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Abstract

Unnecessary backtracking is a principal source of inefficiency in Prolog execution. To avoid
the overhead of the general backtracking mechanism, determinate programs should be executed
deterministically. Even for programs that are not determinate, failure should be identified early
so as to minimize time spent in useless computation. One way to achieve this is by identifying
conditions under which a predicate will succeed and checking this condition even before calling
the predicate. We present a novel method to infer success conditions of predicates. Unlike
previous approaches that rely on cuts or use a limited notion of test predicates, we propagate
the conditions to detect determinacy, enabling us to handle a much larger class of programs.
Since the conditions are propagated explicitly, the power of the method can be readily increased

by increasing the expressiveness of these conditions.
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1 Introduction

The exploitation of determinacy in logic programs has been a major focus of efforts to increase the
efficiency of Prolog execution. A primary source of inefficiency in Prolog is unnecessary backtrack-
ing. Though the general backtracking mechanism is useful to programs that require it, it incurs
too much overhead for predicates that essentially compute functions. Introducing cuts reduces this
overhead, but cut is operational and merely removes choice points that were unnecessary in the
first place. An automatic means of exploiting determinacy is a good way to reduce backtracking
while preserving the declarative nature of Prolog. This paper presents a novel method to detect
determinacy of predicates. The focus of this paper is on the notion of predicate-level determinacy,
i.e. predicates for which, on any call, at most one clause succeeds. The basic approach is to identify
failed computations early, so that backtracking is reduced even in non-determinate predicates. This
approach can also be applied to parallel logic programming systems to increase and-parallelism, as
discussed in Section 5.

A natural way to infer determinacy of a predicate is to find the conditions under which its clauses
succeed. These conditions can be represented as constraints on the arguments of a predicate.
If the conditions associated with the clauses of a predicate are mutually exclusive, then we can
conclude that the predicate is determinate. Even if the predicate is non-determinate, adding success
conditions at the beginning of each clause can promote early failure of unsuccessful computations,
making some deep backtracking shallow. An indexing technique that can test these conditions can

avoid even shallow backtracking.

In addition to conditions for success of a predicate, its context conditions, ¢.e., the conditions
under which it is called, are important for detecting determinacy. Context conditions are useful in
identifying determinacy when a program uses a nondeterminate predicate in a restricted way such
that its evaluation is deterministic. Success information originates from facts and base predicates,
and percolates up, whereas context information flows down from the top. It is well known that top-
down information can be obtained through bottom-up analysis by using transformations such as
Magic Templates [11]. We define a similar transformation that enables us to obtain both success and
context conditions through a single analysis. Section 2 describes the determinacy analysis method
in terms of a program transformation and success condition analysis. The latter is presented in
Section 3 and forms the main part of this paper.

Of previous approaches to exploiting determinacy, many rely on the presence of cuts [10, 15].
Such approaches can be viewed as making use only of determinacy information made explicit by
the programmer. Others [5, 17, 18] use a limited notion of test predicates, as in the following

example:

p(X,Y) :- X < Y, q(X,Y).
pX,Y) :- X >= 7Y, r(X,Y).

Here determinacy has not been made explicit by the programmer, but must be inferred from
the tests X < Y and X >= Y. But because these methods do not make such inferences from

deeper levels of the program, they are unable to extract hidden, or latent, determinacy. Sato



and Tamaki [14] present a technique that extracts determinacy information from deeper levels,
but they deal only with programs where determinacy arises from a restricted form of structural
equality (term depth abstraction). It is not clear how their method can be extended to handle
programs where determinacy arises from other sources, for instance, inequalities or arithmetic
constraints. In contrast, the technique presented in this paper propagates constraints explicitly and
can uniformly handle a large class of programs. Section 4 illustrates the generality of our method
by its applications to programs requiring more than simple structural constraints for extraction of
determinacy. In Section 5 we discuss the relationship between our determinacy analysis and other
work in greater detail.

2 Determinacy Analysis

2.1 Notation

The symbols of our language are drawn from three mutually exclusive sets: variables, denoted by
X.,Y, Z; function symbols, denoted by a, b, c; predicate symbols, denoted by p, g, 7, s. The symbols
may appear with or without subscripts. Constants are 0-ary function symbols. For convenience we
use the standard notation for lists; [H|T'| for a list with head H and tail T, and [ | for the empty
list.

A term is a variable, constant, unknown (“_ ), or a compound term a(t1,...,%,), where a is a
n-ary function symbol, and each ¢; is a term. Lists of variables are denoted by symbols X,Y,Z. A
program is denoted by symbols P,P’, Q etc. Each clause in a program is of the form:

p(f) = ‘h(X_l)a .o -a‘In(X_n)'

Note that this form does not restrict the set of programs we consider, since all programs can
be readily transformed into this form. We consider purely declarative, negation-free programs,
without control features (such as cut) or side effects. In the following discussion, clauses are labeled
by symbols such as (a), (8), etc.; the labels themselves are not a part of the program.

Constraints (denoted by ¢, v, or p#, where p is a predicate symbol) are first-order formulae
with implicit quantifiers. In a constraint ¢(X), the variables X are universally quantified; other
variables are existentially quantified. When there is no ambiguity, ¢(X) may be written as ¢.
Logical implication (denoted by ‘=-"), defined as usual in terms of substitutions, forms a partial
order over the set of constraints.

2.2 Overview

To illustrate how success and context conditions are used in inferring determinacy, we consider the
following clause:

(@) : p(X) == q1(X1), ©2(X2).



Let ¢y, (X1) be some necessary condition for success of g1(X1); ¢g, is called the success condition

for ¢;. Then the clause
(ﬂ) : p(f) E ¢q1 (X_1)7Q1(X_1)7q2(X_2)-

is (logically) equivalent to clause a. Corresponding necessary conditions for other predicates on

the right-hand side (rhs) can be introduced similarly.

When the success condition for a predicate (e.g. ¢,,) is tested before it is called, many of the
calls that would have resulted in failure on the rhs are avoided. Thus, evaluating p through clause
(B) places fewer calls to ¢; than evaluating p through (a). Furthermore, if the conditions placed
on the clauses of a predicate are non-unifiable, then we know that at most one clause is applicable
when the input is ground!. We can find that unique clause at the time of call and hence not only

avoid backtracking, but also avoid placing choice points.

Let 1, be a property of predicate p such that 1,(X) is true whenever p(X) is called in some
successful derivation; v, is called the contezt condition for p. Then the clause

(7): P(Y) O ¢p(7)7QI(X_1)’Q2(X_2)-

is also equivalent to clause a.

As previously mentioned, this context information helps in clauses that are not determinate in
themselves, but are used in the program in a restricted way such that they become determinate. For
instance, let a predicate p be defined by two rules, and let ¢; and ¢, be the success conditions on
the rhs of each of the two rules. If ¢; and ¢, are non-unifiable, we can detect that p is determinate
whenever the input is ground. On the other hand, let ¢; and ¢, unify to ¢'. If ¢' is invalid in every
context of p, then we can detect that p is used in a determinate manner. Thus we can increase
the strength of our method to estimate determinacy at compile time, by using of both success and

context information.

