
Logic Based Modeling and Analysis of Work
ows
�

(Extended Abstract)

Hasan Davulcu

SUNY at Stony Brook

davulcu@cs.sunysb.edu

Michael Kifer

SUNY at Stony Brook

kifer@cs.sunysb.edu

C.R. Ramakrishnan

SUNY at Stony Brook

cram@cs.sunysb.edu

I.V. Ramakrishnan

SUNY at Stony Brook

ram@cs.sunysb.edu

Abstract

We propose Concurrent Transaction Logic (CT R) as the lan-
guage for specifying, analyzing, and scheduling of work
ows.
We show that both local and global properties of work
ows
can be naturally represented as CT R formulas and reasoning
can be done with the use of the proof theory and the seman-
tics of this logic. We describe a transformation that leads to
an e�cient algorithm for scheduling work
ows in the pres-
ence of global temporal constraints, which leads to decision
procedures for dealing with several safety related properties
such as whether every valid execution of the work
ow satis-
�es a particular property or whether a work
ow execution is
consistent with some given global constraints on the order-
ing of events in a work
ow. We also provide tight complexity
results on the running times of these algorithms.

1 Introduction

A work
ow is a collection of cooperating, coordinated activ-
ities designed to carry out a well-de�ned complex process,
such as trip planning, graduate student registration proce-
dure, or a business process in a large enterprise. An activity
in a work
ow might be performed by a human, a device, or
a program.Work
ow management systems provide a frame-
work for capturing the interaction among the activities in
a work
ow and are recognized as a new paradigm for inte-
grating disparate systems, including legacy systems [20, 8].
Ideally, they should also help the user in analysis and rea-
soning about complex business processes.

It has been realized that analysis and reasoning about
work
ows requires a formal speci�cation model with a well
de�ned semantics [18, 2]. In this paper, we develop a novel
framework for specifying, analyzing and executing work
ows
based on Transaction Logic [5, 4, 6, 7].

Work
ow representation frameworks. Figure 1 de-

picts three most common frameworks for specifying work-

�This work is partially supported by a DLA/DARPA contract

and by the NSF grants IRI-9404629, CCR-9705998, 9711386, 9510072

9404921, CDA-9504275, 9303181, INT-9600598

ows: control
ow graph, triggers (also known as event-
condition-action rules), and temporal constraints.

The control
ow graph is most appropriate for depicting
the local execution dependencies of the activities in a work-

ow; it is a good way to visualize the overall
ow of control.
Control
ow graphs are the primary speci�cation means in
most commercial implementations of work
ow management
systems. A typical graph speci�es the initial and the �nal
activity in a work
ow, the successor-activities for each ac-
tivity in the graph, and whether these successors must all
be executed concurrently, or it su�ces to execute just one
branch non-deterministically. In Figure 1, all successors of
activity a must be executed, which is indicated with the
\AND"-label. In contrast, \OR" indicates that when b is
�nished, there is a choice of executing d, h, then j or e then
j. Successful execution of any one of these branches should
su�ce for the overall success of the work
ow.

Arcs in a control
ow graph can be labeled with transi-
tion conditions. The condition applies to the current state
of the work
ow (which, in a broad sense, may include the
current state of the underlying database, the output of the
completed tasks, the current time, etc.). When the task at
the tail of an arc completes, the task at the head can begin
only if the corresponding transition condition evaluates to
true.

The Work
ow Management Coalition [10] identi�es ad-
ditional controls, such as loops and sub-work
ows. Various
researchers have also suggested other types of controls, in-
cluding alternative execution and compensation for failed
activities [12, 17, 15, 25, 28, 1, 13]. However, control
ow
graphs have one obvious limitation: they cannot be used to
specify global dependencies between work
ow tasks, such as
those expressed as global constraints on the right-hand side
of Figure 1.

