the state. If a variant of the goal® is not found in the table (:.e., the goal had not been encountered
before), an entry for this goal is made in the table. As the answer substitutions for the goal are computed,
they are entered into the answer table associated with the goal. If a variant of the goal is found in the call
table, the answer substitutions are computed by backtracking through the entries in the return table. Note
that the constant portions of the goal that have been seen during unification need not be entered in the call
table. Similarly, they need not be entered in the goal’s answer table, as all the answers share this common
portion. Whenever failure occurs, either within the automaton (due to failure of a unification operation), or
during execution of a clause body, the automaton backtracks to the nearest state with pending transitions.
The process then continues with the next pending transition. The automaton fails on backtracking when
there are no states with pending transitions. This informal description of the automaton’s operation can be
formalized, and its soundness and completeness can be readily established; these are routine and omitted.

Recall that while constructing a CRA, the compatible set of a state is partitioned into a collection of sets,
each of which in turn is the compatible set for one of the destination states. The implication of such set
partitioning is that clauses selected for resolution need not follow Prolog’s textual top-to-bottom order. To
preserve this sequential order, each state in the automaton must consider its compatible clauses as a sequence
and partition this sequence into a collection of subsequences. For this we introduce the following concept of
sequential clause resolution automaton (SCRA).

Definition 2.4 (Sequential Clause Resolution Automaton) A sequential clause resolution automaton
(SCRA) for a sequence (c1,c¢2,...,c,) of clauses is a CRA A such that, in a left-to-right preorder traversal
of A, leaf i is visited before leaf i + 1, for 1 < i < n.

An SCRA faithfully models Prolog-style selection of program clauses for resolution. (See appendix for an
example.)

3 Optimization Criteria

Recall that the elementary operations (and thus, the costs) associated with clause resolution fall into three
categories:

e Unification: Unifying a goal with the heads of program clauses and answers;
e Call tabling: Checking for the presence of a goal in the call table and, if necessary, inserting it;

e Answer tabling: Inserting the answers for a goal into its answer table.

Each elementary operation is assumed to have unit cost, and the cost of resolving a goal is the total number
of elementary operations performed in the three categories. Note that the unification operations in answer
clause resolution modeled by a CRA are limited to those common to program clauses and answers. For
simplicity, we account only for unification operations in program clause resolution. However, we can use
more refined cost measures that account for unification in answer clause resolution and variations in the
costs of different elementary operations, without affecting the results presented in this paper.

For a given goal and CRA, the cost of resolving the goal via the CRA is accounted as follows. At any state,
if any outgoing transitions are possible, unification cost is proportional to the number of such transitions.
Otherwise, the cost is 1 (for failure). For example, at the root state of the CRA in Figure 3a, two unification
operations are performed for the goal p(b, ¢, d,b). At a tabled state, call tabling cost is proportional to the
number of symbols that must be entered into the table. Any subterms in the goal that were unified with
constants along the path leading to this state need not be entered into the call table. Thus, in Datalog, for

5A term is a variant of another if they are identical up to variable renaming.
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Figure 3: CRA’s demonstrating dependence of performance on different operations

example, the number of call tabling operations at a tabled state can be counted as the arity of the predicate,
less the number of constants along the path leading to that state. For example, the number of call tabling
operations performed at the state marked * in Figure 3a is 3 for goal p(b, a,c,b). Answer tabling costs are
counted in the same way, but observe that the operations must be performed for every answer derived.

The number of operations performed depends on both the goal and the CRA with which the operations
are performed. For example, the resolution of the goal p(b,a,c,b) via the CRA in Figure 3a requires 14
unification operations, 5 call tabling operations, and 5 answer tabling operations, while its resolution via
the CRA in Figure 3b requires 13 unification, 3 call, and 6 answer operations. On the other hand, goal
p(b, ¢, d, b) requires 7 unification, 3 call, and 3 answer operations for the first CRA, and 8 unification, 3 call,
and 3 answer operations for the second. Thus the relative costs of two CRA’s vary with the goal. While
we may have certain information about goals (such as modes) at compile time, the goals themselves are
unknown in general. Hence, we choose the worst case performance of a CRA as the measure of its cost. An
optimal CRA, then, is one that minimizes the worst-case cost.

The overall worst-case cost of a CRA is determined by both its structure (the arrangement of states and
transitions) and the choice of tabled states. Unification cost is determined by structure alone, while call and
answer tabling costs are determined by both the structure and tabled states, implying that construction of
an optimal CRA must take into account simultaneously all three costs. A CRA constructed to minimize one
or two of the costs does not always minimize the total cost, as illustrated by the CRA’s in Figure 3.

The CRA’s in the figure were constructed for Datalog predicates in the absence of mode information. The
worst-case cost of such CRA’s corresponds to open goals, i.e., goals whose arguments are all variables, since
(1) an open goal traverses the entire CRA, and (2) for Datalog, tabling an open goal is as expensive as tabling
any other goal. The CRA in Figure 3a was constructed to minimize the number of unification operations
(21), and then tabled states were selected to minimize the number of call (7) and answer (7) operations for
that automaton. However, the CRA in Figure 3b has a lower total number of operations (34) in the worst



case, despite having a greater number of unification operations (22). Hence, first minimizing unification cost
does not guarantee an optimal CRA. As a consequence, minimizing only unification and answer costs does
not guarantee an optimal CRA, since answer costs are always minimal for any CRA with leaves as tabled
states. Similarly, Figures 3¢ and 3d show that minimizing call costs or call and answer costs alone does
not guarantee optimality. Finally, Figures 3e and 3f demonstrate that minimizing unification and call costs
together is insufficient. Thus, we can conclude

Theorem 3.1 Any method for constructing optimal CRA’s must simultaneously account for unification, call
tabling, and answer tabling costs.

4 Complexity of Optimizations

The complexity of compile-time optimizations for clause resolution depends on a number of factors: (1)
whether a predicate is tabled or nontabled, (2) whether a predicate is Datalog or general, (3) the presence of
mode information, and (4) the need to preserve clause order (sequentiality). The special case of nontabled
predicates in the absence of mode information was addressed in [7]. Of the remaining cases, Section 4.1
deals with tabled Datalog programs in the absence of mode information. Section 4.2 covers both nontabled
and tabled Datalog programs in the presence of mode information. Finally, tabled general programs are
addressed in Section 4.3.

4.1 Tabled Datalog without mode information

Recall that, in the absence of mode information, open goals result in the worst-case cost of CRA’s for Datalog
predicates. When textual clause order must be preserved, we exploit this property to construct an optimal
SCRA in polynomial time. On the other hand, when textual order need not be preserved, we show that
constructing an optimal CRA becomes NP-complete.

Sequential In an SCRA the compatible set associated with any state is a sequence of clauses, and the
transitions from a state partition its compatible set into subsequences. Consequently, any subautomaton
of an optimal SCRA must be optimal for the subsequence of clauses in the compatible set associated with
the root of the subautomaton. Furthermore, for an optimal SCRA it can easily be shown that no two
adjacent transitions from a state can have the same label. These properties, along with the fact that the
worst-case unification, call, and answer costs result from open goals, enable us to combine the worst-case
costs of subautomata to compute the overall worst-case cost. This leads to a recurrence for the worst-case
total cost of an optimal SCRA that can be solved in polynomial time using dynamic programming.