Recall that the context condition of a predicate is true whenever that predicate is called from
a clause that eventually succeeds. By using a transformation similar to the Magic Templates
transformation [11], both success and context conditions can be obtained by bottom-up analysis
of the transformed program. Note that the call patterns evaluated by Magic Templates compute
the calls that would have been made in a top-down evaluation of the program. Context conditions
are different from the call patterns evaluated by Magic Templates, and thus require a different
transformation, which is presented below. The analysis method used to compute success and
context conditions is described in Section 3.

2.3 Derived Program

From a given program P, we obtain a derived program P*, such that for each predicate p in the

original program, we have, in P*, predicates:

1. p® which computes a necessary condition for success of p, and

!Henceforth, “ground” means sufficiently instantiated to enable condition testing.



2. p¥ which succeeds whenever p is called from a clause that itself succeeds in P.

The success conditions of p and p” are identical. The context conditions of p are the success

conditions of pv. The definitions of p® and p¥ are given below.

Definition 2.1 (Success predicates) For each clause in P of the form

p(f) = ‘h(X_l)a .o -a‘In(X_n)'

the following clause is in P*:
PA(X) — a7 (X1) A - A g (Xn)

Definition 2.2 (Context predicates) For each user-callable predicate v in P, the clause

rv(X) < r2(X)
is in P*. And, for each clause in P of the form
p(X) = q1(X1)s -y @n(Xn)-
for each q;, 1 < i < n, if ¢; is a user-defined predicate, the following clause is in P*:
@7 (Xi) = p¥(X) A g (K1) A -+ A g (Xn)
To illustrate the construction of a derived program, consider the parser in figure 1 for the LL(2)

language (aa)”(ab)”,n > 0. The corresponding derived program is given in Figure 2.

p(X1) :- X2 = [1, s(X1,X2).

s(X1,X2) :- X1 [a,alX3], q(X3,X2).
s(X1,X2) :- X1 = X2.

q(X1,X2) s(X1,X3), r(X3,X2).
r(X1,X2) X1 = [a,blX2].

Figure 1: Parser for a simple context-free grammar

Lemma 2.1 Soundness of p© and p¥

a. FEach predicate p*® in P* succeeds iff the corresponding predicate p in P succeeds.

b. FEach predicate p¥ in P* succeeds iff the corresponding predicate p in P is called from a clause
that succeeds in P.

Proof:

a. The subset of clauses in P* that define p* for each p in P, is obtained via renaming each p in
P by p* . Each p* is equivalent to p and hence defines the necessary and sufficient condition

for success of p.

b. Follows from part (a), above, and operational semantics of Prolog.



qv(Xl,X3) A SA(Xl,Xz) A TA(XQ,X3).
X3 = [a,a | X1] A sV(X3, X2) A g2 (X1, X>).
qv(X3,X2) A SA(Xg,Xl) A TA(Xl,X2).

p2(X1) « Xo=[]As2(X1,X2).
s5(X1,X2) < X1 =[a,a|X5] A g (X3, Xo).
s8(X1,X2) « X; =X,
g2 (X1, X2) « s%(X1, X3) Ar2(X3, X2).
r2(X1,X2) <« X;=/[a,b|X,].
pY(X1) < pA(Xy).
sV(X1,X2) « Xo=[]ApY(X1)A s2(X1, X2).
) «
) «
) «

Figure 2: Derived program for CFG parser

2.4 Determinacy using Success Conditions

Let ¢(X) be a predicate in the derived program and ¢#(X) denote a constraint on X that is
satisfied whenever ¢(X) succeeds; i.e., g% is a necessary condition for success of ¢. Hence, from the
definition of p® and pv, (pA)# and (pv)# are constraints that are satisfied whenever p succeeds
and p is called from a successful context, respectively.

Definition 2.3 (Clause Condition) Let a be a clause of the form

p(f) = ‘h(X_l)a .o -a‘In(X_n)'

Then the clause condition of a is the constraint ¢, defined as

n

ea= (0" N A @)F)

The constraint ¢, defines a necessary condition that a succeeds when p is invoked from a suc-
cessful context. That is, if ¢, is not satisfied, then either the clause fails (one of (qu)# is false) or
the clause from which p was invoked fails ((p¥)¥ is false). Hence the constraint ¢, can be tested
before attempting to satisfy the clause without affecting the success or failure of the program. This

is stated formally as follows:

Proposition 2.2 Let the program Q be derived from program P such that from a clause o in P of
the form

p(f) = ql(X_1)7 .o -aQn(X_n)'

we derive the following clause in Q:

p(f) — Qo A ql(fl) Ao A qn(X_n)



where @, s the clause condition of a. The programs P and Q are equivalent in the sense that any
call to an exported predicate yields the same answers in both P and Q.

If the clause conditions of a predicate are pairwise non-unifiable, we infer that the predicate is
determinate whenever the input arguments are sufficiently ground. Clearly, finding the strongest
such conditions for every predicate is undecidable, since this directly reduces to the halting problem.
In the next section we develop an analysis technique to find success conditions of predicates that

are weak enough to guarantee termination.

3 The Analysis Technique

The analysis technique presented in this section finds success conditions of user-defined predicates
based on the success conditions of pre-defined predicates. For each predicate p in the program,
the analysis determines a constraint p# such that, whenever p(X) succeeds, p¥#(X) is true. The
constraints are first-order formulae that are interpreted over the same domain as the program.
Hence, p(X) = p#(X), and p# is a necessary condition for p.

We now derive equations to compute p# for each user-defined predicate p, given 7# for each
pre-defined predicate 7. The constraint 7# is fixed a priori, depending on 7. Let p be a predicate
in the derived program defined by clauses of the following form:

P(1)(7) — @1 X11) A Ay 1 (X g 1)-
N (1)
Py(X) = @n(X1n) A A g n(Ximan)-
Observe that p succeeds only if one of its clauses succeeds, and a clause succeeds only if each of

the goals on its rhs succeed. This leads to the following rules that define necessary conditions for

satisfaction of each predicate p:

mj

pi* = xS (ar5)%))
k=1
p? = 5v(\7 p;7)

The operator S, performs a conjunction on a set of constraints, S, performs a disjunction on a set
of constraints, and [[5 projects a constraint on the variables in X. Note that in the degenerate

case, S is True and Sy is False.

The above rules can be used directly to compute p# if p is nonrecursive. If p is recursively defined,
then p# is computed by the following fixed point iteration procedure.

p#°* = False
py*t = HX(SA(k/\ (ar)*71))
=1



For a nonrecursive predicate ¢ (and hence all pre-defined predicates), g%+ is defined to be ¢# for

all > 0. For a recursive predicate p, the limit of the sequence p#°, p#:1,...is defined to be p#.

The purpose of Sy and S is to maintain constraints in a canonical form. This enables detection
of fixed points through syntactic identity of constraints. Note that S, and S, are associative,
commutative operators. In the following discussion S, and Sy are treated as binary operators for
simplicity. The computation procedure for Sn, Sy, and [] is defined below.

3.1 Constraint simplification

All operations in the constraint simplification procedure maintain constraints in a syntactic form
called standard form. A constraint is said to be in standard form if it is in disjunctive normal form
(DNF), each atom is of the form (X = t), and every universally quantified variable in a conjunction
is uniquely and maximally defined.

