Unification Factoring for Efficient Execution of Logic Programs*

S. Dawson
S. Skiena

C.R. Ramakrishnan
T. Swift

1.V. Ramakrishnan
D.S. Warren

K. Sagonas

Department of Computer Science
SUNY at Stony Brook
Stony Brook, NY 11794-4400

{sdawson, cram, ram, kostis, skiena, tswift, warren}@cs.sunysb.edu

Abstract

The efficiency of resolution-based logic programming lan-
guages, such as Prolog, depends critically on selecting and
executing sets of applicable clause heads to resolve against
subgoals. Traditional approaches to this problem have fo-
cused on using indexing to determine the smallest possible
applicable set. Despite their usefulness, these approaches
ignore the non-determinism inherent in many programming
languages to the extent that they do not attempt to optimize
execution after the applicable set has been determined.

Unification factoring seeks to rectify this omission by re-
garding the indexing and unification phases of clause reso-
lution as a single process. This paper formalizes that pro-
cess through the construction of factoring automata. A
polynomial-time algorithm is given for constructing opti-
mal factoring automata which preserve the clause selection
strategy of Prolog. More generally, when the clause selec-
tion strategy is not fixed, constructing such an optimal au-
tomaton is shown to be NP-complete, solving an open trie
minimization problem.

Unification factoring is implemented through a source
code transformation that preserves the full semantics of Pro-
log. This transformation is specified in the paper, and using
it, several well-known programs show performance improve-
ments of up to 100% across three different systems. A proto-
type of unification factoring is available by anonymous ftp.

1 Introduction

In logic programming languages, such as Prolog, a predicate
is defined by a sequence of Horn clauses. When resolving a
goal, a clause becomes applicable if its head unifies with the
goal, and each applicable clause is invoked in textual order.
Unification of a clause head with a goal involves two ba-
sic operations: elementary match operations and computing
substitutions for variables in the two terms. When there are
common parts among the clause heads, it should be pos-
sible to share the basic operations corresponding to these

*This work was supported in part by NSF grants CCR-9102159,
CCR-9102989, CCR-9404921, CDA-9303181, INT-9314412, and ONR
grant 400X116YIPO1.

common parts and do them without redundancy. Develop-
ing such techniques is a problem of considerable importance
for efficient evaluation of logic programs.

Traditionally this optimization is viewed as a two-phase
process. The first phase, known as the indezing phase, ex-
amines non-variable parts of the goal and clause heads to
compute a match set which is a superset of all unifiable
clauses. While indexing essentially does match operations,
the substitutions are computed in the second, or unifica-
tion, phase when the goal is unified with the clauses in the
match set. For example, indexing yields the three clauses
{p(a,b,¢),p(a,b,d),p(a,c,c)} for the call p(a,X,Y) on the
predicate in Figure la. In the unification phase each of the
three clauses is unified in textual order. In this phase six
substitutions are computed — three for each of the two vari-
ables. In addition three match operations are performed
requiring rescanning of terms already seen during indexing.
But observe that it suffices to compute only two substitu-
tions for X and three for Y. Furthermore repeating the
match operation is unnecessary. Thus the efficiency of uni-
fication of clause heads with the goal can be considerably
enhanced by sharing the unification operations not only in
the indexing but also in the unification phase.

Although techniques for sharing tests needed for com-
puting match sets have been extensively researched (such as
indexing techniques for logic programming, e.g., see [2, 5, 6,
8, 9, 14]; pattern matching for functional and term rewrit-
ing systems e.g., see [11]; and decision trees for concurrent
logic languages e.g., [7, 12]), optimizing the sharing of uni-
fication operations has not been explored. Extant indexing
techniques in logic programming, on completing indexing,
unify each clause head in the match set separately with the
goal. That is, execution after indexing is not optimized.
Even rescanning parts already seen during indexing is sel-
dom avoided (see [2, 5]) since in general this requires either
large indexing structures (e.g., the switching tree of [6]) or
elaborate information to be maintained and manipulated
at run time. In any case since each clause head is unified
separately with the goal, the other problem of sharing sub-
stitutions still remains.

Rather than viewing head unification as two separate
and independent stages we regard it as a single process in
which both the indexing and unification phases are blended.
We present a technique, called unification factoring, to unify
clause heads efficiently with any arbitrary goal. In contrast
to matching trees (e.g., [6, 14]), the technique presented
here does not rely on mode information. Unification fac-
toring transforms the source program into another in which

the basic unification operations common to clause heads and
the goal are factored out; i.e., they can all be shared. For
instance, the program in Figure la can be transformed into
the program in Figure 1b by unification factoring. Now the
call p(a,X,Y) on this transformed predicate will result in
only one match operation and compute two substitutions
for X; the three substitutions computed for ¥ remain un-
changed. Observe that in the transformed program, the
match operation is shared and only the needed substitutions
are computed for X.

p(a,X,Y) :- p1(X,Y).
p(b,a,c).

p(a,b,c).

p1(b,X) :- p2(X).
522";’233 pi(c,X) - p3(X).
p(b,a,c). p2(c) .

p2(d).

p3(c).

(a) (b)
Figure 1: Original predicate (a) and transformed version (b)

Unification factoring is a uniform technique that can en-
hance the overall efficiency of unifying clause heads with
a goal by optimizing not just the matching operations (as
is done by indexing techniques) but also other operations
(such as computing substitutions). In other words, it can
handle non-deterministic execution more efficiently. More-
over, since there is no division into two separate phases, the
difficult interface problem of eliminating rescans of terms
no longer exists. In general there are several different ways
to factor out unification operations in a program, yielding
transformed programs with differing performance. The in-
teresting problem then is the design of optimal unification
factoring, i.e., one that results in a program that has the
best performance. We propose a solution to this problem.
In contrast to existing indexing techniques, which require
compiler and/or engine modifications, unification factoring
is implemented as a source-to-source transformation needing
no engine changes. We develop the technique of unification
factoring in two parts. In the first part we construct a fac-
toring automaton that models the process of unifying a goal
with a set of clause heads as is done in the WAM (see Sec-
tion 2). Common unification operations are factored out
by this automaton. The second part constitutes the algo-
rithm for transforming this automaton into Prolog code (see
Section 4).

Summary of Results

1. We describe an algorithm for constructing (at compile
time) an optimal factoring automaton that faithfully
models Prolog’s textual order-preserving clause selec-
tion strategy. We exploit this strategy for construct-
ing an optimal automaton in polynomial time using
dynamic programming (see Section 3).

2. We show that, on relaxing the order-preserving strat-
egy, construction of an optimal automaton becomes
NP-complete (see Section 3). This result solves a trie
minimization problem left open by Comer and Sethi

[4].

3. We provide experimental evidence that our transfor-
mation can consistently improve speeds of Prolog pro-
grams by factors up to 2 to 3 on widely available Prolog

systems, namely, Quintus, SICStus, and XSB (see Sec-
tion 5). Our results also indicate that, although the
transformation can in principle increase code size by
at most a constant factor, in practice this increase is
never more than 10%, and in fact, code space decreases
in some cases.