To construct an optimal SCRA for a sequence C of clauses and initial skeleton S, we consider, for each
position in the fringe of S, the least cost SCRA that can be constructed by first inspecting that position.
The transitions out of a state and their order are uniquely determined by the position chosen. Recall that
the transitions partition of the compatible set into subsequences. We construct an optimal subautomaton for
each subsequence and the corresponding extended skeletons. If the root state is tabled, then we need only
consider subautomata that have no tabled states. Otherwise, we need to consider for each subautomaton,
one that is tabled at its root, and one that is tabled below the root, retaining the one with lower cost. These
optimal subautomata can then be combined into an optimal automaton rooted at the given position.

Given n clauses with at most m symbols in each clause head, an optimal SCRA can be constructed in
O(n*m(n + m)) time. Therefore,

Theorem 4.1 An optimal SCRA can be constructed in polynomial time.

The details of the dynamic programming solution and the analysis of its complexity are given in the appendix.

Note that computing the worst-case cost of an SCRA depends on knowing the number of answers for each
clause. If the number of answers can be estimated at compile time, the dynamic programming algorithm
can be used to build an SCRA that is optimal for that measure of answers. When answer costs are unknown



and cannot be estimated reliably at compile time, we need heuristics to build a more optimal SCRA. Below,
we propose two heuristics and show bounds on their optimality.

Heuristic 1 Ignore call tabling costs. If call costs are ignored, the optimal automaton is the SCRA optimized
for unification cost alone, with leaves as tabled states. Note that this automaton, denoted A;, can be
constructed independent of the number of answers per clause, although its cost, denoted (uq, ¢1, a1),
may not be known.

Heuristic 2 Ignore answer tabling costs. Clearly, an automaton that minimizes the sum of unification and
call costs can be built in polynomial time. Let the cost of this automaton, Az, be (uz, ¢z, az).

Let the cost of the optimal automaton, A,y be (Uopt, Copt, @opt). Note that since A; is the optimal
automaton for unification cost alone, u; < uy and u; < uops. Furthermore, a; < a3 and a; < aqp. Also,
Uz + ¢z < up +c1 and uz + c2 < Ugpt + Copt-

Bound on Heuristic 1 The difference between the costs of A; and Aop; is at most (u1 + ¢1) — (u2 + ¢2),
since (u1+c1+a1) — (Yopt +Copt + opt) < (v1+c1+a1) —(uz+c2+aopt) < (v1+ec1+a1)—(u2+e2+aq).

Bound on Heuristic 2 The difference between the cost of .A; and the cost of A,p; is at most az —ay, since
(uz + c2 + az) — (Uopt + Copt + Gopt) < (uz + c2 + az) — (uz + ¢z + a1).

Nonsequential In general, a nonsequential CRA does not have the property that transitions from a state
partition its compatible set into subsequences. Rather, the transitions may partition the compatible set into
subsets, and the construction of an optimal nonsequential CRA may require enumerating a large number of
such subsets of clauses. In fact, we show

Theorem 4.2 The problem of optimal nonsequential CRA construction is NP-complete.

The proof is by reduction from the set cover problem and appears in the appendix.

4.2 Datalog programs with mode information

When mode information becomes available, the worst-case cost of a CRA no longer corresponds to an open
goal, and in general, there is no goal whose resolution traverses the entire CRA. Furthermore, a goal that
yields the worst-case cost on one subautomaton may not be the same goal that yields the worst-case cost on
another. Hence, in the presence of mode information, we can no longer combine locally optimal solutions to
arrive at an optimal CRA as we did in the absence of mode information. In fact, even computing the worst-
case of a given CRA may require considering a large number of goals to identify one that yields the highest
cost. We show that this problem is NP-complete. We also generalize this result to show that the decision
problem corresponding to computing the cost of an optimal CRA in the presence of mode information is
NP-hard. These results hold for both tabled and nontabled CRA’s, sequential or nonsequential. We first
establish these results for nontabled automata, addressing a problem left open in [7]. We then generalize the
results to tabled CRA’s.

Sequential nontabled Recall that, for nontabled automata, the only cost is due to unification. Let
unifcost(A, g) denote the cost of unifying goal g via automaton A. The problem of estimating the worst-case
unification cost of a given automaton in the presence of mode information is formulated as the following
decision problem:

Worst-case cost of given nontabled automaton (NT-Given): Given a sequence H of Datalog clause
heads, a nontabled CRA Ag for H, and integer k, is there a ground goal g such that unifcost(Amg, g) >
k?

Computing the worst-case cost of an optimal nontabled automaton is formulated as



Worst-case cost of optimal nontabled automaton (NT-Opt): Given a sequence H of Datalog clause
heads and an integer k, for every nontabled CRA Ag for H is there a ground goal g such that
unifcost(Ag,g) > k?

By reduction from 3-satisfiability (3-SAT) we show

Theorem 4.3 NT-Given is NP-complete.
Theorem 4.4 NT-Opt is NP-hard.

The proofs of these theorems are given in the appendix. Note that it is unlikely that NT-Opt € NP,
since the problem of verifying the cost of an automaton (NT-Given) is itself NP-complete. Thus, while the
exact characterization of the difficulty of constructing an optimal nontabled CRA in the presence of mode
information remains an open problem, it is unlikely that there is any efficient method for building an optimal
CRA that relies on computing worst-case unification costs.

Sequential tabled Let totalcost(.A, g) represent the total cost of unification, call and answer table costs
for goal g via automaton A. We formulate the problems of computing the worst-case total cost of a given
automaton and that of an optimal automaton as follows:

Worst-case cost of given tabled automaton (T-Given): Given a sequence H of Datalog clauses, a
tabled CRA Ag for H, and integer k, is there a ground goal g such that totalcost(Ag,g) > k?

Worst-case cost of optimal tabled automaton (T-Opt): Given a sequence H of Datalog clauses and
integer k, for every tabled CRA Ag for H is there a ground goal g such that totalcost(Ag,g) > k?

We show by reduction from 3-SAT that

Theorem 4.5 T-Given is NP-complete.
Theorem 4.6 T-Opt is NP-hard.

Note that, since minimizing unification cost alone does not in general minimize total cost (Theorem 3.1),
Theorems 4.5 and 4.6 are not direct consequences of Theorems 4.3 and 4.4.

Nonsequential Theorems 4.3 and 4.5 can be immediately generalized to nonsequential automata, since
sequentiality is a special case of nonsequentiality. Theorems 4.4 and 4.6 also apply to nonsequential automata,
although the proofs do not immediately generalize. Instead, these results follow from Theorem 4.2 (and its
counterpart for nontabled automata in [7]), which represents a restricted case of mode information (in which
all arguments have unknown modes).