Definition 3.1 (Standard Forms) A constraint ¢ is in standard form if it is True, False or
VI ¥, where

1. v; is a conjunction; i.e., ; = Agizl(Xij = t;;), and
2. All X;; are universally quantified, and only ezistentially quantified variables appear in t;;.
3. In every v;, all X;; are distinct.
Operations Sx, Sy, and [ maintain constraints in canonical form, which is a restriction of standard
form, and is defined as follows:
Definition 3.2 (Canonical Forms) A constraint ¢ = VI ,; is in canonical form f
1. ¢ is in standard form,
2. For every distinct i and j, v; is not subsumed by v;; i.e., Vi<; j<n,iz;30 Pilo] # ¥;lo], and
3. In each conjunction v; = NX;; = t;;), if t;; is some variable Z, then Z occurs in some

tijakij-

Example 3.1 Consider the four constraints ¢1, @2, ¢3, and ¢4 defined as

¢ = (X=[DAF =la])) V(X =[aU)A (Y = [o]V])
¢ = (X =[DAY =[afX]))V((X = [a[Z]) A (Y = [b]2]))
¢3 = (X =[a)A (Y =[o]))V((X =[a[Z]) A (Y = [b]2]))
¢a = (X=[DAY =[a))) V(X =U)A (Y = [o]V])



@1 is in canonical form; ¢ is not in standard form due to rule 2 of definition 3.1; ¢3 is in standard
form but is not in canonical form since the second disjunct subsumes the first. ¢4 is in standard

form but is not in canonical form due to rule 3 of definition 3.2.

In the fixed point iteration procedure, constraints are maintained in canonical form by ensuring
that base constraints are in canonical form, and that Sx, Sy, and [| operations return canonical
forms when their inputs are in canonical form. These operations are computed according to the

rules in figure 3.

Sv(¢1, ¢2) — absorb(¢1 V ¢2)
Sn(¢1, p2) — absorb(product(py, ¢2))
x(¥1 Ve Vi) — absorb([IA(X, 1) V -+ V [T (X, 9n))
absorb(vp1 V - -V ¢,) —
if (3i,5#4 ¢; = ;) then
absorb(1 V -+ -V b1 Vhip1 V---Vih,) else ¢
product(¢y, p2) — V unify(v;, ¥;), for every ¥; € ¢1,9; € ¢o (5)
Wnify(Xs =ty Ao A X = 1), (XL = 5 Ao A X, = £1,)) — (6)
project({X; |1 <i<n}U{X}|1<j<m},S)
where § = mgu({(X; =t;) |1 <i<n}U{(X)=1t})|1<j<m})

project{ X, {(X; =t;) |1 <i<n}) — (7)
A(X; =t),1 < i< n,such that X; € X
[1A (X, %) — truncate(project X, approz;(i))) (8)
truncate(/\(Xi =t)) — (9)
=1
NX; =1;),1 <i<mn,such that if {;, =Y then 3j #7Y € vars(t;)
approzy( )\ (Xi = t:)) — (10)
=1

if some t; contains a subterm ¢' = f(¢},...,t,,), m > 0 rooted at depth k then

approzy Ny (Xs = ti[t' = f(Z1,.. ., Zm))))s {21, -, Zim} € vars( N2, (X = 1))
else {(X;=1t)|1<i<n}

Figure 3: Rules defining constraint simplification

In order to illustrate the analysis, we assume just one base predicate: ‘=", the equality predicate.
We define (X = t)# as the constraint X = ¢ converted to canonical form. This means simply that,
for each universally quantified variable Y in £, Y is replaced by a “new” existentially quantified

variable Z, and the constraint Y = Z is conjoined with the substituted constraint. For example,



if X and Y are universally quantified variables, the constraint X = Y converted to canonical form
becomes (X = Z)A(Y = Z), where Z is existentially quantified. Clearly, X = ¢ is equivalent to its
canonical form. In order to ensure termination, we limit the depth of terms via approz;, (rule 10),
which corresponds to the depth-k abstraction of [14]. In the next section we show how other base

predicates can be accommodated in the analysis.

The operator Sy (rule 1) performs the disjunction of two constraints in canonical form, returning
a constraint in canonical form. Sy is defined in terms of absorb (rule 4), which is responsible for
enforcing condition 2 of definition 3.2; 7.e., it removes from a DNF any conjunction that is subsumed
by another conjunction.

The operator Sp (rule 2) uses product (rule 5) to perform the conjunction of two constraints in
canonical form. Since the two inputs are DNF's, product performs a kind of “cross product” by
unifying each conjunction in the first DNF with each conjunction in the second DNF and returning
the disjunction of the unified conjunctions. The heart of the procedure is unify (rule 6), which,
loosely speaking, finds the most general unifier of two conjunctions in canonical form. Procedure
unify first forms a set of equations from the two conjunctions, then uses mgu to solve the set
of equations. The equations are solved according to the standard notion of unification, and the
resulting set of equations is in solved form, as defined in [9]:

Definition 3.3 (Solved forms) A set of equations is said to be in solved form iff it satisfies the
following conditions:

1. the equations are of the form X; =t;, 1 <i < n;

2. every variable on the left-hand side of some equation occurs only there.

The equations in solved form may contain equations with intermediate (existentially quantified)

variables on the lhs. In order to preserve canonical forms, such equations are removed by project
(rule 7).

The operator [] (rule 3) projects a DNF onto a set of variables. Projection of conjunctions is
carried out by [[, (rule 8), which first performs any necessary approximation of constraints (in
order to guarantee termination of the fixed point iteration procedure). Here, the approximation is
done via approz;,. The projection on a set of variables is done by procedures project and truncate
(rule 9), which ensures that the projected constraint is in canonical form.

Example 3.2 The constraint stimplification procedure is illustrated through the computation of the
success condition for predicate r, (TA)#, from figure 2. Note that in the first step, the constraint
(X1 = [a,b|X3]) ts converted to canonical form. Also note that the mgu step has been omitted, since
the set of constraints is already in solved form. A depth-2 approzimation is used, albeit imprecisely.
Here, “depth” has been taken to mean, “number of non-variable terms at the beginning of the list”.

The computed success condition for r is what one can eastly obtain by inspection of the exzample.
The results for the complete example are presented at the end of this section.



V(X0 X2) = Tlxsap(Sa((Xs = [0, b Xa))¥, True))

Ty (SA(X = 4,8 X)) A (X2 = X)), True))

(absorb(product(((X1 = [a,b | X3]) A (X2 = X3)), True)))
(absorb(unify(((X1 = [a,b | X3]) A (X2 = X3)), True)))
= Il{x,,x,(absorb(project({ X1, X5}, {(X1 = [a,b [ X3]), (X2 = X3)})))
= Ilix, x,3(absorb((X1 = [a,b | Xs]) A (X2 = X3)))
= Iix, x,3 (X1 = [a, b [X3]) A (X = X3))
= absorb([[A({X1, X2}, (X1 = [a,b | X5]) A (X2 = X3)))
= absorb(truncate(project({X1, X2}, approz,((X1 = [a,b | X3]) A (X2 = X3)))))
= absorb(truncate(project({X1, X2}, {(X1 = [a,0|Z]), (X2 = X3)})))
= absorb(truncate((X; = [a,b |Z]) A (X2 = X3)))
= absorb((X; = [a,b|Z]))
=

= (X1 =[a,b|2])

3.2 Soundness

We now show that for each predicate p in the program, p# is a necessary condition? for p. We first
establish the soundness of S, Sy and [], which is then used to prove the soundness of the analysis.
Finite computability of Sx, Sy and [] is proved in the next subsection. Only the main results are
presented here. Other lemmas and proofs are in appendix A.