De�ning work
ows using triggers is yet another possibil-
ity [11]. However, this method is not as general as control

ow graphs. For instance, like the graphs, triggers cannot
be used to specify global task dependencies, and they are
not su�ciently expressive when it comes to representing al-
ternatives in work
ow execution (depicted as \OR" nodes
in Figure 1). In fact, it follows from a result in [7] that trig-
gers with so-called \immediate" execution semantics can be
represented using control
ow graphs, and this result can be
adapted to triggers with the \eventual" execution semantics
as well. Since triggers can be \compiled into" the control

ow graph, we shall be treating triggers as part of the con-
trol
ow graph.

Other researchers proposed frameworks that rely exclu-
sively on constraints to specify both local and global prop-

Triggers

execute activity p

If cond6 holds then

If cond7 holds then

execute activity q

If event d occurs then

If event g occurs then

Global Constraints

If d is ever executed then

g must also be executed

If e and i are both executed

then e must happen before i

If g and j are both executed

then j must happen before gOR

ORb

d

e

f

g

h

i

j

cond1

cond3

cond4

Control Flow Graph

cond5

k

AND

cond2
c

a

Figure 1: Frameworks for Specifying Work
ows

erties of work
ows. In [26, 27], Singh describes an algebra
of temporal constraints, which is believed to cover all useful
global dependencies that might arise in work
ow systems.
For instance, this algebra includes Klein's constraints [22],
which commonly occur in work
ow speci�cations 1. This
algebra is su�ciently expressive for modeling control
ow
graphs that have no transition conditions attached to arcs.
However, such constraints cannot be used to model work-

ows that query the intermediate state of the work
ow and
make scheduling decisions based on the outcome. More im-
portantly, algebraic approaches are not part of a larger rea-
soning framework and so it is unclear how they apply to
more expressive speci�cation languages (e.g., to represent
sub-work
ows, failure and compensation, etc.) and how
they could be used for reasoning and verifying the correct-
ness of work
ows.

Logic-based formalism. In this paper, we base our ap-

proach on Concurrent Transaction Logic [6] (abbr., CT R).
There are many reasons for this choice. First, control
ow
graphs with transition conditions can be easily and natu-
rally represented in CT R. Second, [7] shows that triggers
are easy to represent as well. Finally, [5] contains an ex-
tensive discussion of the temporal capabilities of CT R. In
particular, the entire algebra of constraints described in [26]
is isomorphic to a small subset of the propositional Transac-
tion Logic. Hence CT R provides us with a unifying formal-
ism that subsumes all of the three popular work
ow speci-
�cation frameworks described above. Furthermore, being a
full-blown logic, CT R allows not only scheduling work
ows,
but also reasoning about their properties. Finally, like in
logic programming systems, the proof theory of CT R is also
a run-time environment for executing work
ows.

Summary of results. Our approach is based on a trans-

formation procedure, named Apply, which accepts a work-

ow speci�cation that includes a control
ow graph G, trig-
gers (viewed as part of G), and a set of temporal constraints
C, and constructs an equivalent speci�cation in CT R that
represents only those executions of G where C holds. The
resulting speci�cation can be directly used to execute the
work
ow. Thus, Apply can be viewed as a compilation pro-
cess that facilitates veri�cation of work
ows and optimizes
run-time scheduling.

1Klein constraints are of the form: (1) if events a and b both

occur, then a occurs earlier than b; or (2) if event a ever occurs then

b must occur as well (before or after a).

1. Apply transformation enables us to determine:

(a) Whether every legal execution of a given work-

ow speci�cation satis�es a particular property.
Moreover, if some execution does not satisfy the
property, then the veri�cation procedure returns
a counter example which is the most general exe-
cution of the work
ow that violates the property
in question.

(b) Whether the speci�cation made up of the control

ow graph and global constraints is consistent;
and

(c) Whether some of the speci�ed constraints are re-
dundant.

2. The transformation eliminates the parts of the control
graph that are inconsistent with the constraints, which
facilitates scheduling of events at run-time.

3. The separation of control
ow graph and global con-
straints in the work
ow speci�cations leads to tighter
complexity results for the veri�cation problem.