4.3 General (non-Datalog) programs

When programs are not restricted to Datalog, the size of a call — and hence, the cost of tabling a call — is
in general unbounded. This makes even a reasonable formulation of CRA optimization difficult. The worst-
case cost criterion used for Datalog programs is not applicable for general programs, since the worst-case
cost is unbounded in general. A modified problem we can pose is to find an automaton that minimizes the
worst-case cost for calls of a given size. However, one automaton may have better worst-case performance
over one range of call sizes, and worse in another range, compared to another automaton. Thus, comparing
asymptotic performance of two automata appears inappropriate.

Note, however, that unification cost for linear clause heads is independent of goal size. Thus, the results of
Section 4.2 for nontabled Datalog programs in the presence of mode information apply to nontabled general
programs as well (by restriction). Results for nontabled programs in the absence of mode information, both
sequential (polynomial) and non-sequential (NP-complete), are reported in [7].



5 Heuristics and Experimental Results

We now describe heuristics to build a CRA when the construction of optimal CRA’s is difficult. The
heuristic is used to build CRA’s based on the construction process discussed in section 2 (page 4), In that
construction, the automaton is expanded from a given state s by choosing a position #; from the fringe of
its skeleton S, and partitioning the compatible set C, into sets Cq4,,C4,,...,Cq, such that in each Cy4,; all
clause heads specify the same unification operation at 7,. We define a partition operation that ensures that
all common unification operations that can be shared will be shared. For example, consider the clause set
C = (p(a,b), p(b, c), p(b, X), p(a, ¢)). When clause order need not be preserved, choosing position 1 partitions
C into {p(a,bd),p(a,c)} and {p(b,c),p(b, X)}. When clause order needs to be preserved, and position 1 is
not known to be ground in all goals, C is partitioned into (p(a, b)), (p(b,c),p(b, X)) and (p(a,c)). On the
other hand, if position 1 is known to be ground in all goals, C is partitioned into (p(a,bd), p(a,c)) and
(p(b, ¢),p(b, X)). The main function of the heuristic now is choosing the position «, at each state. This
choice is influenced by several considerations, as described below.

All optimal automata have the following property: in any traversal of the automaton, a state where no
goal backtracks is always visited before a state where backtracking is possible. Hence, among all positions
in the fringe of S,, we first choose positions that ensure that no goal backtracks at state s. Observe that
backtracking cannot occur at any state that has only one outgoing transition. Furthermore, if the symbol
at 7, is nonvariable in all goals, then no backtracking is possible at s whenever (1) no outgoing transition
from s is labeled by a variable and (2) no two outgoing transitions have the same label (as can happen in
SCRA’s).

When all positions in the fringe can lead to backtracking at state s, we choose positions that allow
us to defer tabling operations to the descendent states without increasing tabling costs. Note that de-
ferring tabling operations to descendent states often decreases call and answer tabling costs. In fact, it
never increases answer costs, although it can increase call costs. For example, consider the set of clauses
{p(a,b, X),p(a,Y,c),p(b, Z,c)}. On choosing position 1 the clauses are partitioned into {p(a, b, X), p(a, Y, ¢)}
and {p(b, Z,c)}. If tabling is deferred to the descendent states, the goal p(U, f(f(...)), c) results in entering
the subterm f(f(...)) in two call tables, thereby increasing call costs. In the following, we describe a condition
under which tabling operations can be deferred without increasing tabling costs.

This condition is based on the following notion of variable overlaps. Two terms are said to have variable
overlaps at w, whenever one of them has a variable at 7w, and the other has a nonground subterm rooted
at that position. For instance, in the above example the only variable overlap among clauses p(a,b, X),
p(a,Y,c) and p(b, Z, ¢) occurs at position 2, between the last two clauses. Let =, partition the compatible
set into sets Cy,, C4,, ..., C4q,. It can be readily shown that if all variable overlaps occur only among clauses
in exactly one of the sets, say Cg;, then the choice of tabled states can be deferred to the descendent states
without increasing call costs. For instance, in the example above choosing position 3 partitions the clauses
into {p(a,b, X)} and {p(a,Y,c),p(b, Z, c)}, and all variable overlaps occur in the second set. On continuing
the construction process, tabling can be deferred to the leaf state of the subautomaton for the first clause set.
On the other hand tabling can be deferred only to the root of the subautomaton. The resulting automaton
has lower cost than any whose root is tabled.

For a given predicate, an automaton in which unifications are not shared and tabling is performed at the

root represents the operation of traditional tabling systems. Let the worst case cost of such an automaton
be costq and that of the CRA built by the heuristic for the same predicate be costp. Then,

Theorem 5.1 (Safety of Optimization) cost; < costq.

5.1 Performance

The effectiveness of clause resolution factoring is indicated by its performance in the XSB system. Table 1
shows the time and space savings that result from clause resolution factoring on a representative sample of
tabled programs®. The benchmarks used include a (left-recursive) transitive closure (the ancestor relation)
on two different EDB’s (I and II), a join of two relations, a parser for an LR(1) grammar, and a parser for

8The times in the table were averaged over multiple iterations.
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Benchmark Time (milliseconds) | Speedup || Table space (bytes) | Savings
Original | Factored Original | Factored

Transitive Closure (I) 60 49 1.22 55.56 K 36.5 K 34%
Transitive Closure (IT) 190 110 1.73 344140 52 99%
Join 181 145 1.25 68 52 24%
LR(1) (a) 4600 3170 145 || 3799 K | 3330K 12%
LR(1) (b) 1400 1200 117 || 5705 K | 2897 K |  49%
LR(1)(det) (a) 4750 3581 133 || 3799 K | 3399 K 11%
LR(1)(det) (b) 921 330 279 || 5691 K | 1449K | 75%
Ambiguous 28 9 3.10 138 K 7T K 44%

Table 1: Experimental results for clause resolution factoring in XSB

an ambiguous grammar’. The Transitive Closure and LR(1) benchmarks require tabled evaluation to ensure
termination, whereas the Join and Ambiguous benchmarks need tabling for efficiency.

Observe that factoring has reduced (substantially in many cases) the amount of information that must
be tabled, resulting not only in space savings but also savings in execution time, since the number of table
insert operations is reduced. Even in the LR(1) benchmark, where the clause heads contained little factorable
information, the selective tabling afforded by our CRA model resulted in time and space savings. In order to
increase the amount of factorable information, we enlarged the clause heads of the original LR(1) program,
yielding the LR(1)(det) program, by incorporating success and contezt conditions, using the determinacy
analysis technique of [8]. On query (b) this additional head information alone resulted in a speedup over
LR(1), and after factoring, the speedup and space savings were still greater. On query (a) there was a
slight slowdown on LR(1)(det) as compared with LR(1). However, LR(1)(det) has the potential for even
more optimization (e.g., from specialization), indicating the possible benefits of combining clause resolution
factoring with other optimization techniques.

6 Discussion

In order to make optimal use of CRA’s, a tabling system must in fact treat unification and backtracking
uniformly whether it occurs in program or answer clauses. We note that it is possible for engines with
different evaluation strategies to have this property. As an instance, the SLG-WAM, the engine underlying
the XSB system, can compile predicates so that they are evaluated using a mostly breadth-first strategy
that approximates semi-naive evaluation. This strategy will also be able to use CRA’s.