Theorem 3.1 The operations Sy, Sp and [[ preserve canonical forms.
Lemma 3.2 approw, is sound. That is, for any conjunction v in canonical form, 1 = approxz, ().

Lemma 3.3 S, and S, are lossless. That is, for all constraints ¢ and ¢s in canonical form,

(91 V ¢2) & Su(d1,92), and (¢1 A ¢2) & Sa(91, ¢2)-

Theorem 3.4 S\, Sy and [] are sound.

Proof: S, and Sy are sound since they are lossless (lemma 3.3).

Since approw, is sound (by lemma 3.2), and [], only removes atomic constraints from a conjunc-
tion (effectively replacing them by True), [[5 is sound. Furthermore, since absorb is lossless (by
lemma A.3), it follows that [] is sound. [ |

?Note that the strongest necessary condition corresponds to the least fixed point.

10



3.2.1 Nonrecursive Programs

Lemma 3.5 Letp be a predicate as defined before (equation 1 on page 6), and (qk,j)# be a necessary
condition for each qi;. Then p#(X) = Su(Vi—; [Tx(Sa(Ar2, (qr.5)7))) is a necessary condition
for p.

Proof: Since (gr ;)* (Xx,;) is a necessary condition for gz ;(X ;) to succeed, we have (g ;)(Xs;) =
(qk.;)7 (Xk,;). Hence, from soundness of Sh, [[ and Sy (theorem 3.4), it follows that p# is a nec-

essary condition for p. |
Theorem 3.6 For each predicate p in a nonrecursive program, p* is a necessary condition for p.

Proof: Since the program is nonrecursive, the call graph is a dag. Let the predicates be assigned
a level number [, such that [, = 0 for each base predicate p, i.e., those that do not call any other
predicate. For all other predicates, I, = ¢ if maz(l;) = ¢ — 1 where maz is taken over all predicates
¢ called by p. The theorem is proved by induction on level number.

Base case: All level 0 predicates are predefined or are trivially true. The only predefined predicate
is ‘=", and (t; = t2)# is defined to be exactly t; = t,.

Induction Step: Assume that ¢# is a necessary condition for all predicates ¢ of level less than
m. For a level m predicate, say p, all calls are to predicates g; such that l;; < m. By induction
hypothesis, qj# is a necessary condition for each g;. Hence, from lemma 3.5, p* is a necessary

condition for p. |

3.2.2 Recursive Programs

Theorem 3.7 If p# is a fized point for p, then p* is a necessary condition for p.

Proof: For each predicate p, let p be defined as in equation 1 on page 6, let p# be a fixed point
for p, define
p°(X) « False

and define p*,7 > 0 as
Poy(X) = @ (X)) A A (K 1)-

pz(n) (Y) - qi,_nl (Ylan) ARRRRA q’fr:,},n(fmmn)'

We first show by induction that, for all i > 0, p# is a necessary condition for p*; that is, p* = p#.
Clearly, p# is a necessary condition for p°, since False = p#. Now, assume for all predicates g,
¢' = ¢#, i < n. Since the definition of p**! is non-recursive, we have (by lemma 3.5)

Su(\/ TEe(SA( A (@)%)
i=1 k=1



is a necessary condition for p**1. And, since p# is a fix point for p, we have by definition

p* = 8u(\/ TLe(Sa( A\ (a)%)))
j=1 k=1

Therefore, p'*! = p#. Hence, for all i > 0, p# is a necessary condition for p’.

Now, in all computations in which p has recursion depth less than 7, p and p* are identical. Thus,
it follows that p# is a necessary condition for p. |

Corollary 3.8 For every predicate p, the constraint p* computed by the fiz point iteration procedure
is a necessary condition for p.

3.3 Termination

To effectively compute p# for every predicate p, apart from effective procedures to compute Sx, Sy
and [], we need a function that determines whether two constraints are equal, i.e., satisfaction of one
implies satisfaction of the other and vice versa. Since the constraints that arise in this analysis are
equality constraints among finite trees, we can use resolution [12] to decide this equality. However,
the equality test is performed at the end of every iteration in the fix point computation and using
resolution at each step would be expensive. Equality checking based on syntax alone would be
ideal. Unfortunately, for constraints that arise in this analysis, canonical forms are not unique;
hence we cannot devise an equality test based on syntax alone.

It is easy to show that S, Sy and ][] are monotonic (with respect to =) and thus, for every
predicate p, the sequence p#°,p#!, ... is a monotonically ascending chain. Hence, a fixed point
is reached when p#7*t! = p#7. However, the constraints that arise in the analysis (equality con-
straints on finite trees) do not have the property of Independence of Negated Constraints [6], which
allows us to check for implication of disjunctions efficiently by considering pairs of conjunctions at
a time.

For termination purposes, however, all that is needed is some ordering among the constraints and
an effective procedure to test for this ordering. Since all the constraints encountered in our analysis
are in standard form, we define such an ordering, >, on standard form constraints and show that
Sa, Sy and [] are monotonic with respect to > also. The ordering > is such that order between
disjunctions can be tested by considering pairs of conjunctions at a time, thus yielding an efficient

procedure. The order > is defined as follows:

Definition 3.4 (Syntactic order) The syntactic order > is a partial order on constraints in

standard form, such that
1. For all constraints ¢, False = ¢ and ¢ = True.
2. If ¢ = VI_9; and ¢' = VL 9%, then ¢ = ¢' iff V;3;9; > o).

3. If ¢, ' are two conjunctions, then v = ¢’ iff ¥ = '.
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It is easy to see that whenever ¢; > @2, ¢1 = ¢, 3. Furthermore, it is easy to derive a procedure
to test for > from its definition.

The main results in the proof of termination of the analysis are given below. Other lemmas and
proofs appear in appendix A. We begin by establishing the monotonicity of S5, Sy and [] and the
finiteness of []. It then follows that the chain p#+ for every predicate p converges after a finite
number of steps. This convergence can be detected by testing for > and hence, for every predicate
p, p* can be effectively computed.

Theorem 3.9 S\, Sy and [] are finitely computable and are monotonic with respect to >.
Theorem 3.10 Range of [] is finite.
Lemma 3.11 For every predicate p in the program, p#»* = p#+t1,

Proof: The proof is by induction on i. For the base case, p#* > p#! for every predicate p.
For nonrecursive predicates, p#° = p#* = p#:1, and hence p#:° > p#:1. For recursive predicates
p#0 = False and False > ¢ for every ¢. Hence p#0 > p#l,

For the induction step, assume that p#* > p#7+1 for all i < m. Let v; denote the constraint
1 8(/\;21 (qk,j)#’l_l). Note that 1,41 is obtained from %,, by replacing ¢#"™~! by ¢#"™. Since
Sa, Sy and [] are monotonic with respect to >, and ¢# ™1 = ¢#™ (by induction hypothesis),
p#,m-l—l = ¢m+1 - '¢m = p#,m‘ n

Theorem 3.12 For every predicate p in the program, p* can be effectively computed.