2 Unification Factoring

The factoring automaton decomposes the unification process
into a sequence of elementary unification operations that
model instructions in the WAM. It is structured as a tree,
with the root as the start state, and the edges, denoting
transitions, representing elementary unification operations.
Each transition is associated with the cost of performing
the corresponding operation. Every leaf state represents a
clause, and the transitions on the path from the root to a
leaf represent the set of elementary operations needed to
unify the head of that clause with a goal. The total cost of
all these transitions is the cost of this unification. Common
edges in the root-to-leaf paths of two leaves represent com-
mon operations that are needed to unify the goal with those
two clauses. Sharing the operations associated with com-
mon edges thus amounts to factoring the process of unifying
the goal with the clause heads. Note that, since the tran-
sitions represent unification operations, all possible transi-
tions out of a state are attempted; 7.e., the automaton is
non-deterministic. In the following, we formalize the notion
of factoring automaton. Our formalization is inspired by
work on pattern matching tries in [1]. In the next section
we describe the construction of optimal automata.

The Factoring Automaton

We assume the standard definitions of term, and the notions
of substitution and subsumption of terms. A position in a
term is either the empty string A that reaches the root of
the term, or =.z, where = is a position and 2 is an integer,
that reaches the #** child of the term reached by =. By
t|x we denote the symbol at position # in ¢. For example,
p(a, f(X))|]2.1 = X. We denote the set of all positions by II.
Terms are built from a finite set of function symbols F and a
countable set of variables Y UV, where V is a set of position
variables. The variables in the set V are of the form X,
where 7 is a position, and are used simply as a notational
convenience to mark certain positions of interest in a term.
The symbol ¢ (possibly subscripted) denotes terms; a, a’, . ..
denote elements of the set ZUV; v,v’,... denote elements of
the set FU VY UII; and f, g, h denote function symbols. The
arity of a symbol a is denoted by arity(a); note that the
arity of variable symbols is 0. Simultaneous substitution
of a term t' at a set of positions P in term t is denoted
t[P « t']. For example, p(X1, f(X2.1), X3)[{2.1,3} < b] =
p(le .f(b)’b)

A factoring automaton performs unification as a series
of elementary unification operations. At each stage in the
computation we need to capture the operations that have
been performed, as well as those that remain to be done. We
use the notion of skeleton, which is a term over F UV U f;,
to denote this partial computation. Elements of # UV in
a skeleton represent unification operations that have been
performed. Position variables denote portions of the goal
where the remaining operations will be performed. Given a

skeleton its fringe defines the positions to be explored for
unification to progress. Formally,

Definition 2.1 (Skeleton and Fringe) A skeleton is a

term over F UV U V. The fringe of a skeleton S, denoted
fringe(S), is the set of all positions = such that S|, = X

and X, € V.

For example, the skeleton g(X1,g(Xz.1,X2.3,X2.3)) for the
goal g(f(U), W) captures the fact that the substitution for
W has been partially computed (to be g(Xz.1, X2.3, X2.3)),
and that the first argument of the goal has not yet been
explored. The fringe of this skeleton is {1,2.1,2.3}.

Each state in the automaton represents an intermediate
stage in the unification process. With each state is associ-
ated a skeleton and a subset of clauses, called the compatible
set of the state. The clause heads in the compatible set share
each unification operation done on the path from the root
to that state. Hence, each clause head in the compatible
set is subsumed by the skeleton of that state. Recall that
the fringe of a skeleton represents the positions in the par-
tially unified goal that remain to be explored. A state then
specifies one such position, and each outgoing transition rep-
resents a unification operation involving that position. We
label the transition unify(w,~), where v is either a function
symbol or variable in the clause head, or another position
in the (partially unified) goal. (Positions in the label are
prefixed with “$” to avoid confusion with integers.)

For example, in Figure 2a the label on the transition from
81 to s2 specifies unifying position 1 of the goal with a. The
compatible set for state sz is {p(a, b, c), p(a,b,d),p(a,c,c)},
and clause heads in that set share the operation unify($1,a).
In Figure 5b the label on the transition from s; to s specifies
unifying positions 1 and 2 in the goal, while the label on the
transition from ss to sy specifies unifying position 2 in the
goal with variable X (in the head of clause 1).

A transition from a state indicates progress in the uni-
fication process. For a transition labeled unify(w,v), the
skeleton of the destination state is obtained by extending
the skeleton S of the current state using the extension op-
eration eztend(S,w,v) defined below. Intuitively, S is ex-
tended by replacing all occurrences of X, in S by the term
corresponding to . If v is a function symbol, this term has
v as root and position variables representing new fringe po-
sitions as its children. If v is a position, this term is the
position variable X,. Otherwise, this term is the variable ~y
itself.

Definition 2.2 (Skeleton extension) The extension of
skeleton S at fringe position = by v, denoted eztend(S, x,7),
is the skeleton S’ such that

where P ={r'| S|, =X.}
7(X1r.1v ey Xﬂ.af'ity('y)) (7 € f)
and t=4¢ X, (vell)
Y (reV)

For example, in the skeleton g(X1,g(X2.1,X2.3, X2.3)), the
operation unify($1, f/1) results in extension of the skeleton
to q(f(Xl,l),g(Xz,l,X2,3,X2,3)). This skeleton is further
extended as a result of the operation unify($1.1,$2.1) to
q(f(XZ.l)ag(XZ.laX2.37X2.3))-

We now formally define the factoring automaton as fol-
lows:

Definition 2.3 (Factoring Automaton) A factoring au-
tomaton for a set of clauses C and a skeleton S is an or-
dered tree whose edges are labeled with unify(r,v), and with
each node s (a state) is associated a skeleton S,, a position
s € fringe(S,) (if s is not a leaf), and a non-empty com-
patible set C; C C of clause heads such that:

1. Every clause head in C; is subsumed by S;,

2. the root state has S as the skeleton and C as the com-
patible set,

3. for each edge (s,d) with label unify(x,,v),
Sq = extend(S;,ns,7v), and

4. the collection of sets {Cq | (s,d) is an edge} is a par-
tition of C,.

The partitioning of the compatible set C; at a fringe
position 7, in the above definition ensures that transitions
specify unification operations involving #, in the goal, and
either: 1) a function symbol or variable appearing at =,
in at least one of the clause heads in C,; or 2) another
(fringe) position in the goal. Each set in the partition is a
compatible set of one of the next states of S;, and all the
clause heads in it share the unification operation specified
by the corresponding transition.

Construction Using the programs in Figures 1a and 5a and
the corresponding automata in Figures 2a and 5b for illus-
tration, we informally describe the construction of a fac-
toring automaton. For a predicate p/n an automaton is
built incrementally starting with the skeleton p(Xy,..., Xxs)
for the root state s; and the set of clauses defining p/n
as its compatible set. From a given state s we “expand”
the automaton as follows. We first choose a position =,
from the fringe of its skeleton S;. We then partition the
compatible set C; into sets Cg4,,...,Cq, such that in each
Cyq4;, all clause heads specify the same unification opera-
tion, wnify(ws,v:), at w,. For example, at state s; in Fig-
ure 2a, the compatible set {p(a,b,c),p(a,b,d),p(a,c,c)} is
partitioned into {p(a,b,c), p(a,b,d)}, which share the unifi-
cation operation unify($2,b), and {p(a,c,c)}, which has op-
eration unify($2,c). We create new states di,...,d; such
that for each state d;, Cg; is its compatible set, Sg; =
extend(Ss, w5, 7i) is its skeleton, and the edge (s,d;) is the
transition into d;, labeled with unify(=,,~i). The process of
expanding the automaton is repeated on all states that have
non-empty fringes.