It is apparent that most optimization methods for deductive databases address different problems entirely.
As one example, supplementary magic sets [2] optimizes the body of clauses, folding EDB calls into new
tabled predicates to minimize redundant subcomputations. As another, NRSU-factoring [10] can project
instantiated variables out of a clause head, but uses mode information, and information about query reach-
ability to do so. We should mention that both of these techniques have proven useful for the SLG-WAM.

Techniques used in formulating and optimizing CRA’s stem from optimization traditions outside of the
deductive database community: those of term indexing and partial evaluation. Given a non-tabled predicate
together with information that all arguments of input will be fully ground, CRA’s can be seen as a non-
deterministic discrimination net [1]. Given a non-tabled predicate and no mode information, CRA’s reduce
to Unification Factoring Automata [7]. CRA’s thus generalize both of these techniques.

Optimizing clause resolution using CRA’s opens several avenues for further research. One is the the use
termination analysis to determine when a subset of clauses of a predicate may need to be tabled, and to
incorporate this information into constructing a CRA. We believe that this technique will be especially
useful for modules of a program which require tabling to ensure termination, but which are not particularly
data-oriented. Another is the use CRA’s as a building block for specialization of literals in the bodies of
clauses.

7 All benchmarks were run on a Sun SparcStation 20, using SunOS 5.3 and XSB version 1.4.1. Benchmark programs and
queries appear in the appendix.
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A Appendix

This appendix contains only supplementary reference material for the convenience of the referees.

A.1 Non-sequential CRA example

The (nontabled) CRA’s in Figure 4 illustrate the difference between non-sequential (b) and sequential (c)
automata. While the non-sequential automata is able to share the operation unifying argument 1 with a, it
does not preserve clause order; the sequential CRA preserves the clause order.

p(b, X2) S pa, X;) Ssf p(b, Xp)  Sal p(a, Xz)

¢ b c d
@, d) b0, ) b, @, o)

(a) (b) (c)

Figure 4: Non-sequential (b) and sequential (¢) CRA’s for predicate (a)

A.2 Optimal SCRA construction without mode information

Dynamic programming The following three readily established properties of an optimal SCRA are used
in its construction.

Property 1 Each subautomaton is optimal for the clauses in the compatible set and skeleton associated
with the root of the sub-automaton.

Property 2 Any unification that can be shared will be shared. That is, in an optimal SCRA, no two
adjacent transitions from any given state have the same label.

Property 3 Transitions from a state partition its compatible set of clauses into subsequences.

A consequence of the three properties is that worst-case call table and answer costs of an automaton can be
estimated in polynomial time. Using the above properties, we formulate a recurrence on the cost (and hence
construction) of an optimal SCRA, and solve the recurrence in polynomial time using dynamic programming.

To construct an optimal automaton for a sequence of clauses C and initial skeleton S, we consider, for each
position in the fringe of S, the least cost automaton that can be constructed by first inspecting that position.
If the root state of this automaton is a tabled state, then all states in the sub-automata are nontabled. On
the other hand, if the root of this automaton is not a tabled state, then each of the sub-automata have at
least one state that is tabled.

From Properties 2 and 3 it follows that the transitions out of a state and their order are uniquely determined
by the position chosen. Since these transitions represent the partition of the compatible set of clauses, to
construct an optimal automaton for a given start position, we first compute this partition. We construct
two automata for each sequence of clauses in the partition and the corresponding extended skeletons — the
optimal automaton with tabled states and the optimal automaton with no tabled states. From Property 1 it
follows that these optimal sub-automata can be combined to produce an optimal automaton for the selected
start position. The lowest cost automata among the automata constructed for each position is an optimal
SCRA for C and S. The recursive construction sketched above lends itself to a dynamic programming
solution, and is formalized below:

We use a function part to partition the clause sequence C into the minimum number of subsequences that
share unification operations at this position.
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Definition A.1 (Partition) Given a sequence (t1,...,t,) of clause heads corresponding to the sequence
of clauses C, a pair of integers (i,i), 1 < i < i < n, and a position «, the partition of C by =, denoted
part(i, i, «), is the set of triples (o, 3,7"), i < j < j' < i, such that j and j' are the end points of a mazimal
subsequence of clause heads in (t;,...,t;) having symbol a at position w. That is, (a, j, j') € part(i, i, w) iff

1. forallj <k <j, tg|lr = o,
2. either j =1 ortj_1|r # a, and
3. etther j' =4 or tj|x # a.

Each triple (a,j,j') computed by part represents a transition associated with the unification operation
involving m and a. For example, the partition of sequence (p(a,b), p(b, ¢), p(a, d)) at position 1 is {(p(a, b)),
(p(b,c)), (p(a,d))}. The skeleton of the next state resulting from the transition is eztend(S,w,a). The

compatible clauses of this state form the subsequence (Cj, ..., Cj/).

For each subsequence in a partition there are one or more fringe positions in the skeleton with a symbol
common to all clause heads in the subsequence. From Property 2 it follows that the unification operations
at these positions will be shared by all clause heads in the subsequence. We use the function common to
identify such operations and extend the skeleton to record their effect:

Definition A.2 (Common) Given a skeleton S, a sequence (t1,...,1,) of clause heads, and a pair of
integers (i,7'), 1 < i < ¢ < n, common(S,i,%') is a pair (E,S'), where E represents the set of unification
operations common to {t;,...,t;}, and S’ is the extended skeleton:

(BU{(m, )}, 8", o In € fringe(S) such that t;| = o, i< j <,
common(S,i,i') = where (E, S') = common(extend(S, 7, a),,7)
({},S), otherwise

For example, given skeleton S = p(X1, X2, X3) and sequence (p(a, b, ¢), p(a, b,d), p(a, b, €)), common(S,1,3) =
({(17 a)a (27 b)}a p(a, bv X3))

The cost of a optimal tabled and nontabled automata for the sequence of clauses [i...7] and the skeleton
S are denoted by Cost(Tabled, i, j, S) and Cost(Nontabled, i, j, S) respectively. The costs of optimal tabled
automata with start position # € S, with the start state tabled and start state not tabled are denoted by
cost(i, j, S, at =), and cost(i, j, S,below =), respectively. For the sake of uniformity, the cost of an optimal
nontabled automaton with start position = is denoted by cost(i, j, S, above ). The cost of an optimal
automaton for a given sequence of clauses and skeleton are given by the following equations.

Cost(Tabled,i,j,S) = fmin (S)(min(cost(i, J, S,at =), cost(s, j, S,below w))) (1)
wE fringe

Cost(Nontabled, i,j,S) = fmin(s)(cost(i,j, S, above 7)) (2)
wEfringe

The cost of an automaton, Cost(i, j, S), is a triple (Costunisy, C08tcarr, CoStanswer) Where Costynisy, Costean
and Costgnswer denote the unification, call and answer costs of the automaton. The cost of the automata
with given start states are denoted by the triple (costunify, COStcarr, COStanswer). We describe the computation
of each component of the cost separately, starting with the unification cost.