Our results also contribute to the theory of Transaction
Logic itself. Here, we essentially extend the e�cient SLD-
style proof procedure of CT R from so called concurrent-
Horn goals to a larger class of formulas, which incorporates
temporal constraints (a more precise formulation appears in
Section 2).

2 An Overview of Concurrent Transaction Logic

This section provides a short summary of the CT R syntax,
which is used in this paper to represent work
ows. Due to
space limitation, we cannot discuss the model theory of the
logic or its proof theory. Instead, we rely on the procedural
reading of CT R statements.2 A thorough treatment of the
main aspects of Transaction Logic appears in [6, 5, 4]. A
fairly detailed, yet informal introduction can be found in
[21].

CT R is a conservative extension of the classical predicate
logic in the sense that both its proof theory and the model
theory reduce to those of the classical logic for formulas that
do not cause state transitions (but only query the current
state).

2This is analogous to the procedural reading of Datalog programs.

Basic syntax. The atomic formulas of CT R are identical
to those of the classical logic, i.e., they are expressions of
the form p(t1; : : : ; tn), where p is a predicate symbol and
the ti's are function terms. More complex formulas are built
with the help of connectives and quanti�ers.

Apart from the classical _, ^, :, 8, and 9, CT R has two
additional connectives,
 (serial conjunction) and j (con-
current conjunction), and two modal operators, 3 (execu-
tional possibility) and � (isolated execution). For instance,
�(p(X)
 q(X)) j (8Y (r(Y) _ s(X;Y))) is a well-formed
formula.

Informal semantics. Underlying the logic and its semantics
is a set of database states and a collection of paths. For the
purpose of this paper, the reader can think of the states as
just a set of relational databases, but the logic does not rely
on the exact nature of the states | it can deal with a wide
variety of them.

A path is a �nite sequence of states. For instance, if
s1; s2; :::; sn are database states, then hs1i, hs1; s2i, and
hs1; s2; :::; sni are paths of length 1, 2, and n, respectively.

Just as in classical logic, CT R formulas assume truth
values. However, unlike classical logic, the truth of CT R
formulas is determined over paths, not at states. If a for-
mula, �, is true over a path hs1; :::; sni, it means that � can
execute starting at state s1. During the execution, the cur-
rent state will change to s2, s3, ..., etc., and the execution
terminates at state sn.

With this in mind, the intended meaning of the CT R
connectives can be summarized as follows:

� �
 means: execute � then execute . Or, model-
theoretically, �
 is true over a path hs1; :::; sni if �
is true over a pre�x of that path (say, hs1; :::; sii) and
 is true over the su�x (i.e., hsi; :::; sni). In terms
of control
ow graphs (cf. Figure 1), this connective
represents arcs connecting adjacent activities.

� � j means: � and must both execute concurrently,
in an interleaved fashion. This connective corresponds
to the \AND"-nodes in control
ow graphs.

� � ^ means: � and must both execute along the
same path. In practical terms, this is best understood
in terms of constraints on the execution. For instance,
� can be thought of as a transaction and as a con-
straint on the execution of �. It is this feature of the
logic that lets us specify temporal constraints as part
of work
ow speci�cations.

� � _ means: execute � or execute non-
deterministically. This connective corresponds to the
\OR"-nodes in control
ow graphs.

� :� means: execute in any way, provided that this will
not be a valid execution of �. There are many uses
for this feature. One is that, just as in classical logic,
the negation lets us de�ne deductive rules which, in
terms of the work
ows, correspond to sub-work
ow
de�nitions. Negation is also an important component
in temporal constraint speci�cations.

� �� means: execute � in isolation, i.e., without inter-
leaving with other concurrently running activities.

This operator enables us to specify the transactional
parts of work
ow speci�cations.

� 3�means: check if � is executable at the current state.
Section 7 discusses the role of the possibility operator
3 in work
ow modeling.