To partition the clauses, we identify the set of possible
unification operations for each clause head at a given fringe
position =. For a linear clause head ¢, the only possible uni-
fication operation involves the symbol at position = in the
clause head, i.e., unify(w,t|:). For a non-linear clause head,
there is an additional possible operation for each fringe posi-
tion in the head having a term identical to that at position =.
That is, for each fringe position 7' # =, such that the sub-
terms rooted at = and «' are identical, unify(w,n') is also a
possible operation. Two clause heads may then be included
in the same partition iff their respective sets of possible uni-
fication operations contain an identical' operation.

1Variable symbols in distinct clauses are assumed to be distinct.

unify($1,a)

W@l b)
PbXo, Xa)@

p(a,X2,X3)

unify($2,b) unify($2,c) un|fy ($2,8)
St S:
p(ab.X3) p(a.c.Xs) p(b.a, ><3
unify($3,c) unify($3,d) unify($3,c)
p(a,b,c) p(ac, c) p(b,a,c) 04

(a)

unify($3,c)

P(X1. %o, Xs)

unify($1,a)

p(a.c.c)

(b)

Figure 2: Factoring automata for program in Figure 1la

Operation Unification of a goal with the clause heads be-
gins at the root of the automaton. From each state, a tran-
sition is made to the next state by performing the specified
unification operation on the partially unified goal. If more
than one transition is possible, the first such transition is
made, and the remaining transitions are marked as pend-
ing. When a leaf is reached, the body of the corresponding
clause is invoked. Whenever failure occurs, either within the
automaton (due to failure of a unification operation), or dur-
ing execution of a clause body, the automaton backtracks to
the nearest state with pending transitions. The process then
continues with the next pending transition. The automaton
fails on backtracking when there are no states with pending
transitions.

For example, in Figure 2a for the goal p(a, b, X), only the
transition labeled unify($1,a) is possible from state s;. Sim-
ilarly, from state s; only the transition labeled unify($2,b)
is possible. At state s4, since both outgoing transitions from
this state are possible, the transition labeled unify($3,d) is
marked as pending, and the transition labeled unify($3,c)
is made, thus unifying X with ¢ and invoking the body of
clause 1. Upon backtracking (to state s4), the transition
labeled unify($3,d) is taken, unifying X with d and invok-
ing the body of clause 2. Observe that unifications of the
goal with the heads of clauses 1 and 2 share the operations
of unifying argument 1 with a and argument 2 with b. The
above informal description of the automaton’s operation can
be formalized and its soundness and completeness can be
readily established; these are routine and omitted.

Note that a factoring automaton as defined above does
not adhere to the order-preserving clause selection strat-
egy of Prolog. For example, on query p(X,Y’) the answers
computed by the program in Figure 3a appear in the or-
der {p(a,b),p(b,c),p(a,d)}, while the factoring automaton
in Figure 3b for the same program computes the answers in
the order (p(a,b),p(a,d),p(b,c)). To preserve clause order,
each state in the automaton must consider its compatible
clauses as a sequence and partition this sequence into a col-
lection of subsequences. For this we introduce the following
concept of sequential factoring automaton (SFA).

Definition 2.4 (Sequential Factoring Automaton) A
sequential factoring automaton for a sequence {c1,cz,...,¢n)
of clauses is a factoring automaton A such that, in a left-
to-right preorder traversal of A, leaf ¢ is visited before leaf
i+1,forl1<i<mn.

Figure 3c shows an SFA for the program in Figure 3a. We

refer to factoring automata that are not sequential as non-
sequential factoring automata (NSFA).

3 Optimal Automata

The cost of unifying a goal with the clause heads depends
on both the goal and the automaton with which the unifica-
tions are performed. For instance, for the goal p(a, X, ¢), the
automaton given in Figure 2a performs three matches and
two bindings, whereas the automaton in Figure 2b performs
five matches and three bindings. The unification of the goal
p(X,b,c), on the other hand, requires three matches and
two bindings in the automaton of Figure 2a, whereas the
automaton in Figure 2b performs only two matches and one
binding. Thus, the relative costs of automata vary with the
goal. We assume no knowledge of the goal at compile time,
and hence, we choose the worst case performance of an au-
tomaton as the measure of its cost. An optimal automaton,
hence, is one with the lowest worst-case cost?. We exploit
the order-preserving clause selection strategy of SFAs for
constructing an optimal SFA in polynomial time. On the
other hand, when clause order is not preserved, as in an
NSFA, we show that constructing an optimal automaton is
NP-complete.

Optimal SFA

The following three readily established properties of an op-
timal SFA are used in its construction.

Property 1 Each sub-automaton is optimal for the clauses
in the compatible set and skeleton associated with the
root of the sub-automaton.

Property 2 Any unification that can be shared will be
shared. That is, in an optimal SFA, no two adjacent
transitions from any given state have the same label.

Property 3 Transitions from a state partition its compat-
ible set of clauses into subsequences.

To construct an optimal automaton for a sequence of clauses
C and initial skeleton S, we consider, for each position in
the fringe of S, the least cost automaton that can be con-
structed by first inspecting that position. From Properties 2

2Whereas an optimal factoring automaton minimizes the total
number of unification operations over all clause heads, an optimal
decision tree minimizes the number of tests needed to identify any
one clause.

Sq:
p(X1, Xo)@

unify($1,a/
p(a,b). .

S %
iEZ’Z; . na, x2) p(b, Xo)

unify($2,b) /" unify($2,d)
p(a, b) |1 p(a, d)

(a) (b)

unify($1,b)

unify($2,c)

P,

unify($1,b)
S
p(b, X2)

unify($2,b)

@)

unify($2,c)

(b, 02|
(c)

unify($2,0)

@,)

Figure 3: Predicate (a) and non-sequential (b) and sequential (c) automata

and 3 it follows that the transitions out of a state and their
order are uniquely determined by the position chosen. Since
these transitions represent the partition of the compatible
set of clauses, to construct an optimal automaton for a given
start position, we first compute this partition. We then con-
struct optimal automata for each sequence of clauses in the
partition, and the corresponding extended skeletons. From
Property 1 it follows that these optimal sub-automata can
be combined to produce an optimal automaton for the se-
lected start position. The lowest cost automaton among the
automata constructed for each position is an optimal SFA
for C and S. The recursive construction sketched above
lends itself to a dynamic programming solution. Below we
formalize the construction by first considering linear clause
heads. Construction in the presence of non-linear clause
heads is discussed later.

Linear clause heads We use a function part to partition
the clause sequence C into the minimum number of subse-
quences that share unification operations at this position.