The worst unification case cost of an SCRA is when all transitions are taken. Note that unification cost is
independent of which states of the automaton are tabled. Assuming that all elementary unification operations
have unit cost, the unification cost of an optimal SCRA for clause sequence (C;, ..., Ci) and skeleton S is
expressed by the following recurrence:

costynify (i, 7', S, above w) =

o8t ynisy (4,7, S, at w) =

costynify (3,7, S,below @) = Z Costunizy(-, 5,3, 5") + | E|, (3)
(ardrile where (E, S') = common(S, j,5')
part(i,i',m)
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Recall that constants seen on reaching a state are not entered in the call table. We use wvar_pos(S) to
denote the set of those positions in the skeleton S that are not constants, i.e., # € var_pos(S) iff S| ¢ F.
Assuming that cost of creating a table entry (call or answer table) is the same for a constant and a variable,
the table cost is given by

costqn(i, ¢, S,above ©) = 0 (4)
costcau(i, ', S,at ®) = |var_pos(S)| (5)
costcan(i, i, S,below w) = Z Costcqn(Tabled, 7,5, S") (6)
(a.dnil)e where (E, S') = common(S, j, ')
part(i,i',n)

The cost of tabling at = is clearly the number of positions in the clause heads yet to be seen, and hence is the
size of the fringe. When the table points are below w, however, we need to table not only the fringe positions
at the tabling points, but also the variable positions in the path from 7 to each of the tabling points.

Using pg to denote the number of answers for the the clause Cy € (C;, ..., Cyt), the answer cost is given
by:

o8t gnswer(i,4', S, above ) = 0 (7)

i
cost answer(i, ', S,at ) = |var_pos(S)| - Zpk (8)

k=i
COStanswer(i, 7', S,below 7) = > Costunsuer(Tabled, j, j', S'), (9)

(andri')e where (E, S') = common(S, j,j')
part(i,i',m)

The cost of answers at a tabling point is the number of entries in the table times the size of the table. The
number of entries is simply the sum of the number of answers in each clause that shares this tabling point.
The cost of answers at w, when the tabling points are below it, is the sum of answer costs associated with
the tabling points.

Note that |E| is the number of common unification operations for a subsequence in a partition. Also
note that the recurrence assumes that subsequence (¢;,...,%;) has no common part with respect to skeleton
S. Thus, the cost of an optimal automaton for a tabled predicate p/m consisting of n clauses is given by
|E| + Cost(Tabled, 1,n, S), where (E,S) = common(p(X1,...,Xm),1,n).

Using the above recurrence, it is straightforward to construct an optimal SCRA based on dynamic pro-
gramming, where the optimal tabled and nontabled automata for each subsequence of clauses are recorded
in a table. Note that, since (¢;,...,%;) has no common part with respect to the skeleton, a skeleton S is
uniquely determined, given ¢ and #'. Hence, the cost recurrence has only two independent parameters, ¢ and
¢, and the table used in the dynamic programming algorithm will be indexed by i and ¢'.

Given n clauses with at most m symbols in each clause head, the number of possible subsequences is
O(n?), and hence, the number of table entries is O(n?). The number of partitioning positions considered
for each entry is O(m). For each position, part requires O(n) time. Identification of common operations for
all subsequences in a partition can be accomplished in O(m) time via a precomputed matrix (that requires
O(mn) time and space). Thus, the time required to compute one entry in the table is O(m(n + m)), and
the overall time needed to compute an optimal automaton is O(n’m(n + m)).

In the recurrence for the cost of an optimal SCRA, it is assumed that all elementary operations have
unit cost, and that recording pending transitions has zero cost. The recurrence can be easily modified
to accurately reflect the cost of each elementary operation and the cost of recording pending transitions.
Furthermore, by suitably modifying part and common, as given in [7], the above recurrences can be used
even in presence of nonlinear clause heads, to construct an optimal SCRA in polynomial time.

A.3 Nonsequential tabled programs without mode information

The problem of optimal nonsequential CRA construction (in the absence of mode information) is formulated
as follows.
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NSCRA Given a set of clauses H for a tabled predicate and an integer k, is there a nonsequential CRA
Apg for H, such that, for any open goal g, totalcost(Ag, g) < k.

Theorem A.3 NSCRA is NP-complete.

Proof: The proof is by reduction from set cover and generalizes the proof from [7], which applied only
to nontabled automata. The minimum set cover problem can be stated as follows: Given a finite set
U = {u1,...,un}, a collection C = {Cy,...,Cp} of subsets of U, and a positive integer k < m, do there
exist k or fewer subsets in C' whose union is S?

Let I be an instance of SC. We construct an instance I' of NSCRA consisting of 2n clauses of arity
2(n + m)? + m + 1, as follows. Each clause head can be viewed as consisting of four segments: a “Test”
segment, consisting of m arguments; a “Blue” segment, consisting of (n +m)? arguments; a “Red” segment,
consisting of (n + m)? arguments; and the fourth segment consisting of one variable:

p(TlaT%"'7Tm7/817/827"'7/8(n+m)2, plaPZa"'ap(n-l-m)zaX)
e ——’

Test Blue Red

For each element u; € U two clauses are constructed: a Red clause and a Blue clause. In the Red clause,
75=0,for1<j<m;B=iand pp =0, for 1 <!<(n+m)?. The i** Red clause head thus has the form

p(O,'-',O,i -",i,O,"-,O,X)
——— — e — —
Test Blue Red

In the Blue clause, 7; = 1 if u; € Cj, otherwise 0, for 1 < j <m; By =iand py =0, for 1 <1 < (n+ m)>.
The i** Blue clause head thus has the form

p(7-177-27"'77'm707"'707i 717X)
" — —— ——

Test Blue Red

Unifying with a symbol in the Test segment of a Blue clause head can be thought of testing for membership
of an element of U in a subset.

Observe that the Red and Test segments in every Red clause are identical, and that each Blue segment
is distinct. For a set consisting entirely of Red clauses, an optimal CRA must examine all positions in the
Red and Test segments before examining any position in the Blue segment, since the first test in the Blue
segment effectively partitions the set into individual clauses (see Figure 5a). The order of testing within the
Red and Test segments is unimportant, as is the order of testing within the Blue segment. Tabling costs
(both call and answer) are minimized by choosing the leaves as tabled states, since any CRA for Red clauses
will have some long chains (sequences of states with only one outgoing transition), and selecting a common
ancestor of these chains as a tabling point would greatly increase both call and answer costs.

Also observe that the Blue segment in every Blue clause is identical, and that each Red segment is distinct.
An optimal CRA for a set of Blue clauses must examine all positions in the Blue segment before examining
any position in the Red segment. In general, testing positions in the Test segment will incrementally partition
the set. Thus, an optimal CRA for Blue clauses will typically have the form shown in Figure 5b. Again,
tabling costs are minimized by choosing the leaves as tabled states.

The above observations lead to the following bounds on the worst-case total number of elementary opera-
tions (unification, call tabling, and answer tabling) in an optimal CRA for a monochromatic set of clauses.