Proof: The range of [] is finite (from theorem 3.10). Since every p#< is in the range of [],
the chain p#:0, p#:1,. .. reaches a limit after a finite number of steps. Now, p#* is derived from
p#+~1 by finite applications of Sx, Sy and [], and these three operations are finitely computable
(from theorem 3.9), and hence, p#+*! is finitely computable from p#*. Since the chain p#-*
is monotonically ascending with respect to > (from lemma 3.11), the limit can be identified by
checking whether p#t! > p#. This check can be effectively performed, and hence, the limit can
be effectively identified. |

3.4 An Example

We now illustrate the method by applying it to the example program in Figure 2, using a depth-2
abstraction. The fixed point computation proceeds bottom-up through the call graph, computing
fix points for the strongly connected components. Note that p#° = False for every predicate p
in the derived program. For brevity, only the conditions that have changed at each iteration are
given.

3Moreover, in all constraint domains which have the independence of negated constraints property, the order >
and = coincide.
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X1 [a b|Z1]/\X2 [a,b|Z2])

¢%)*2(X1, Xa) V (X1 = [a,a]Z1] A X2 = [a,b|Z,]) V

X1 [a b|Z1]/\X2 [a,b|Z2])

X1 [a b|Z]/\X2 [])V(Xlz[a,b|Z1]/\X2:[a,b|Z2])

(r2)* (X1, Xy) = (X1 =[a,b]2])
(s2)1 (X1, Xy) = (X1=X,)
(¢2)"*(X1,Xy) = (X1 =a,b]|2])
(s2)%%( X1, Xy) = (s2)F'(X1,X2) V (X1 = [a,a|2))
(@2)4(X1, Xy) = (¢2)F*(X1,X2) V(X1 = [a,a|2))
()1 (X1) = (X1=[])V (X1 =la,a|2])
(¥)*1(X1) = (X1=[])V (X1 =la,a|2])
(9PN X1, X)) = (Xi=[]AXy=[])V(X1=[a,a|Z]A X, =]])
(@) 4(X1,X2) = (X1=[ag,alZ]AXy=[])V (X1 =[a,b|Z] A X, =]]).
(sv)#’3(X1,X2) = (sv) (Xl,Xz) (X1 =la,a|Z1]A X2 =[a,b|Z3]) V
(
(
(
(

(ro)* (X1, Xa) =

Recall that predicate s/2 from figure 1 was non-determinate. By combining the success (s*) and
context (sV) conditions for s/2 and introducing them into the clause heads, we obtain the following
determinate version of s/2:

s([a,aIX] 9Y) - q(st)o
s([a,blX], [a,b|X]).
s([1,[1).

4 Generality of the Method

The extent to which determinacy is revealed depends on the tightness of the success conditions we
derive. These in turn are directly dependent on the conditions we associate with the base predicates.
The stronger the conditions on the base predicates, the greater is the power of the method. In
order to utilize these stronger conditions, the inference mechanism should lose as little information
as possible. Hence by strengthening the base conditions and the inferencing mechanism, we can
enlarge the class of programs for which determinacy can be inferred by our method.

Generality of the method is illustrated through two examples in which depth-k abstraction reveals
no determinacy. The first example requires a different abstraction mechanism (a substitute for
approz,), but otherwise the analysis method remains unchanged. The second example, whose
determinacy arises in part from arithmetic constraints, requires both a different abstraction and a
different base constraint solver (a substitute for mgu). Furthermore, in order to preserve efficient
identification of fixed points, a suitable canonical form for the base constraints is needed, e.g.,
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p(X1) :- X2 = [1, s(X1,X2).

s(X1,X2) :- append([a|X3],[al,X1), append([a|X2],[b],X4), s(X3,X4).
s(X1,X2) :- append([c|X3],[al,X1), append([c|X2],[b],X4), s(X3,X4).
s(X1,X2) :- X1 = X2.

[1, X2 = x3.
[X4|X5], X3 = [X4|X6], append(X5,X2,X6).

append(X1,X2,X3) :- X1
append(X1,X2,X3) :- X1

Figure 4: Parser for a context sensitive grammar

the canonical form for linear arithmetic constraints proposed in [7]. Even in the absence of such
a canonical form, identification of fixed points can be accomplished using semantic implication
checking (=), though less efficiently.

4.1 Parser for a Context Sensitive Grammar

The program in Figure 4 is a parser for the language {wwfb"a™|w € (a + ¢)*,n > 0}. We analyze
this program using a generalization of the structural constraints used to illustrate the method in
Section 3. The necessary condition for equality between two terms is that the labels in some k
fixed positions in the terms are equal. By “fixed”, we mean positions that are defined in the term
either with respect to the root, or its rightmost (leftmost) leaf. Note that the depth-k abstraction
is a special case of this condition.

In the discussion that follows, a list is represented as [by, bs,- - -, €2, €1], where b;’s are at fixed
positions relative to the root and e;’s are fixed relative to the tail. From X = [a]|Y], deriving
hd(X) = a is a weak necessary condition. Intuitively, we can obtain stronger necessary conditions
from the fact that not only is X’s head a, X and Y have the same last element. The above
abstraction permits us to represent and propagate this condition. The derived program is omitted.
Of particular interest to the analysis of this program are the necessary conditions derived for
append®:

(append®)#(X1,X2,X3) = (X1=[]AX2=2ZAX3=12Z)V
(X1=[X1)A(X2=[]AX3=[X14])V
(X2=[..,X2_1]AX3=[X11,...,X2_4]))V
(X1=[X1y,...,X1_JA(X2=[]AX3=[X14,...,X1_4])V
(X2=1[..,X2_1)AX3=[X1y,...,X2_4]))

It is with this stronger condition for equality that we can derive that the second and third
arguments of append have the same tail, and hence detect determinacy of the predicate s. The
clause conditions obtained for the three rules defining s are:
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Gl = (X1=[ayenya]) A((X2 = [,y B) V(X2 = [e0.n,B) V (X2 = []))
A (X1=lc,..,a) A ((X2=[a,...,B]) vV (X2=[c,...,b]) V(X2 =[]))
o = (X1=2Z)A(X2=2)A((X2=[a,...,B])V (X2=[c,...,b)) vV (X2=1[])

Clearly, the three conditions are mutually exclusive and hence we conclude that the predicate s

is determinate.

4.2 Quicksort

That the power of our method is not limited to structural equality is illustrated through this
example. We show how arithmetic conditions can be handled by the method. The basic idea
is that the properties of arithmetic operators should be abstracted as a finite set of necessary
conditions. For example, a necessary condition for X = Y + Z is that (Y > 0) —» (X > Z)).
Another way to abstract these operators is to define them precisely up to a certain point, and with
inequalities beyond that ceiling. For example the following formula defines a part of the necessary
condition for X = Y + Z when arithmetic is interpreted exactly for numbers from 0 to 3, and

approximated outside this range.

It is clear that reasoning with such formulae is tractable. It should be noted here that the sim-
plification of formulas done on this domain can be considered as semantic inference, whereas the
simplification in the case of structural equality was defined syntactically.

The Quicksort program fragment in Figure 5 employs a simple sorting routine for short lists.
This technique is often used in practice to improve the performance of Quicksort. Unfortunately,
execution of this program would result in the placing of a choice point for each call to guicksort,
since the clause that applies cannot be determined until after a call to length. Our analysis method
is powerful enough to infer the determinacy of quicksort.