Concurrent-Horn subset of CT R. Next, we de�ne the im-
plication, p q, as p _ :q. The form and the purpose of
the implication in CT R is similar to that of Datalog: p can
be thought of as the name of a procedure and q as the def-
inition of that procedure. However, unlike Datalog, both p
and q assume truth values on execution paths, not at states.

More precisely, p q means: if q can execute along a
path hs1; :::; sni, then so can p. If p is viewed as a subroutine
name, then the meaning can be re-phrased as: one way to
execute p is to execute q, the de�nition of p.

Having provided the intuition behind the logical connec-
tives, it is now easy to see how control
ow graphs are rep-
resented in CT R. For instance, the graph in Figure 1 is
represented as:

a

 �
cond1
 b
 ((d
 cond3
 h) _ e)
 j

�
j

�
cond2
 c
 ((f
 i
 cond4) _ (g
 cond5))

�!

 k

(1)

Expressions of the above form are called concurrent-Horn
goals. Formally:

� any atomic formula is a concurrent-Horn goal;

� �
 , � j , and � _ are concurrent-Horn goals, if
so are � and ;

� �� and 3� are concurrent-Horn goals, if so is �.

It should be clear from the above example how control
ow
graphs translate into concurrent-Horn goals.

A concurrent-Horn rule is a CT R formula of the form
head body, where head is an atomic formula and body is
a concurrent-Horn goal.

In this paper, we limit our attention to non-iterative
work
ows, which means that we do not allow recursive con-
current rules. Section 7 discusses to what extent our present
results apply to recursively de�ned work
ows.

From the work
ow point of view, the primary use for the
rules is to represent sub-work
ows. Indeed, since work
ows
and sub-work
ows can be described using concurrent-Horn
goals, we can use the rules of the form subWorkFlowName
 subWorkFlowDe�nition to de�ne sub-work
ows. For
instance, subWorkFlowName can be used in work
ow spec-
i�cations as if it were a regular activity, thereby completely
hiding the underlying structure of the activity from top-level
speci�cations.

Observe that the de�nition of concurrent-Horn rules
and goals does not include the connective ^. In general,
^ represents constrained execution, which is usually hard
to implement, since constraints must be checked at ev-
ery step of the execution. If a constraint violation is de-
tected, a new execution path must be tried out. In contrast,
the concurrent-Horn fragment of CT R is e�ciently imple-
mentable, and there exist an SLD-style proof procedure that
proves concurrent-Horn formulas and executes them at the
same time [6].

The e�ciency gap between concurrent-Horn execution
and constrained execution is the main motivation for our
results. In logical terms, we show that, for a large class of

constraints, formulas of the form ConcurrentHornGoal ^
Constraints have an equivalent concurrent-Horn form (
which, therefore, does not use the connective ^). In prac-
tical terms, therefore, this means that there is an e�cient
work
ow scheduling strategy and, moreover, this strategy
can be determined at \design time" of the work
ow (as op-
posed to run-time scheduling of [27]).

Elementary updates. We complete our informal introduc-

tion to CT R by explaining how execution of (some) formulas
may actually change the underlying database state. Most
of the machinery has already been introduced (albeit very
informally). What is missing is the notion of elementary
updates.

In CT R, elementary updates are represented by ordinary
atomic, variable-free formulas. Syntactically, CT R does not
distinguish elementary updates in any way, but the user may
want to do so by adopting a syntactic convention (e.g., a con-
vention could be that ins:p(t) represents the act of insertion
of tuple t into the relation p).

What distinguishes elementary updates is their seman-
tics. Through some black magic, called transition oracle,
CT R arranges so that each elementary updates is always
true along certain arcs, i.e., paths of the form hs1; s2i. In-
formally, one can think of an elementary update as a binary
relation over states. For instance, if hs1; s2i belongs to the
relation corresponding to an elementary update u, it means
that u can cause a transition from state s1 to state s2. Note
that an update can be non-deterministic (any one of a num-
ber of alternative state transitions might be possible) and
it is possible for an update to be inapplicable in certain
states (but it is also possible for an update to apply in every
state).3

This mechanism is very general. It accounts for a wide
variety of elementary state changes: from simple tuple in-
sertions and deletions, to relational assignments, to updates
performed by legacy programs, to whatever work
ow ac-
tivities might do. The connectives of CT R are then used
to build more complex updates from the elementary ones
and then to combine these complex updates into even more
complex update programs. This process of building CT R
programs from the ground up is very natural and powerful.
The reader is referred to [4, 5, 6] for concrete examples.