Lemma A.3.1 Given a set S consisting entirely of Red clauses, such that |S| = n,, the worst-case unifica-
tion, call tabling, and answer tabling costs in an optimal CRA for S are (n, +1)(n+m)*+m+mn,, n,, and
n,, respectively.

Lemma A.3.2 Given a set S consisting entirely of Blue clauses, such that |S| = ng, the worst-case unifi-

cation cost in an optimal CRA for S is no more than (ng + 1)(n+ m)% + (m + 1)ng, and the worst-case call
and answer tabling costs are each ng.

16



(a)

m)

-

AN
T

(n+m)

s

(b)

Figure 5: Optimal CRA’s for sets of Red (a) and Blue (b) clauses
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Figure 6: Optimal CRA for 2n clauses (a) and suboptimal CRA (b)
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The main idea in constructing an optimal CRA for a combination of Red and Blue clauses is to order
the examining of positions such that less partitioning occurs near the root and more occurs toward the
leaves, and to select the leaves as tabled states. Therefore, to build an optimal CRA for the 2n Blue and
Red clauses constructed from the set cover instance I, positions in the Test segment should be examined
before positions in the Blue and Red segments. Observe that examining a position in the Test segment
partitions a set containing both Blue and Red clauses into one set containing only Blue clauses (on a branch
labeled “1”) and another containing Red and perhaps some Blue clauses (on a branch labeled “0”- see
Figure 6a). Examining a position in the Red (Blue) segment, on the other hand, partitions the set into one
set containing all of the Red (Blue) clauses and one set for each of the Blue (Red) clauses (see Figure 6b).
These observations lead to the following proof that U has a cover of size k if and only if there exists a CRA
for S having worst-case total cost less than (2n + k + 2)(n + m)% + 6n

Lemma A.3.3 If U has a cover of size k, then there exists a CRA for S having worst-case total cost less
than (2n + k + 2)(n + m)? + 6n.

Proof of lemma: A CRA for S can be constructed as illustrated in Figure 6a. For 1 <j <k, let C;; be a
member of the cover of U. Now, for each state 7;; in the automaton, the subautomaton attached to the “1”
edge is an automaton for Blue clauses only, since no Red clause head contains a 1 in its 7 segment. Since
{Ci,,-..,Ci,}is a cover for U, each Blue clause is represented in one of the subautomata attached to a “1”
edge, and only the n Red clauses are represented in the subautomaton attached to the “0” edge of state =, .

By lemma A.3.2, the worst-case total cost of the subautomaton attached to the “1” edge of state =;
is no more than (n,; + 1)(n + m)? + (m + 3 — j)n,;, where n,; is the number of clauses represented in
the subautomaton. Since E?:l ns;; = n, the total cost of all the Blue subautomata is no more than
(n+ k)(n +m)% + (m + 3)n. By lemma A.3.1, the worst-case cost of the subautomaton attached to the “0”

edge of state 7;, is no more than (n + 1)(n +m)? + 3n + m — k. Thus, the worst-case total cost of the CRA
is no more than (2n +k+ 1)(n +m)% + (n + 1)m + 6n + 2k, which is less than (2n + k + 2)(n +m)? + 6n. O

Lemma A.3.4 If there ezists a CRA for S having worst-case total cost less than (2n +k +2)(n+m)? +6n,
then U has a cover of size k.

Proof of lemma: It suffices to show that any CRA cor S having cost less than (2n + k + 2)(n + m)? + 6n
must be of the form shown in Figure 6a. Given a set S’ containing n, Red clauses and ng Blue clauses, the
root of an optimal CRA for S’ must be a 7 state. If, instead, the root were a p state, the CRA would have
cost at least (2ng + n, + 1)(n + m)? + 3(n, + ng) (see Figure 6b). Similarly, a CRA with a 3 root state
would have cost at least (2n, + ng + 1)(n + m)* + 3(n, + ng). Replacement of any of the k 7 states in the
CRA in Figure 6a by a p or 3 state would therefore result add a cost of at least (n — k)(n + m)2. Thus, any
CRA having worst-case cost less than (2n + k + 2)(n + m)? + 6n must be of the form shown in Figure 6a,
which can exist only if U has a cover of size k. a

Lemmas A.3.3 and A.3.4 together complete the reduction from SC to NSCRA. The remaining details
showing that the construction is polynomial in the size of I and that NSCRA &€ NP are standard and
omitted. |

A.4 Datalog programs with mode information
Recall that Section 4.2 identified the following four optimization problems for sequential automata:

Worst-case cost of given nontabled automaton (NT-Given): Given a sequence H of Datalog clause
heads, a nontabled SCRA Ay for H, and an integer k, does there exist a ground goal g such that
unifcost(Ag,g) > k?

Worst-case cost of optimal nontabled automaton (NT-Opt): Given a sequence H of Datalog clause
heads and an integer k, for every nontabled SCRA Ay for H does there exist a ground goal g such that
unifcost(Ag,g) > k?

Worst-case cost of given tabled automaton (T-Given): Given a sequence H of Datalog clauses, a
tabled SCRA Ag for H, and integer k, does there exist a ground goal g such that totalcost(Am,g) > k?
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Worst-case cost of optimal tabled automaton (T-Opt): Given a sequence H of Datalog clauses and
integer k, for every tabled SCRA Ay for H does there exist a ground goal g such that totalcost(Am,g) >
k?

The proofs of the theorems given in Section 4.2 for these problems appear below.
Theorem A.4 NT-Given is NP-complete.

Proof: The proofis by reduction from 3-satisfiability (3SAT) [9]. Given an instance I of 3SAT consisting of
a set V containing m variables and a set C' containing n disjunctions (each having three literals), we construct
an instance I' of NT-Given, consisting of a sequence H of 16n (m + 1)-ary Datalog facts and a nontabled
SCRA Ay for H, as follows. For each disjunction D; € C of the form (L;, V L;, V L;,), where L; € {X;, X;}
and X; € V, asequence of sixteen Datalog factsis created. Let a1 = (¢,¢,t),a2 = (8,8, f),...,as = (f, f, f) be
the eight possible truth assignments for the variables (X;,, X;,, X;,) in D;. Exactly one of these assignments,
say ay, falsifies D;; all others satisfy D;. For each aj an (m+1)-ary Datalog fact is created, with argument 1
as “1”, argument 4 + 1 as ap(l), 1 <! < 3, and each of the remaining m — 3 arguments as a distinct
variable. If ap # a; the pattern is duplicated, yielding fifteen facts. The sixteenth and final fact has all of
its m + 1 arguments as distinct variables (see Figure 7 for an example of this construction). H is formed by
concatenating the n sequences of facts constructed for each D; € C, yielding a total of 16n facts in H.

Now, for some D; € C, consider an SCRA for the 16 facts created from ¢ that examines, along any root-
to-leaf path, first argument 1, then arguments i, i5, and i3, followed by the remaining m — 3 arguments
in any order. Such an SCRA will have the form shown in Figure 7c. SCRA Ay is constructed by merging
together the n automata corresponding to the disjunctions in C (see Fig. 7d), completing the construction
of I'. This construction can clearly be done in time polynomial in n and m.