Definition 3.1 (Partition) Given a sequence (ti,...,t,)
of clause heads corresponding to the sequence of clauses
C, a pair of integers (%,2'), 1 < ¢ < ¢’ < n, and a posi-
tion =, the partition of C' by w, denoted part(s,',r), is the
set of triples (a,7,7'), ¢ < 7 < j' < ¢, such that j and
7' are the end points of a maximal subsequence of clause
heads in (¢;,...,t;) having symbol a at position =. That is,
(«,3,7") € part(s,d',x) iff

1. for all j < k< j', tplr = a,
2. either j =z or tj_1|7|- # a, and
3. either j' = ¢’ or tji|x # a.

Each triple («,j,5') computed by part represents a transi-
tion associated with the unification operation involving =«
and «. For example, the partition of the sequence of clause
heads (p(a, b),p(b,c),p(a,d)) at position 1 is the set of sub-
sequences {{p(a, b)), (p(b,¢)), {(p(a,d))}. The skeleton of the
next state resulting from the transition is eztend(S,w,a).
The compatible clauses of this state form the subsequence
(Cjy...,Cj).

For each subsequence in a partition there are one or more
fringe positions in the skeleton with a symbol common to
all clause heads in the subsequence. From Property 2 it
follows that the unification operations at these positions will
be shared by all clause heads in the subsequence. We use
the function common to identify such operations and extend
the skeleton to record their effect:

Definition 3.2 (Common) Given a skeleton S, a sequence
(t1,...,ta) of clause heads, and a pair of integers (3,%'),
1 <14 <4 <n, common(S,4,¢') is a pair (E,S'), where
E represents the set of unification operations common to
{t:,...,ta}, and S’ is the extended skeleton:

common(S,,i') =

(Eu{(r,a)},S"), if 37 € fringe(S) such that
tj|7f:aaifj§ila
where (E,S') =
common(eztend(S, T, a),1,1')

({},S), otherwise

For example, given skeleton S = p(X;,X2,Xs3) and the
sequence (p(a,b,c),p(a,b,d),p(a,b,e)), common(S,1,3) =
({(1,a),(2,8)}, p(a, b, X3)).

The worst case cost of an SFA is when all transitions
are taken. Assuming that all elementary unification opera-
tions have unit cost, the cost of an optimal SFA for clause
sequence {Cj,...,C;/) and skeleton S is expressed by Equa-
tion 1 in Figure 4. Note that |E| is the number of com-
mon unification operations for a subsequence in a partition.
Also note that the recurrence assumes that subsequence
{ts,...,t;) has no common part with respect to skeleton S.
Thus, the cost of an optimal automaton for a predicate p/m
consisting of n clauses is given by |E| + simple_cost(1,n, S),
where (E, S) = common(p(Xi1,...,Xm),1,n).

Using Equation 1, it is straightforward to construct an
optimal SFA based on dynamic programming, where an op-
timal automaton for each subsequence of clauses is recorded
in a table. A complete example of this construction is given
in the appendix. Note that, since {t;,...,%;/) has no common
part with respect to the skeleton, a skeleton S is uniquely de-
termined, given ¢ and ¢’. Hence, the cost recurrence has only
two independent parameters, ¢ and ¢’, and the table used in
the dynamic programming algorithm will be indexed by ¢
and 2.

Given n clauses with at most m symbols in each clause
head, the number of possible subsequences is O(nz), and
hence, the number of table entries is O(n?). The number
of partitioning positions considered for each entry is O(m).
For each position, part requires O(n) time. Identification of
common operations for all subsequences in a partition can be
accomplished in O(m) time via a precomputed matrix (that
requires O(mn) time and space). Thus, the time required
to compute one entry in the table is O(m(n + m)), and the
overall time needed to compute an optimal automaton is

O(nzm(n + m)). Therefore,

Theorem 3.3 An optimal SFA can be constructed in poly-
nomtal time.

simple_cost(i,i',S) = min E (simple_cost(j,3', S') + |E|, where (E,S') = common(S,3,3'))) (1)

wefringe(S)

(@,3,3')€
part(i,i',x)

refined_cost(i,i',S) = min (costcpoice (%) + E (refined_cost(j,5',5") + g costumfy(r', aY)) (2)

wEfringe(S)

(«3,3")€ (v'a')eB
part(i,i',x)

where (E,S') = common(S, j,5')

Figure 4: Simple (1) and refined (2) recurrences for cost of optimal SFA

S
P(X1, %2, %3)
unify($1$2) —Gnify($L1,$2)
L) el
p(X,X,a). PO2X) PO X)
p(Y,Y,b). unify($2,%) unify($2,Y)
u,v,w. .
p() . & 5
PX.X.X3) p(Y,Y.X3)
unify($3,a) unify($3,b)

p(Y,Y,b) | C2

(a) (b)

s
P(X1.%2.%3)

unify($1,$2) unify($1,U)
P (x sx sY) H
p1(X,Y).
unify($2Y) unify($3.W) p(U,V,W).
. pi(X,a).
pi(X,b).

(d)

Figure 5: Non-linear predicate (a), automata (b) and (c), and transformation (d)

In Equation 1 for the cost of an optimal SFA, it is as-
sumed that all unification operations have unit cost, and
that recording pending transitions has zero cost. The re-
currence can be modified as follows to account for these
costs. Let costumfy(ﬂ' a) be the cost of the unification oper-
ation involving position = and a and cost p4ic. (7) represent
the cost of choosing a transition when multiple transitions
are possible at position . Note that the cost of recording
pending transitions can be modeled using costcpoice (7). Ac-
counting for these costs, an optimal SFA can be computed
using Equation 2 (Fig. 4).

Nonlinearity With suitable modification of functions part
and common, Equations 1 and 2 can be used even in the
presence of nonlinear clause heads. Consider the program
in Figure 5a. The dynamic programming algorithm for lin-
ear clause heads yields the automaton in Figure 5b. Observe
that this automaton does not share the operation that uni-
fies arguments 1 and 2 that is common to clauses 1 and 2.
These operations can be shared by considering relationships
among different positions within a clause head. For this we
view each clause head as a set of equations. For example, the
three clause heads in Figure 5a correspond to the following
three sets of equations:

p(x,x,a). g {X] :X,XZZX,X:;:G,X;[:Xz}
P(Y,Y,b). g {X] = Y,X2 = Y,X3 = b,Xl = Xz}
p(U,V,W). — {X] = U,Xz = Vv,X;g = W}

The unification operations involving position 1 are X; = X
and X; = X, for clause 1, X; = Y and X; = X, for
clause 2, and X; = U for clause 3. Thus, the minimum
partition based on position 1 splits the clauses into two sets:
the first consisting of clauses 1 and 2, with the correspond-
ing unification operation X; = X5; and the second consist-

ing of clause 3, with the operation X; = U. Using part and
common functions that partition and identify common oper-
ations based on equation sets yields the optimal automaton
in Figure 5¢c. Note that the size of the equation set corre-
sponding to each clause head is quadratic in the number of
symbols in the head. Thus, part, common, and the dynamic
programming algorithm still remain polynomial in the worst
case.