Now we can explain how the various work
ow activi-
ties (e.g., the symbols a, b, c, etc., in (1)) appear to CT R.
Namely, each activity is encoded as a variable-free atomic
formula, �, that represents either a sub-work
ow de�ned by
a set of concurrent-Horn rules, or it can represent an or-
dinary activities, in which case � is an elementary update.
The latter is appropriate, since individual activities appear
to work
ow management systems as \black boxes" that per-
form state changes in ways that are (at best) only partially
speci�ed.

3 Events and Temporal Constraints

In work
ow systems, tasks are typically modeled in terms of
their signi�cant, externally observable events, such as start ,
commit , or abort. For the purpose of control
ow, we can
represent these events as regular activities and incorporate

3An example of the �rst kind is an update that deletes p(t) only if

p(t) is true in the current state. An example of the second update is

deletion of p(t) regardless of whether p(t) is true. If p(t) is not true

in some state, s, then no state transition takes place, but the update

will still be true over the arc hs; si.

them directly into the control
ow graph in appropriate
spots. The temporal constraints on work
ow execution can
then be expressed in terms of these events. Without loss of
generality (as far as work
ow modeling goes), we make the
following assumptions:

� No signi�cant event occurs twice during the execution.
Indeed, we can always rename di�erent occurrences of
the same type of event.

� Each signi�cant event is represented as an elementary
update that applies in every state.
This assumption is appropriate since, typically, a
signi�cant event amounts to nothing more than
forcing a suitable record into the system log.

(2)

The �rst assumption translates into the following unique
event property, which limits the kinds of concurrent-Horn
goals that we shall consider in this paper:

De�nition 3.1 (Unique Event Property). A concurrent-
Horn goal G has the unique event property if and only if
every signi�cant event occurs at most once in any execution
of G. In such cases, we shall also say that G is a unique-event
goal. 2

Unique-event goals can be recognized in linear time in
the size of the goal, but we shall not present this algorithm
here. Instead, we mention some obvious, yet useful proper-
ties of such goals, which su�ces for our purposes. Let � be
a signi�cant event. Then:

� If G = E1
E2 is a unique-event goal and � occurs
in E1 then it cannot occur in E2.

� If G = E1 j E2 is a unique-event goal and � occurs in
E1 then it cannot occur in E2.

� If G = E1 _E2 then G is a unique-event goal if and
only if so are both E1 and E2.

(3)

In the rest of this paper, all concurrent-Horn goals are as-
sumed to have the unique event property.

Transaction Logic can express a wide variety of temporal
constraints [5], but here we focus on a relatively simple alge-
bra of constraints, which we denote by CONST R. CONSTR is
as expressive as Singh's Event Algebra [27]. Using these con-
straints we can specify that one task must start before some
other task, that the execution of one task causes some other
task to be executed or not executed, etc. These constraints
are believed to be su�cient for the needs of work
ow man-
agement systems, and they are far beyond of the capabilities
of the currently available commercial systems.

We specify all signi�cant events in the system as propo-
sitions drawn from a set, denoted by EVENT . In addition,
we introduce one special proposition, path, which is de�ned
as � _ :�, for any CT R formula. This means that path is
true on all possible execution paths.4

De�nition 3.2 (Constraints). The basic building blocks of
CONST R are formulas of the form path
 e
 path, where
e 2 EVENT . To save space, we shall use a shortcut for such
formulas: O� � path
 �
 path, by de�nition. Then the
following constraints form the constraint algebra CONSTR:

4This is one of the counterparts of \true" in classical logic. In

CTR, one can de�ne other propositions that express various truths.