To complete the reduction, we show that
C is satisfiable < there exists a ground goal g such that unifcost(Amg,g) > n(3m — 1),

where each elementary unification operation is assumed to have unit cost. Consider again the SCRA in
Figure 7c for the 16 facts in Figure 7b. The unification of any ground goal via the SCRA that traverses the
three edges corresponding to one of the seven satisfying assignments of (X; V Xz V X4) will traverse a total
of 3m — 1 edges (e.g., the 4 4+ 2(m — 3) dashed edges and m + 1 dotted edges). The unification of any other
ground goal must traverse fewer edges. In particular, the unification of a goal that traverses the three edges
corresponding to the falsifying assignment will traverse a total of 2(m + 1) edges (the m + 1 bold edges and
m + 1 dotted edges).

Now, consider the unification of any ground goal g via SCRA Apg. If the arguments of g correspond to a
satisfying assignment for C (and argument 1 is “1”), the unification of g will traverse a total of n(3m — 1)
edges in Ap (3m — 1 edges in each of the n smaller automata comprising Ag). The unification of any
other goal must traverse fewer edges. In particular, for a goal whose arguments correspond to an falsifying
assignment for C, unification of the goal will traverse at most 2(m + 1) edges in at least one of the n
subautomata from which Ay was formed. Therefore, C is satisfiable iff there exists a ground goal g such
that unifcost(Ag,g) > n(3m — 1).

In order to show NT-Given € NP, it suffices to observe that the cost of unifying any given goal via Ag
can be computed in O(nm) time. [ |

Theorem A.5 NT-Opt is NP-hard.

Proof: The construction used in the proof of Theorem A.4 is used here to prove that
C is satisfiable < for every SCRA Ag there exists a ground goal g such that unifcost(Ag,g) > n(3m —1).

The proof of Theorem A.4 establishes the existence of an SCRA that, when C is not satisfiable, always has
unification cost less than n(3m — 1), leaving to be proved

C is satisfiable = for every SCRA Ag there exists a ground goal g such that unifcost(Ag,g) > n(3m —1).
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p(1,t,t,X,t,Y,2).
p(1,t,t,X,t,Y,2).
p(1,t,t,X,£,Y,2).
p(1,t,t,X,£,Y,2).
p(1,t,£,X,t,Y,2).
p(1,t,£,X,t,Y,2).
p(1,t,£f,X,£,Y,2).
p(1,t,£,X,£,Y,Z).

p(1,£,t,X,t,Y,2).
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. (falsifying assignment)
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p(1,f,£,X,£,Y,2).
p(1,f,£,X,£,Y,2).
p(T,U,V,¥,X,Y,2).

(b)

Figure 7: 3SAT to SCRA — (a): CNF clause; (b): facts created from (a); (c): SCRA for (b); (d): full SCRA.
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This is proved by showing that, for any possible SCRA for H (the 16n Datalog facts derived from C), any
ground goal (with argument 1 as “1”) corresponding to a satisfying assignment for C will have unification
cost at least n(3m — 1). The following two observations lead to this result:

Observation 1 Any ground goal (with first argument equal to “1”) corresponding to a satisfying assignment
for C unifies with exactly 3n facts, since in each of the n sequences of 16 facts derived from the
disjunctions of C, there are two facts (duplicates) exactly matching four arguments in the goal (unifying
with the rest), and one fact that unifies with any goal.

Observation 2 In any SCRA for H, no edges can be shared between subautomata representing facts derived
from two or more distinct disjunctions in C. Recall that all facts that unify with a goal must be unified
in textual order. The all-variable fact appearing at the end of each of the n sequences of facts prohibits
such edge sharing, since it shares no edges with any fact, and it must be unified with a goal after any
fact appearing before it, and before any fact appearing after it (see Figure 7d).

Now, in any SCRA for H, the unification of any ground goal corresponding to a satisfying assignment for C
with three facts from any of the n sequences must traverse at least 3m — 1 edges in the SFA: m + 1 edges
for the all-variable fact, 2(m — 3) edges for the (non-shared) variable positions in the two other facts, and
at least 4 edges for the remaining positions in those two facts. Since the goal unifies with three facts from
each of the n sequences, the total cost of unifying the goal is at least n(3m — 1). |

Note that Theorem A.4 means that it is unlikely that NT-Given € NP.

To generalize the above results to tabled automata requires taking into account simultaneously the three
costs of tabled evaluation: unification, call tabling, and answer tabling (recall Theorem 3.1). In general,
determining answer costs for a given CRA is difficult, since the number of answers is not known at compile
time. However, even if the number of answers for a given query is known, the problem of determining
the overall cost (unification + call + answer) of a given SCRA is NP-complete. As with unification cost
alone, this result is extended to show that the decision problem corresponding to SCRA cost minimization
is NP-hard. The proofs are similar to those for Theorems A.4 and A.5 and are sketched below.

Theorem A.6 T-Given is NP-complete.

Proof: (Sketch) The proof is by reduction from 3SAT, and the construction is similar to that used in
the proof of Theorem A.4, with the following modifications. First, the clauses in H are no longer simple
facts, but have bodies fixed to produce a certain number of answers per clause (as defined below). Second,
each clause head has one extra variable argument (for holding answer substitutions). Third, no clause is
duplicated. Thus, there are nine clauses per disjunction in C (having the same form as before) and 9n
clauses total in H. A tabled SCRA Ay is constructed having the same form as before, except that the paths
corresponding to satisfying assignments for individual disjunctions no longer branch. To make Ag a tabled
CRA, the leaves are marked as tabling points. Finally, for each of the 7n clauses whose heads correspond to
satisfying assignments for disjunctions in C, the number of answers is fixed at 9(m + 2)(n + 1). For each of
the 2n remaining clauses (whose heads are all variables or correspond to falsifying assignments), the number
of answers is fixed at 1. For the remainder of the proof, we assume goals that are ground in all arguments
but the last (the newly added argument to hold answers). Now, for a goal corresponding to a satisfying
assignment for C, two clauses for each of the n disjunctions will succeed, one resulting in a large number
of answers (9(m + 2)(n + 1)), and one resulting in one answer. For a goal corresponding to an falsifying
assignment, there will be two clauses for at least one of the n disjunctions with only one answer each, yielding
a lower total number of answers. Unification and tabling costs are the same for either type of goal. The
following table summarizes these costs for both types of goal:

| Cost || Satisfying goal | Falsifying goal |
Unification 2n(m + 2) 2n(m + 2)
Call n((m —2)+ (m+2)) n((m—2)+ (m+2))
Answer n(9(m+2)(n+1)+1) <n9(m+2)(n+1)+1)

[ Total [n(9(m+2)(n+1)+4m+5) | <n(9(m +2)(n +1) + 4m +5) |
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Thus, we have
C is satisfiable < there exists a goal g such that totalcost(Ag,g) > n(9(m+ 2)(n + 1) + 4m + 5),

As in the proof of Theorem A.4, the total cost of a given goal with respect to Ag can be verified in O(mn)
time, and hence, T-Given € NP. |

Theorem A.7 T-Opt is NP-hard.