For nonlinear heads we need to estimate the cost of uni-
fying two positions in the goal. In general this cost is un-
bounded, since the cost of unifying two positions in a term
depends on the sizes of the subterms. Hence, there is no
suitable measure for estimating the worst-case cost of an
automaton. Nevertheless, if the size of terms is bounded (as
in Datalog programs), Theorem 3.3 still holds.

Optimal NSFA

Although Properties 1 and 2 hold in an optimal NSFA, Prop-
erty 3 does not. In particular, the transitions from a state
can partition its compatible clauses into subsets. Construct-
ing an optimal NSFA may require enumerating optimal au-
tomata for a large number of subsets of clauses for each
position associated with a state. In fact, we show:

Theorem 3.4 The problem of optimal NSFA construction
18 NP-complete.

The hardness of finding an optimal factoring automa-
ton is demonstrated by viewing the automaton as an order-
containing full trie (in the terminology of Comer and Sethi
[4]), and showing that the corresponding trie minimization
problem is NP-complete. Although in [4] the hardness of
constructing minimal full tries and minimal order-containing
pruned tries were shown, the hardness of finding a minimal
order-containing full trie was left open (the proof appears in

the appendix). Note that finding an optimal decision tree
[10] corresponds to order-containing pruned trie minimiza-
tion.

4 Transformation Algorithm

The algorithm used to translate a factoring automaton into
Prolog code is described using the programs in Figure 1 and
the automaton in Figure 2a as an example. In an automa-
ton, each state with multiple outgoing transitions, called a
branch point, is associated with a new predicate. When a
state is reached, the computation that remains to be done is
performed by the associated predicate. The fringe variables
of the state are passed as arguments to the predicate, since
these represent the positions where remaining computations
are to be performed. Furthermore, any head variables in the
skeleton are also passed as arguments, since they may be ref-
erenced in the clause body. For example, in Figure 2a state
81 is associated with predicate p with arguments X;, X» and
X3, and state s2 is associated with predicate p; with argu-
ments X and X3.

Note that the transitions from a branch point represent
alternative unifications to be performed. Hence, the asso-
ciated predicate is defined by a set of clauses, one for each
outgoing transition. Each clause performs the sequence of
unifications associated with the transitions leading to the
next branch point or leaf. In the automaton in Figure 2a
the first clause of p needs to perform the unification X; = a,
and thus the head of the clause is p(a, X2, X3). If the se-
quence of transitions ends in a branch point, the body of the
clause is a call to the predicate associated with that branch
point; otherwise, it is the body of the clause associated with
the leaf. In the above example, the body of the first clause
of pis pl(Xz,Xs).

An algorithm to translate any factoring automaton into
Prolog code is given in Figure 6. The algorithm is invoked
with the start state and the name of the predicate as ar-
guments. The clauses of the translated program are added
to the set P (initially empty). The complete translation of
the automaton in Figure 2a appears in Figure 1b. Similarly,
the translation of the automaton in Figure 5¢ appears in
Figure 5d.

Observe that choosing the appropriate transition in the
automaton corresponds to an indexing operation in the re-
sulting program. If more than one transition is possible at
any state, a choice point will be placed during execution of
the transformed program. Thus, the operations of recording
pending transitions and backtracking through them in the
automaton correspond to placing and backtracking through
choice points in the execution of the resulting Prolog pro-
gram.

Transformation in the presence of cuts

In general, unification factoring at the source-level does not
preserve the semantics of predicates containing cuts. For
example, on query p(X,Y’) the program in Figure 7a com-
putes (p(a,b)), while the optimal transformed program in
Figure 7b returns {p(a,b),p(b,d)). This problem arises due
to implicit scoping of cuts in Prolog. Specifically, a cut re-
moves the choice point placed when the current predicate
was called, as well as all subsequent choice points. We say
that a cut cuts to the most recent choice point of the cur-
rent predicate. If this choice point can be explicitly specified,

then the transformation still preserves the program’s seman-
tics. In the XSB compiler, for instance, unification factoring
is performed after a transformation that makes the scope of
cuts explicit. Figure 7c shows the effect of applying the cut
transformation used in XSB to the predicate in Figure 7a.
Unification factoring is then applied to the cut transformed
program, yielding the predicate in Figure 7d. The seman-
tics of the original predicate is preserved. Thus, in XSB,
unification factoring is uniformly applied to all programs,
including those that have cuts.

5 Implementation and Performance

A direct execution of the transformed program can intro-
duce unnecessary inefficiences mainly due to increased data
movement and procedure calls on newly introduced predi-
cates.

Data movement In the WAM, the arguments of a predi-

h

cate are stored in WAM registers, where the i** argument

is kept in register z. If the ith argument of one predicate is
used as the jth argument in a call to another, that argument
must be moved from register ¢ to register j. Consider the
two clauses in Figure 8a and the result of the transformation
(fig. 8b). Each call to p2/2 in the body of p/3 requires move-
ment of two arguments. Such movement can be reduced in
a number of ways, including the use of place-holding argu-
ments (see Figure 8c). However, the potential for reducing
data movement is limited by a system’s indexing facilities.
To index calls in Figure 8c, for example, would require a

system, such as XSB, that is able to index on an argument
other than the first.

Inlining By inlining the new predicates, calls to them are
avoided, reducing execution time. Secondly, since these
predicates are not user callable, symbol table size is re-
duced. Thirdly, since these predicates have only one call
site, inlining does not create multiple copies, reducing code
space. Finally, inlining restores the call structure of the
original program, making the transformation transparent to
program tracing.

Performance Table 1 shows the effect of performing uni-
fication factoring as a source transformation (that includes
optimization for data movement) in three different Prolog
systems®. In that table, the columns labeled ‘Speedup’ list
the ratio of the CPU time taken by each query on the trans-
formed program to that on the original program. The in-
crease in the sizes of object files due to the program transfor-
mation are listed under the heading ‘Object size increase’.
All figures were obtained using standard WAM indexing
(first argument, principal functor). The columns labeled
‘Inline’ illustrate the benefits of inlining, as implemented in
the XSB compiler.

Programs dnf (Dutch national flag), LL(k) (a parser),
border (from CHAT-80 [13]), and replace (an expression
translator) and the corresponding queries were taken from
[2]. Programs map (a map coloring program), mergesort,

3The systems used were Quintus Prolog Release 3.0, SICStus Pro-
log 2.1 #9, and XSB version 1.4.0. All benchmarks were run on
a SparcStation 2 running SunOS 4.1.1. Benchmark programs can
be obtained by anonymous ftp from cs.sunysb.edu in the directory
/pub/XSB/benchmarks.

algorithm translate(state, pname)
let {x1,...,7mm} be fringe(Sstate)
let {Y1,...Y:} be the set of head variables (i.e., € V) in skeleton S;tqte
foreach edge (state, dest)
let state’ be the first branch point or leaf on the path from state through dest
head — pname(Y1,...,Yk,t1,...,tm), where t; is the subterm of skeleton S,;4¢.+ ToOted at w;
if state’ is a branch point
let pname’ be a new predicate name
body — pname'(Yy,..., Y, X,,:1 yeee ,X,,;), where 71,..., 7] are the fringe positions of S¢ase:
translate(state’, pname’)
else /x state’ is a leaf */
body «— body of clause C,qzer
add (head :— body) to P

Figure 6: Translation Algorithm

p(X,Y) :- _$savecp(Z),

pX,Y) :- _$savecp(Z), T$p(X,Y.2).