The analysis of this program is illustrated using a depth-3 approximation combined with the
inference rule for addition noted above. We focus here on the conditions for satisfaction of length,
since it is those conditions that enable the program to be recognized as determinate. The success

condition derived for length is:
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quicksort(X1,X2,X3) :- length(X1,X4), X4 =< 3,
simplesort(X1,X2,X3).
quicksort(X1,X2,X3) :- X1 = [X4|X5],
length(X1,X6), X6 > 3, X10 = [X4]X9],
partition(X4,X5,X7,X8),
quicksort(X8,X2,X9),
quicksort(X7,X10,X3).

length(X1,X2) :- X1
length(X1,X2) :- X1

[1, x2 = o.
[_1X3], length(X3,X4), X2 is X4 + 1.

Figure 5: Quicksort program fragment

(length®)#(X1,X2) = ((X1=[])A(X2=0)V((X1=[Z])A(X2=1))V
(X1 = [, Za]) A (X2 = 2)) V (X1 = [Z1, Za, Zs]) A (X2 = 3)) V.
((X]_ = [Zl, Loy L3y 4y |Z5]) A (X2 > 3))

The following are the clause conditions obtained for quicksort. For clarity, we show only the part
of the conditions that deals with X1, since these are the conditions that lead to determinacy.

o1 = (X1=[])v(X1=[Z]) V(X1 =[Z,2]) V(X1 =21, 2, Zs]))
Y2 = (Xl = [Z17Z27Z3’Z4 |Z5])

5 Other Approaches and Applications

5.1 Determinacy methods

Other approaches to extracting determinacy in logic programs have been described by Van Roy,
Demoen, and Willems [17]; Hickey and Mudambi [5]; and Zhou, Takagi, and Ushijima [18]. While
all three approaches address the problem of avoiding backtracking when predicates are determinate,
the class of programs in which they can infer determinacy is restricted. In particular, none of these
methods is able to infer determinacy in the examples we give, due to the lack of a mechanism for
propagating determinacy information (other than mode information). Even in the following simple
example, which is based on one in [5], the ability to propagate constraints is necessary for inferring

determinacy.
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p(X,Y) :- less(X,Y), q(X,Y).
p(X,Y) :- geq(X,Y), r(X,Y).
less(a(X1,_),a(X2,_)) :- X1 < X2.
geq(a(X1,_),a(X2,_)) :- X1 >= X2.

In contrast to the above approaches, our method of propagating constraints makes the inference
of p’s determinacy straightforward. Furthermore, our approach of promoting early failure can
help avoid deep backtracking, whereas the above approaches can be viewed as optimizing shallow

backtracking. Thus, our method generalizes the test condition approach.

The method proposed by Sato and Tamaki [14] does propagate information leading to determinacy
detection. However, in their approach, propagation is implicit. Moreover, the information that is
propagated is fixed to a restricted form (depth-k) of structural equality between terms. Thus, their
method is unable to detect determinacy in the CSG and Quicksort programs, or even in the above
example. Their approach is based on an item-set construction similar to that used for LR parsers,

and whether it can be adapted to propagate more general constraints is unclear.

Another class of approaches to determinacy analysis treats determinacy strictly as a property of
predicates; that is, a predicate is either determinate, non-determinate, or perhaps unknown. The
inference of determinacy is then viewed as the solution of a set of simultaneous equations over such
a 2- or 3-valued set. The earliest examples of this approach are due to Mellish [10] and Sawamura
and Takeshima [15]. In both cases, determinacy is inferred only from simple mutual exclusion of
clauses, with a heavy reliance on the presence of cuts. The notion of determinacy was generalized
to that of functionality in similar methods by Debray and Warren [3], and Giacobazzi and Ricci
[4]. Our method can be viewed as a further generalization of these methods, in that the notion of
promoting early failure can lead to reduced backtracking even if a predicate is not inferred to be

strictly determinate.

5.2 Constraint propagation

The introduction of conditions to promote early failure is similar to the refinement optimization of
Marriot and Stuckey [8], and the use of constraint propagation is similar to the technique employed
by Srivastava and R. Ramakrishnan [16]. However, the method of [8] deals only with bottom-
up information, corresponding to our success conditions, and not with context information. The
technique of [16] uses a bi-directional constraint propagation technique that incorporates top-down
information. However, both methods, which are designed for the CLP paradigm, deal only with
constraints explicitly present in programs, whereas our method is more concerned with the inference

of conditions from implicit constraints that lead to determinacy.

5.3 Applications

Determinacy analysis offers greater efficiency through reduced backtracking not only for sequential
Prolog systems, but also for systems that incorporate dependent and-parallelism, such as Andorra-1
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[13]. In Andorra-I determinate goals are executed (in and-parallel) before other goals. A deter-
minate goal in Andorra-I is a goal that matches at most one clause head, where the head may
be thought of as also including certain builtin goals. Choice points are created for other goals,
which may be evaluated in or-parallel. Determinacy analysis can provide additional information
for more accurate identification of determinate goals, leading to greater and-parallelism at run time.
Furthermore, determinacy analysis may in many cases identify determinate predicates (those for
which, on any call, at most one clause succeeds), which can simplify run-time determinacy testing.
Of course, the benefits of early failure afforded by success condition analysis apply to parallel as

well as sequential Prolog systems.

6 Concluding Remarks

Reducing unnecessary backtracking through promotion of early failure is an important optimization
that can enhance the performance of logic programs. In this paper we developed an analysis
technique for detecting conditions under which the clauses of a predicate will succeed. Checking
these conditions before the predicate is called amounts to promoting early failure, thereby avoiding
unnecessary backtracking. Furthermore, mutual exclusion of the inferred conditions implies that the
predicate is determinate. Qur technique is based on representing the success conditions of predicates
by constraints and computing them using symbolic constraint solving. This representation and

computation unifies and generalizes previous approaches to extracting determinacy.

Note that the stronger the success conditions inferred, the greater is the ability to promote early
failure. The strength of the constraints placed on base predicates determines the strength of the
inferred conditions, and thus the extent to which determinacy can be extracted. The choice of
base constraints is, therefore, an issue of practical importance. On the one hand, one would like to
ensure that the base constraints are sufficiently strong to detect the determinacy present. On the
other hand, one would like to minimize the computational effort involved inferring determinacy. For
example, the analysis of the context-sensitive parser in section 4 required constraints that maintain
information about list tails. By contrast, the LL(2) parser in section 2 required only a depth-2 base
constraint. It remains open as to how the process of determining appropriate base constraints for
the analysis of a given program can be automated. An alternative approach is to apply a strong
set of base constraints and inference rules uniformly in the analysis of programs, and use widening
techniques [1] to weaken constraints as the analysis proceeds. These are interesting open questions

that are worth exploring.
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A Technical appendix

This appendix contains the lemmas and theorems used in the proofs of soundness and termination
of the success condition analysis defined by the rules in figure 3 (section 3).

A.1 Soundness

Lemma A.1 approwz, is sound. That is, for any conjunction v in canonical form, 1 = approz; ().

Proof: Let X =t be a constraint in . Note that approz;, only replaces some identical subterms
with identical variables, and if ¢; and ¢, are distinct subterms of ¢ that are replaced, they are
replaced by distinct variables. Thus, X = t' is a constraint in approz;(¢) such that ¢ is an instance
of t'. So, for every constraint C in v, there is a constraint C' in approz;,(v) such that C = C'.