Proof: (Sketch) Using the same construction as above, the main idea is to show that, for any tabled SCRA
that can be constructed for H, the lowest combined call and answer cost occurs for tabling at the leaves of
the automaton. An SCRA with the lowest total cost will then be one that minimizes unification cost (since
unification cost is independent of tabled states), with the leaves as tabling points.

To show that tabling at the leaves is optimal for any SCRA for H, we first consider tabling at the root.
Here the call tabling cost is just (m + 2). If the tabling points are moved to the children of the root, the
call tabling cost increases to at most 9n(m + 2) for goals corresponding to satisfying assignments (consider
an SCRA that first examines argument m + 2, which is a variable for all clauses). Now, the root of the
SCRA examines either position m + 2, or some other position. If it examines position m + 2, there is
a 9n-way branch from the root, forming 9n chains to the leaves. In this case, the tabling points can be
moved to the leaves without further increasing call tabling costs, while reducing answer tabling costs by
(m + 1)n(9(m + 2)(n + 1) + 1), far outweighing the increase in call tabling cost. If the root examines any
other position, some of the outgoing edges must be labeled by constants. By moving the tabling points to
Jjust below the root, answer costs are reduced by at least 9(n + 1)(m + 2), still outweighing the increase in
call tabling cost. Hence, tabling below the root costs less than tabling at the root for any SCRA for H.

With tabling points below the root shown to have lower cost, we can now (by Observation 2 in the proof
of Theorem A.5) consider separately the subautomata corresponding to the n individual disjunctions of C.
Since any goal will succeed along at most one path in the subautomaton, the lowest combined call and answer
cost will occur for an automaton that first examines positions that have constants in the clause heads, with
tabling points at the leaves (call cost (m —2)+(m+2), answer cost (satisfying) 9(m+2)(n+1)+1). Moving
tabling points any higher will increase answer cost far more than the savings in call cost. Thus, for any
SCRA for H, the least combined call and answer cost occurs when the leaves are the tabled states.

Using an argument similar to that used in the proof of Theorem A.5, it is easily established that the SCRA
constructed in the proof of Theorem A.6 is minimal for unification cost. Since it has tabling points at the
leaves, it is also minimal for overall cost. Hence,

C is satisfiable < for any tabled SCRA Ay for H there exists a goal g such that
totalcost(Ag, g) > n(9(m + 2)(n + 1) + 4m + 5).
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A.5 Benchmark programs

Transitive closure EDB1 EDB II
/* 3-level tree
with fanout of
10 and a total
% Original: of 1110 facts */

a :- anc(_, _), fail; true. parent (1, 10).
parent (1, 11).

parent(2,1).
parent (1, 12).

:— table anc/2. arent (1, 13) parent(3,1).

anc(X, Y) :- parent(X, Y). P ’ ' parent (4,1).
parent (1, 14).

anc(X, Y) :- parent(5,1).
parent (1, 15).

anc(X, Z), parent(6,1).
parent (1, 16).

parent(Z, Y). parent(7,1).
parent (1, 17).

parent(8,1).
parent (1, 18).

arent (1, 19) parent(9,1).

% Factored: P it . parent(10,1).

al :- anc1(_, _), fail; true.

:— table anci11/2.
anc1(X, Y) :- parent(X, Y).
ancl1(X, Y) :- ancl1i(X, Y).
anc11(X, Y) :-

ancl(X, Z),

parent(Z, Y).

parent (10, 100).

parent (11, 110).

parent (100, 1000).

parent (199, 1999).

parent (10238,1).
parent (10239,1).
parent (10240,1) .

Join

Ambiguous

% Original

:— table(suppalti/1).

% Factored

:— table(suppalt2s/1).

:— table(suppalt2d/1).

% parent/2 and parent2/2 are EDB I above
parent salt(s(X),s(Y)):- parent(X,Y).
parent salt(d(X),d(Y)):- parent2(X,Y).

joinsalt2 :- suppaltl(X), parent salt(X,W).

suppaltl(X):- parent salt(X,.),parent salt(X,.).

joinsalt3 :- suppalt2s_extra(X), parent salt(X,W).
joinsalt3 :- suppalt2d extra(X), parent salt(X,W).

suppalt2s extra(s(X)):- suppalt2s(X).
suppalt2d extra(d(X)):- suppalt2d(X).
suppalt2s(X) : - parent (X,.) ,parent(X,.).

suppalt2d(X) : - parent2(X, ) ,parent2(X,.).

% Query: (++c—+cc)™®

% Original:
:— table s/2.

p(X) :- s(X, [1), fail; true.

s([+1X1, Y) :- s(X, Z), s(Z, Y).

s([+[X]1, Y) :- s(X, Y).
s([clXl, X).
% Factored:

:— table s12/2.
p1(X) :- s1(X, [1), fail; true.

s1([U|X], Y) :- s11(U, X, Y).

s11(+, X, Y) :- s12(X, Y).
s11(c, X, X).

s12(X, Y) :- s1(X, Z), s1(Z, Y).

s12(X, Y) :- s1(X, Y).
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LR(1)

LR(1)(det)

% Queries:
o/. (a) : a100b100

% (b): (ab)300

% Original:

:— table s/2.
p(X) :- s(X,[1), fail ; true.

s(X, )
s(X, X).

:- s(X, [alZ]), s(Z, [b|Y]).

% Factored:

:— table s11/2.

p1(X) :- s1(X,[1), fail; true.

s1(X, Y) :- s11(X, Y).

s1(X, X) :- s12(X).

s11(X, Y) :- s1(X, [alZ]l), s1(Z, [blY]).
s12().

% Original:
:— table s0/2.
po(X) :- s0(X,[]1), fail; true.

s0([alX],[1) :- s0([alX],[alZ]), sO(Z,[b]).
s0([alX],[alY]) :-

s0([alX],[alZ]), s0(Z,[b,alY]).
s0([alX],[blY]) :-

s0([alX],[alZ]), s0(Z,[b,b|Y]).
s0([1,01).
s0([alX],[alX]).
s0([b|X],[bIX]).

% Factored:

:- table s24/1, s25/2, s26/2.
:— index s21/2-2.

:— index s23/3-2.

p2(X) :- s2(X,[1), fail; true.

s2([alX],Y) :- s21(X,Y).

s2([1,[1).

s2([XIY],[XIY]) :- s22(X).

s21(X,[1) :- s24(X).

s21(X,[Y|Z]) :- s23(X,Y,Z).

s23(X,a,Y) :- s25(X,Y).

s23(X,b,Y) :- s26(X,Y).

s824(X) :- s2([alX],[alZ]), s2(Z,[b]).
s25(X,Y) :- s2([alX],[alZ]), s2(Z,[b,al|Y]).
s26(X,Y) :- s2([alX],[alZ]), s2(Z,[b,b|Y]).
s22(a).

s22(b).
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