. pla, X) :- p1(X).

p(a,b) - 1. _$p(X,Y,Z2). il
p(a,c). git()l’))d)— ' _$p(a,b,X) :- _$cutto(X). —:II:E:’E’Y; N -$p1(X, 7).
p(b,d). pi(c). —:PE:’Z’—;' _$p1(b,X) :- _$cutto(X).
—_vpib,d,_). —$P1(c!—) .
(a) (b) (c) (d)

Figure 7: Original (a), unsound transformation (b), cut transformed (c), factored (d)

p(a,X,Y) :- p2(X,Y). p(a,X,Y) :- p2(_,X,Y).
PE:’:’;;' p2(b,c). p2(_,b,c).
pla,c,d. p2(c,d). p2(_,c,d).

(a) (b) (c)

Figure 8: Original (a) and transformed predicate before (b) and after (c) data movement reduction

Program [Query] Speedup Object size increase
Source Inline Source Inline
Quintus | SICStus | XSB | XSB || Quintus | SICStus | XSB | XSB
dnf [sl 2.12 1.32 | 1.99 2.48 1.07 1.03 | 1.06 1.01
dnf [s2 2.05 1.33 | 1.89 2.39
dnf [s3 1.83 140 | 1.68 2.03
LL(1) [p 0.83 0.59 | 1.10 1.16 1.13 1.17 | 1.13 1.01
LL(2) 1.18 1.16 | 1.32 1.40 1.12 1.14 | 1.08 1.02
LL(3) [1] 1.22 1.21 | 1.54 1.63 1.17 1.14 | 1.08 1.00
border [medit.] 2.00 1.29 | 2.11 2.38 1.05 1.04 | 0.99 0.93
border [hungary] 1.58 114 | 1.64 1.84
border [albania] 1.08 1.00 | 1.03 1.16
replace.sw [neg] 0.82 0.86 | 0.97 0.97 1.00 1.05 | 0.98 0.96
replace.sw [<] 0.77 0.82 | 0.91 0.93
replace.sw [mul] 0.96 0.96 | 0.98 1.00
Synchem [alcohol] 2.16 1.96 | 1.99 2.27 1.62 1.47 | 1.37 1.04
Synchem [ether] 2.65 2.33 | 2.93 3.55
Synchem [cc_dbl] 2.71 253 | 2.67 | 2.97
map 1.51 1.50 | 1.17 1.36 1.18 1.19 | 1.25 1.09
mergesort 0.99 0.97 | 1.32 1.41 1.10 1.07 | 1.05 1.00
mutest 0.96 0.93 | 0.99 1.00 1.07 1.05 | 1.10 1.01
isotrees (linear) 0.83 0.83 | 1.11 1.18 1.09 1.04 | 1.09 0.98
isotrees (non-linear) 0.99 0.93 | 1.14 1.23 1.05 1.03 | 1.00 0.92

Table 1: Speedups and object size increases for unification factoring

Program [Query]

Speedup

Source

Inline

Quintus

SICStus

XSB XSB

Before | After

Before | After

Before | After || Before | After

LL(1) [p] 0.86 1.30 0.61 1.11 1.09 1.49 1.16 1.57
replace.sw [neg] 0.82 3.60 0.86 3.22 0.97 4.27 0.97 4.35
replace.sw [<] 0.77 | 2.65 0.82 2.10 0.91 2.58 0.93 2.65
replace.sw [mul] 0.96 1.20 0.96 1.21 0.98 1.09 1.00 1.13

Table 2: Speedups before and after mode optimization

and mutest (a theorem prover) are benchmarks from the
Andorra system. The Synchem benchmarks are queries on a
5,000-fact chemical database. The isotrees program illus-
trates the effect of sharing non-linear unifications.

Based on the performance results we first surnmarize the
strengths of unification factoring. Factoring of match oper-
ations in structures results in improved indexing and hence
in performance, e.g., dnf, LL(2), LL(3), and map. Similarly
factoring on shared arguments as in border improves per-
formance. Speedups in mergesort and isotrees are due es-
sentially to sharing of computed substitutions. The isotrees
example also illustrates the benefits of factoring non-linear
unification. In programs such as Synchem, where both match
operations and computed substitutions are shared, the per-
formance gains are much more significant. Finally, unifica-
tion factoring does not degrade performance in the absence
of sharable operations, as in the mutest example.

The XSB speedups are generally larger than those for
Quintus and SICStus, even when inlining is not performed.
XSB’s engine, which supports restricted SLG resolution,
requires more expensive trailing, and untrailing, than the
WAM. The number of these operations is reduced by unifi-
cation factoring. Parallel Prologs such as Andorra have sim-
ilar expenses so that unification factoring can be expected
to provide similar speedups for such systems.

The transformation increases the size of the object files
only by small amounts. The largest size increase is for the
Synchem database, and is mainly the result of the increase
in symbol table size due to the new predicates introduced
by the transformation. But notice that by inlining even this
has been substantially reduced.

Programs LL(1) and replace.sw show a slowdown pri-
marily due to factoring unifications on an output argument,
resulting in loss of indexing. Recall that an optimal fac-
toring automaton is found assuming no knowledge of the
goal. When modes are known, we could first build a com-
plete switching tree for all the input-moded arguments (as
in [6]), and then attach optimal SFAs for the unmoded ar-
guments at the leaves of the switching tree. Note, however,
that the space of a switching tree can be exponential in the
worst case. Hence we use the following simple technique
of building SFAs in the presence of modes. We divide the
fringe positions into input-moded positions and unmoded
positions, and all input-moded positions are inspected be-
fore any unmoded position is inspected. The effectiveness
of this technique is indicated in Table 2.

6 Discussion

Efficient handling of non-determinism, traditionally ignored
by indexing methods, is one of the key strengths of uni-
fication factoring. To reflect non-determinism, a factoring

automaton makes all possible transitions at each state. In
contrast, pattern matching tries and decision trees make at
most one transition from any state. Although functional
programming languages such as ML use textual order for
pattern matching just as Prolog does for unification, there
are two notable differences. First of all, the semantics of
functional languages require that only one of potentially sev-
eral matching patterns be selected, whereas in Prolog the
clauses of all heads unifying with a goal may be evaluated.
Secondly, pattern matching is unidirectional, whereas unifi-
cation is bidirectional. Thus, the optimality criteria for fac-
toring automata differ substantially from those of the other
two structures, necessitating the new techniques developed
in this paper for constructing optimal automata.

Our experimental results show that unification factor-
ing is a practical technique that can achieve substantial
speedups for logic programs, while requiring no changes in
the WAM and resulting in virtually no increase in code size.
Furthermore, the speedups obtained by the source-to-source
transformation on all three Prolog systems are comparable
to those obtained by the indexing technique of [2] that in-
volved extensive compiler and WAM modifications.