Hence, approz, is sound. |

Lemma A.2 unify is lossless and preserves canonical forms. That is, for all conjunctions 1 and
e tn canonical form, 1 A P2 & unify(v1,¢2), and unify(1,v2) is in canonical form.

Proof: To show that unify is lossless, let ¢ = (X7 = t4 A---A X, = ) and ¢, = (X] =
ti A AXG =t ),and let S = {(X/ =) [1 <k <1} = mgu({(X; = ;) |1 <i <nfU{(X] =
t:) | 1 < j < m}). By definition of mgu, we have

A substitution o satisfies ¢1 A 9, iff o satisfies S. (A.2.1)
and, since S is in solved form (definition 3.3),
{X{,. ., X"y nvars({t],...,t/}) =0 (A.2.2)

Now,let X = {X; |1 <i <n}u{X}|1<j<m},¢' =project(X,S)andt={t]|1<k<IX}]e€
X}. If a substitution o satisfies ¢, it also satisfies §, since ({X7',..., X'} — X)Nvars({t},...,t]}) =
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0 and any variable in {t{,...,t]'} — ¢ that also occurs in ¢ can take the substitution specified by o.
Thus,
A substitution o satisfies ¢’ iff o satisfies S. (A.2.3)

Hence, from (A.2.1), (A.2.2), (A.2.3), and the definition of unify, it follows that
Y1 A P2 & unify(r, ¢a).

To prove that unify preserves canonical forms, it suffices to show that unify(¢1,¥2) is in standard
form, and that any rhs of a constraint in wnify(t1,¢2) that is a variable occurs in the rhs of some
other constraint. That unify(t1,¢2) is in standard form follows from (A.2.2) and the fact that S
is in solved form. Now, suppose some constraint X = ¢ in unify(t1,¢2) is such that ¢ is a variable
occurring nowhere else in unify(1,2). Without loss of generality, let X = t' be a constraint in
1. Since, by assumption, v, is in canonical form, if ¢’ is a variable then #' must occur in the rhs of
some other constraint. Thus, it is easy to construct a substitution for X = ¢ that does not satisfy
X = t', contradicting the losslessness of unify. |

Lemma A.3 absorb is lossless and preserves canonical forms. That is, for every constraint ¢ =
(¥1V---Vy,), such that each v; is in canonical form, ¢ < absorb(¢), and absorb(¢) is in canonical
form.

Proof: Let ¢ = (41 V---V 9,). Since the set of conjunctions in absorb(¢) is a subset of the set
of conjunctions in ¢, absorb(¢) = ¢. To show ¢ = absorb(¢), consider two cases: (1) there is no
¥; € ¢ such that ¥; = v;,7 # j; (2) for some distinct 7 and j, ¥; = 9;. In case (1) absorb(¢) = ¢,
so clearly ¢ = absorb(¢). In case (2), ¥; = ;. Thus, (Y1V---Vep,) = (Y1 Vi1 V- -Vhip1 Viby),
s0 ¢ = absorb(®).

To show that absorb(¢) is in canonical form, observe that absorb(¢) is in standard form because
¢ is in standard form. Since each conjunction ; of ¢ is in canonical form, it suffices to show
that in absorb(¢), no conjunction is implied by another. By definition of absorb, no two distinct
conjunctions v; and v; in absorb(¢) are such that ¢; = ;. [ |

Lemma A.4 product ¢s lossless and preserves standard forms. That is, for all constraints ¢1 and
@2 in canonical form, (¢1 A ¢2) < product(¢s, ¢2); product(¢y, ¢2) is in standard form and every
conjunction in product(¢y, ¢2) is in canonical form.

Proof: Losslessness of product follows directly from losslessness of unify (lemma A.2) and dis-
tributivity of A over V.

Since product(¢y, ¢2) is in DNF, and unify preserves canonical forms (lemma A.2), it follows that
product($1, P2) is in standard form, and every conjunction in product(¢i, ¢2) is in canonical form.
|

Theorem A.5 S, and S, are lossless. That is, for all constraints ¢, and ¢o in canonical form,

(91 V ¢2) & Su(d1,92), and (¢1 A ¢2) & Sa(91, P2)-
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Proof: Losslessness of Sy follows directly from losslessness of absorb (lemma A.3). Losslessness
of S, follows from losslessness of product (lemma A.4) and losslessness of absorb (lemma A.3). W

Lemma A.6 [[, preserves canonical forms.

Proof: Since approz, only replaces some subterms of right-hand sides of constraints with new
existential variables, it preserves standard forms. Thus, [[, preserves standard forms. Furthermore,
[1 removes (via truncate) constraints of the form X =Y, where Y is a variable occurring nowhere
else in the conjunction. Hence, ][], preserves canonical forms. |

Theorem A.7 The operations Sy, Sp and [ preserve canonical forms.

Proof: If ¢; and ¢, are in canonical form, then Sy(¢1,$2) is in canonical form, since absorb
preserves canonical forms (lemma A.3). By lemma A.4, product(¢;,¢2) is in standard form, and
every conjunction in product(¢i, ¢2) is in canonical form. By lemma A.3, absorb(product(¢1, ¢2))
is in canonical form. Hence, Sx(¢1, ¢2) is in canonical form.

[] preserves canonical forms, since [, preserves canonical forms (lemma A.6) and absorb preserves

canonical forms (lemma A.3). |

A.2 Termination

Lemma A.8 Let ¢ = N (X; = t;) and ¢' = AL, (X} = t}) be two conjunctions in canonical
form. Then, V;3; X; = X whenever ¢ = 9.

Proof: To the contrary, assume that there is a XJ'~ that is distinct from every X;. Consider some
substitution, o, that satisfies 1. We have the following two cases, depending on structure of the
term .

Case 1: t;- = f(...) for some function symbol f. Consider the substitution o obtained by extending
oas: o' = cU{X] = f'(...)} where f'is a function symbol distinct from f. Clearly, o' satisfies
1, but cannot be extended to satisfy ¢’. Hence ¢ % '.

Case 2: t;- is a variable, say Z. Since 1’ is in canonical form, Z appears in some other term, say
t,. If X; occurs in 4, then let o(X}) = s; otherwise, let s be any term. Then extend o to
o' = o U {(X] = s§'),(X} = s)} where s’ is some term such that s’ is not a subterm of s.
Again, o' satisfies ¢ but cannot be extended to satisfy ¢'. Hence ¢ £ 9.

Lemma A.9 Let = N_(X; = t;) and ¢' = N/L,(X} = ti) be in standard form. Then,
V;3; XJ’~ = X; and t; subsumes t; whenever ¢ = .
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Proof: From definition of =-, every substitution o that satisfies ¥ can be extended to satisfy
v'. Hence if X J’ = X, then every instance of ¢; also an instance of t; and hence t;- subsumes #;.
Existence of equivalent variables is assured by lemma A.8. |

For each t;-, the ¢; that satisfies the condition in the above lemma is called its corresponding
term. The subsumption condition means that at all positions where t;- has a function symbol, £;
must have the same function symbol. Hence the constant portion of t; is contained in the constant
portion of ¢;. We formalize the notion of position as follows:

Definition A.1 (Position) A position is either

e the empty string A that reaches the root of the term, or

o p.i, where p is a position and i is an integer, which reaches the i* child of the root of the

subterm reached by p.
The subterm of t reached by p is denoted by t|p.

Now we show that whenever ¢ = 7' and two terms in %' share a subterm, the corresponding
subterms in v must be identical.

Lemma A.10 Let ¢ = o' and let t], ty be two terms such that (X, = t]) and (X, = t}) occur in
' and p; and py be positions in t} and t), respectively, such that t}|p; = t4|ps; i.e., t} and t,, share
a subterm. Then the corresponding terms t; and to in v are such that t1|p; = ta|p2.

Proof: Since t] subsumes ¢; and ¢, subsumes t,, the positions p; and p, are defined in ¢; and ¢,
respectively. Let t}|p; = t5|ps, but t1|p; # t2|p2. Then we can find a substitution o that satisfies
1 such that o(X1)|p1 # 0(X2)|p2. This substitution clearly cannot be extended to satisfy ', since
any substitution o' that satisfies ¢’ must have ¢'(X1)|p1 = o'(X2)|p2- ]

Theorem A.11 Canonical forms are unique (modulo renaming of existential variables) for con-
junctions. That is, if 11 and ¥y are two conjunctions in canonical form and Y1 < s, then 11 = )9
(modulo renaming of existential variables).

Proof: Follows from lemmas A.8, A.9, and A.10. |

Lemma A.12 Let ¢ = N1 (X; = t;) and ¢' = N (X} = t}) be two conjunctions in standard
form. Then, ¥ = ' whenever

1. V;3; X = X; and t; subsumes t;; and

2. ifti andt], are two terms such that (X;, =t} ) and (X;, = t. ) occur in 3’ with positions p;,
and p;, in t; and t. respectively, such that t |p;, = t. |p;,; then the corresponding terms t;,
and t;, in ¢ are such that t; |p;, = t;,|pi, (subterms in ¢ are shared whenever corresponding

subterms in o' are shared).
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Proof: Let o be a substitution satisfying ¢, and let (X} = t’) be an arbitrary constraint in '.
By condition 1 there exists (X; = ¢;) in ¢ such that X; = XJ’~ and t; subsumes ¢;. For every variable
subterm Z of ¢/, let ¢ be the corresponding subterm of ¢;, and extend o to o' by 0'(Z) = o(t). Since
t; subsumes ¢;, the corresponding subterm in t; of any variable subterm in ¢; must be a variable, so
the extension of ¢ to ¢’ can always be made. Furthermore, condition 2 ensures that ¢’ is consistent
across all terms in ¢'. Thus, o can always be extended to o' satisfying ¢'. Hence, ¥ = 7'. |

Lemma A.13 approz;, is finitely computable and is monotonic with respect to >.

Proof: approz, clearly terminates when the input conjunction is finite. For monotonicity, we first
show that approg, is monotonic with respect to =-. Let ¢ = A7_;(X; = ¢;) and ¢' = AT, (X} = ¢)
be two conjunctions in standard form, such that %; = ;. By lemma A.9, V;3; XJ'- = X; and t;-
subsumes £;; and by lemma A.10, any two terms in v have identical subterms whenever the corre-
sponding subterms in ¢’ are identical. Since approwz;, replaces identical subterms at depth-k with
identical variables, the subsumption and sharing conditions hold for approz, () and approz;(¢').
Thus, by lemma A.12, approz;, () = approz;,(v'). Since the orders = and > coincide for conjunc-
tions, it follows that approz; is monotonic with respect to . |

Lemma A.14 [], is finitely computable and is monotonic with respect to > .

Proof: Procedures project and truncate clearly terminate when their input is finite, and, since
approzy, is finitely computable (lemma A.13), it follows that [], is finitely computable.

Procedure project is monotonic with respect to >, since, given two sets of constraints correspond-
ing to conjunctions in standard form, project removes constraints for the same variables from each
set. Since truncate removes only constraints equivalent to True, it is also monotonic. Thus, since
approz;, is monotonic with respect to > (lemma A.13), it follows that [], is monotonic with respect
to >. |

Lemma A.15 unify is finitely computable and is monotonic with respect to >.

Proof: Let ¢ = ¢'. Then, unify(¥,v1) < (¥ A1) = (¥' A1) < unify(¢',41). Hence, unify
is monotonic with respect to =, and since the orders = and > coincide over conjunctions, is
monotonic with respect to .

The unification procedure mgu over a finite set of term equations is finitely computable. Procedure
project clearly terminates when the size of the input set is finite. Therefore, unify is finitely
computable. |

Lemma A.16 Implication among conjunctions s finitely computable.

Proof: We define implication checking among conjunctions based on the following observation:
(Y1 = ¢2) & (unify(¢r,¢¥2) & ¥1)
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which follows from the losslessness of unify (lemma A.2). Now, since unify computes canonical
forms, and canonical forms for conjunctions are unique modulo renaming of existential variables,
(unify(¢r, ¥2) < Y1) < (unify(v1,P2) = ¢1). Since unify is finitely computable (lemma A.15), this
lemma follows. |

Lemma A.17 product is finitely computable and is monotonic with respect to >.

Proof: Let ¢ > ¢' and ¢" be some conjunction. Then product(¢, ¢") consists of conjunctions of
the form wunify(¢;, ;). Since ¢ = ¢, 3¢} in ¢' such that ¢; > o). From monotonicity of unify
(lemma A.15), unify(¢:, ;) = unify(d}, ¢)), and unify(¢}, ¢y) is a conjunction in product(¢’, ¢").
Thus, for every conjunction ¢ in product(¢, ¢") there is a conjunction ¢’ in product(¢’, ¢") such
that ¢ > ¢’ and hence product(¢, ¢") = product(¢’, ¢"). [ |

Lemma A.18 absorb is finitely computable and is monotonic with respect to .

Proof: Clearly, absorb(¢) > ¢, since absorb throws away some conjunctions and never introduces
new conjunctions. Let ¢ > ¢'. Hence, V4¢); in ¢, 3¢} in ¢’ such that ¢; > 3'j. Now we show that
¢ = absorb(¢'). If absorb(¢') = ¢' then ¢ = absorb(¢'), since ¢ = ¢'. If absorb(¢’) # ¢', there are
two distinct conjunctions in ¢’ such that ¢ = ¢,. Hence absorb(¢') contains only ¢},. Let i be such
that ¢; = ¥}. Now, ¢; = ¥}, and hence ¢ = absorb(¢'), and we get absorb(¢) = ¢ - absorb(¢’). B

Theorem A.19 S, Sy and [] are finitely computable and are monotonic with respect to ».

Proof: Monotonicity and finite computability of S and Sy follow from monotonicity and finite
computability of absorb (lemma A.18) and product (lemma A.17).

Monotonicity and finite computability of [] follows from monotonicity and finite computability
of absorb (lemma A.18) and [], (lemma A.17). |

Theorem A.20 Range of [] is finite.

Proof: If the depth of terms on the rhs of every constraint is bounded, and the number of univer-
sally quantified variables is finite, then the number of distinct (modulo renaming of existentially
quantified variables) of conjunctions in canonical form is finite. Note that for any ¢, [].(%) con-
tains only terms of depth k or less. Furthermore, [],(%) is in canonical form (lemma A.6). Hence
the range of [[, is finite. From the definition of canonical forms, if the number of conjunctions
is finite, then the number of disjunctions is also finite. Thus, since for all ¢, [[(¢) is in canonical

form, the range of [] is finite. |

26