The speedups observed may be even more substantial
when unification factoring is applied to programs which are
themselves produced by transformations. For instance, the
HiLog transformation [3] increases the declarativeness of
programs by allowing unification on predicate symbols. If
implemented naively, however, HiLog can cause a decrease
in efficiency for clause access. Experiments have shown that
unification factoring can lead to speedups of 3 to 4 on HiLog
code. Given the demonstrable performance of unification
factoring and its simplicity to implement, it is reasonable to
expect that unification factoring may become a fundamental
tool for logic program compilation.

Unification factoring has been incorporated in the XSB
logic programming system, which is available by anonymous
ftp from cs.sunysb.edu in directory /pub/XSB.

References

[1] Leo Bachmair, Ta Chen, and I. V. Ramakrishnan.
Associative-commutative discrimination nets. In The-
ory and Practice of Software Development, number 668
in LNCS, pages 61-74. Springer Verlag, April 1993.

[2] T. Chen, I. V. Ramakrishnan, and R. Ramesh. Mul-
tistage indexing algorithms for speeding Prolog execu-
tion. In Joint International Conference/Symposium on
Logic Programming, pages 639-653, 1992.

[3] W. Chen, M. Kifer, and D. S. Warren. HiLog: A foun-
dation for higher-order logic programming. Journal of
Logic Programming, 15(3):187-230, 1993.

[4] D. Comer and R. Sethi. The complexity of trie index
construction. Journal of the ACM, 24(3):428-440, July
1977.

[5] W. Hans. A complete indexing scheme for WAM-
based abstract machines. In International Symposium
on Programming Language Implementation and Logic
Programming, pages 232-244, 1992.

[6] T. Hickey and S. Mudambi. Global compilation of Pro-
log. Journal of Logic Programming, 7:193-230, 1989.

[7] S. Kliger and E. Shapiro. From decision trees to deci-
sion graphs. In North American Conference on Logic
Programming, pages 97-116, 1991.

[8] D. Palmer and L. Naish. NUA-Prolog: An extension to
the WAM for parallel Andorra. In International Con-
ference on Logic Programming, pages 429-442, 1991.

[9] R. Ramesh, I. V. Ramakrishnan, and D. S. Warren.
Automata-driven indexing of Prolog clauses. In ACM
Symposium on Priciples of Programming Languages,
pages 281-290. ACM Press, 1990.

[10] R.L. Rivest and L. Hyafil. Constructing optimal binary
decision trees is NP-complete. Information Processing
Letters, 5(1):15-17, May 1976.

[11] R. C. Sekar, I. V. Ramakrishnan, and R. Ramesh.
Adaptive pattern matching. In International Confer-
ence on Automata, Languages, and Programming, num-
ber 623 in LNCS, pages 247-260. Springer Verlag, 1992.
To appear in SIAM J. Comp.

[12] E. Tick and M. Korsloot. Determinacy testing for
nondeterminate logic programming languages. ACM
Transactions on Programming Languages and Systems,
16(1):3-34, January 1994.

[13] D. H. D. Warren and F. C. N. Pereira. An efficient eas-
ily adaptable system for interpreting natural language
queries. American Journal of Computational Linguis-
tics, 8(3-4):110—122, 1982.

[14] N. Zhou, T. Takagi, and K. Ushijima. A matching tree
oriented abstract machine for Prolog. In International
Conference on Logic Programming, pages 159-173. MIT
Press, 1990.

A Appendix

A.1 Optimal SFA construction

Construction of an optimal SFA for the sequence of clauses
{p(a,b,c),p(a,b,d),p(a,c,c),p(b, a,c)) defining the predicate
in Figure 9a begins with the computation of its cost, using
Equation 1. The cost and root position of the lowest cost au-
tomaton computed for a subsequence with end points (z,:')
at any point in the computation is stored in a table (Fig. 9b)
at entry (2,:'), where 7 is the row and i’ the column.

We begin by finding positions having symbols common
to all four clauses:

common(p(X1, X2, X3),1,4) = ({ },p(X1, X2, X3)).

There are no common positions, so any of positions $1, $2,
and $3 might be used for the root state. We first try posi-
tion 1, and compute the partition:

part(1,4,$1) = {(a,1,3),(b,4,4)}.

We now need to compute optimal sub-automata for subse-
quences (p(a, b, c),p(a,b,d),p(a,c,c)) and {(p(b, a,c))
Repeating the above process for subsequence (1, 3),

common(p(X1,X2,X3),1,3) = ({($1,a)},p(a, X2, X3))

shows that subsequence (1, 3) has one common position ($1)
leaving positions $2 and $3 as possible root positions for the
sub-automaton. We first choose position $2:

part(1,3,$2) = {(b,1,2),(c, 3,3)}

Continuing similarly for subsequence (1, 2) gives

common(p(a, X2,X3),1,2) = ({($2,b)},p(a,b, X3))
part(1,2,$3) = {(¢1,1),(d,2,2)}
common(p(a,b, X3),1,1) = ({($3,¢)},p(a,b,c))
common(p(a,b, X3),2,2) = ({($3,d)},p(a,b,d))

Now, each subsequence is a single clause. Since all posi-
tions in a single clause are common positions, no positions
for further partitioning are available, and the cost for each
single clause is 0. Thus, the cost of the sub-automaton for
subsequence (1, 2) rooted at $3 is 2 (one each for transitions
unify($3, c) and unify($3,d)). Cost 2 and position 3 are then
stored in entry (1,2) of the table.
Returning to compute the cost for subsequence (3, 3),

common(p(a, Xz, X3),3,3) = ({($2,¢),($3,¢)},p(a,c,c))

gives the cost of the sub-automaton for subsequence (1,3)
with root position $2 as 1 +2+2 = 5 (one for transi-
tion unify($2,b); one each for transitions unify($2,c) and
unify($3,c); and two as computed for subsequence (1,2).
Thus, cost 5 and position 2 are stored in entry (1, 3) of the
table.

Completing the computation for sequence (1,4) at po-
sition $1 yields additional costs of one (for the transition
labeled unify($1,a)) and three (for transitions unify($1,5),
unify($2,a), and unify($3,c) for subsequence (4,4)), giving
a total cost of 9. Thus, cost 9 and position 1 are stored in
entry (1,4) of the table (highlighted). The automaton cor-
responding to this cost and position is shown in Figure 9c.
Verifying that no other choice of position yields a better
automaton is left to the interested reader. Note that the
shaded entries in the table are not used in computing the
cost of an optimal automaton.

A.2 NP-completeness of optimal NSFA construction

A non-sequential factoring automaton can be viewed ab-
stractly as a trie, in which the clause heads of a predi-
cate are viewed as strings of symbols. Optimization of an
NSFA (when elementary unification operations are assumed
to have unit cost) thus corresponds to trie minimization.
In the terminology of Comer and Sethi [4], an NSFA cor-
responds to a full order-containing trie (full O-trie), where
“full” refers to the fact any root-to-leaf path in the trie ex-
amines an entire string, and “order-containing” means that
different paths may examine characters (positions) in differ-
ent orders.

1 2 3 4
Cost: 0 | Cost: 2 | Cost: 5 | Cost: 9
1
Pos. - | Pos: 3 | Pos. 2 | Pos: 1
p(a,b,c) . Cost: 0
p(a,b,d). 2 pos
p(a,c,c). i s -
p(b,a,c). Cost: 0 | Cost: 2
3
Pos: - | Pos 1
Cost: 0
4
Pos: -

(a) (b)

P(X1. %o Xa)@

unify($1,a) W(ssl b)
p(aXy, Xs) p(o,X5, X3)@

unify($2,b) unify($2,c) un|fy ($2,8)
S S5
p(ab.X3) p(a.c.Xs) p(b.a, ><3
unify($3,c) unify($3,d) unify($3,c) unify($3,c)
p(a,b,c) p(ac, c) p(b,a,c) 04

(c)

Figure 9: Optimal SFA construction: predicate (a), cost table (b), SFA (c)

Theorem A.1 The minimization problem for full O-tries
(FOT) is NP-complete.

Proof: We show that the trie minimization problem is
NP-hard by reduction from the minimum set cover prob-
lem (SC). The minimum set cover problem can be stated
as follows: Given a finite set U = {u1,...,un}, a collection
C = {C4,...,Cn} of subsets of U, and a positive integer
k < m, do there exist k or fewer subsets in C whose union
is S?

Let Isc be an instance of SC. We construct an instance
Iror of FOT with 2n strings, each of length Z(n—l—m)2 +m,
as follows. Each string consists of three fields: a “Test”
field, consisting of m characters; a “Blue” field, consisting of
(n—l—m)2 characters; and a “Red” field, consisting of (n—l—m)2
characters:

1Ty T BiBz -+ B(nymy2 R1R2 - Ry
———
Test Blue Red

For each element u; € U two strings are constructed: a Red
string and a Blue string. In the Red string, T; = 0, for
1<j<m;B;=iand R; =0, for 1 <1< (n+m)®. The
i" Red string thus has the form

0---04---40---0
S -~
Test Blue Red

In the Blue string, T; = 1 if u; € Cj, otherwise 0, for 1 <
j<m;Bi=iand Ry =0, for 1 <1< (n+m)? The
Blue string thus has the form

Ty - Tp0---08---12
Test Blue Red

Checking a character in the Test field of a Blue string can
be thought of testing for membership of an element of U in
a subset.

Observe that the Red and Test fields in every Red string
are identical, and that each Blue field is distinct. For a set
consisting entirely of Red strings, a minimal trie must test
all characters in the Red and Test fields before testing any
character in the Blue field, since the first test in the Blue
field effectively partitions the set into individual strings (see
Figure 10a). The order of testing within the Red and Test
fields is unimportant, as is the order of testing within the

Blue field.

Also observe that the Blue field in every Blue string is
identical, and that each Red field is distinct. A minimal trie
for a set of Blue strings must test all characters in the Blue
field before testing any character in the Red field. In gen-
eral, testing characters in the Test field will incrementally
partition the set. Thus, a minimal trie for Blue strings will
typically have the form shown in Figure 10b.

The above observations lead to the following bounds on
the sizes of minimal tries for monochromatic sets of strings.

Lemma A.1.1 Given a set S consisting entirely of Red
strings, such that |S| = ng, the number of edges in a mini-

mal full O-trie for S is ezactly (nr + 1)(n + m)2 + m.

Lemma A.1.2 Given a set S consisting entirely of Blue
strings, such that |S| = np, the number of edges in a mini-
mal full O-trie for S is no more than (nB+1)(n+m)2+mnB.

The main idea in constructing a minimal full trie is to
order the tests such that less partitioning occurs near the
root and more occurs toward the leaves. Therefore, to build
a minimal trie for the 2n Blue and Red strings constructed
from I5¢, testing in the Test field should precede testing in
the Blue and Red fields. Observe that testing a character
in the Test field partitions a set containing both Blue and
Red strings into one set containing only Blue strings (on a
branch labeled “1”) and another containing Red and perhaps
some Blue strings (on a branch labeled “0”- see Figure 11a).
Testing a character in the Red (Blue) field, on the other
hand, partitions the set into one set containing all of the Red
(Blue) strings and one set for each of the Blue (Red) strings
(see Figure 11b). These observations lead to the following
proof that U has a cover of size k if and only if there exists
a full O-trie for S having fewer than (2n + k + 2)(n + m)2
edges.

Lemma A.1.3 IfU has a cover of size k, then there exists
a full O-trie over S having fewer than (2n+k + 2)(n + m)2
edges.

Proof of lemma: A trie over S can be constructed as illus-
trated in Figure 11a. For 1 < j <k, let C;; be a member of
the cover of U. Now, for each node TJ in the trie, the subtrie
attached to the “1” edge is a trie over Blue strmgs since no
Red string contains a 1 in its T field. Since {Cj,,...,Ci,} is
a cover for U, each Blue string is represented in one of the
subtries attached to a “1” edge, and only the n Red strings

(+m)2 Blue (n+m)

g---0o0 .- 0

(a)

Figure 11: Minimal trie for 2n strings (a) and suboptimal trie (b)

(n+m)2 : : (n+m)?

—~~~
)
p—

(b)

Figure 10: Minimal tries for sets of Red (a) and Blue (b)
strings

P O | Sp—

(b)

are represented in the subtrie attached to the “0” edge of
node T3, .

By lemma A.1.2, the number of edges in the subtrie at-
tached to the “1” edge of node T,-J. is no more than (nsj +
1)(n+ m)2 +(m— j)nsj, where n,; is the number of strings
represented in the subtrie. Since E:zl ns; = n, the to-
tal number of edges in the Blue subtries is no more than
(n—}-k)(n—l—m)2 +mn. By lemma A.1.1, the number of edges
in the subtrie attached to the “0” edge of node T}, is no more
than (n—l—l)(n—l—m)2 +m—k. Thus, the total number of edges
in the trie is no more than (Zn—l—k—l—l)(n—l—m)z—|—(n—|—1)m—|—2k,
which is less than (2n + k + 2)(n + m)z. O

Lemma A.1.4 If there exists a full O-trie over S having
fewer than (2n + k + 2)(n + m)2 edges, then U has a cover
of size k.

Proof of lemma: It suffices to show that any trie over
S having fewer than (2n + k + 2)(n + m)2 edges must be
of the form shown in Figure 11a. Given a set S’ of strings
containing ng Red strings and np Blue strings, the root of
a minimal trie over S’ must be a T node. If, instead, the
root were a R node, the trie would have at least (ZnB +ng+
1)(n 4+ m)? edges (see Figure 11b). Similarly, a trie with a
B root node would have at least (2ng + ng + 1)(n + m)2
edges. Replacement of any of the k& T’ nodes in the trie in
Figure 11a by a R or B node would therefore result in at
least (n—k)(n+m)? additional edges. Thus, any trie having
fewer than (2n + k + 2)(n + m)2 edges must be of the form
shown in Figure 11a, which can exist only if U has a cover
of size k. a

Lemmas A.1.3 and A.1.4 together complete the reduction
from Is¢ to Ippr. The remaining details showing that the
transformation is polynomial in the size of Ig¢ and that
FOT € NP are standard, and are omitted. |