For instance, we can express the proposition state, which is true

precisely on paths of length 1, i.e., at states. It is also possible to

express formulas that are true precisely on arcs, etc.

1. Primitive constraints: If e 2 EVENT then Oe (event
e must happen) and :Oe (event e must not happen)
are primitive constraints in CONST R. The constraint
Oe is a positive primitive constraint and :Oe is a neg-
ative primitive constraint.

2. Serial constraints: If s1; :::; sn 2 CONSTR are posi-
tive primitive constraints, then s1
� � �
sn 2 CONST R
is a serial constraint. For convenience, primitive con-
straints are also viewed as serial constraints.

3. Complex constraints: If C1; C2 2 CONST R then so
are C1 ^C2, and C1 _C2.

Nothing else is in CONSTR. 2

To get a better grasp of the capabilities of CONSTR, here
are a few typical constraints and their real-world interpre-
tation:

� Oe^Of | events e and f must both occur (in some
order);

� :Oe_:Of | it is not possible for e and f to happen
together.

� :Oe _ (Oe
 Of) | if event e occurs, then f must
occur some time later;

� :Oe_:Of_(Oe
Of) | if both e and f occur, then
e must come before f . This is known as Klein's order
constraint [22].

� :Of _ (Oe
 Of) | if event f has occurred, then
event e must have occurred some time prior to that;

� :Oe_Of | if event e occurs, then f must also occur
(before or after e). This is known as Klein's existence
constraint [22].

Note that De�nition 3.2 does not explicitly state that
CONST R is closed under negation. Nevertheless, we can show
that it is.

Proposition 3.3 (Splitting Serial Constraints).
Under the assumptions (2), any serial constraint is equiva-
lent to a ^-conjunction of serial constraints, each composed
of no more than two primitive constraints.

Proof. Consider a positive serial constraint composed of
more than two primitive constraints: Oe1
Oe2
 s, where
s is a serial constraint. We can show that this is equivalent
to (Oe1
Oe2) ^ (Oe2
 s).

A serial constraint of the form O�
O� is called an order
constraint ; it says that � and � must both occur and � must
occur before �. (Note that this is somewhat stronger than
Klein's order constraint mentioned earlier.)

Lemma 3.4 (Constraint Negation). Let C 2 CONST R.
Then CONST R has a constraint that is equivalent to :C un-
der the assumptions (2).

Proof. We can push negation down to the serial constraints
in C using the classical De Morgan's laws for ^, _, and :,
which are valid also in CT R:

:(� _) � :� ^ :
:(� ^) � :� _ :
::� � �

Since ::Oe is equivalent to Oe, we only need to show that
s = :(Oe1
 � � �
 Oen) is equivalent to some constraint in
CONST R.

By Proposition 3.3, we can assume that n < 3. If n = 1,
then s = :Oe1 is a negative primitive constraint. If n = 2,
then s = :(Oe1
 Oe2), which is equivalent (under the
assumptions (2)) to :Oe1 _ :Oe2 _ (Oe2
Oe1).

The previous results lead to the following normal form
for the members of CONST R:

Corollary 3.5 (Normal Form for Constraints).
Every constraint in CONST R is equivalent to a constraint of
the form _i(^jserialConstri;j) where each serialConstri;j is
either a primitive constraint or a serial constraint composed
of two positive primitive constraints.

Proof. Follows from Proposition 3.3, Lemma 3.4, and the
fact that, as in classical logic, _ distributes through ^ and
vice versa.

Lemma 3.4 helps express certain constraints much more
easily. For instance:

� :(Oe
Of) | it is not possible for f to occur after
e (and for e before f).

� :(Oe
 Of
 Og) | if e happens and then f does,
the event g cannot happen later.

4 Consistency, Veri�cation, and Scheduling Problems for
Work
ows

This section and the next assumes that the control
ow
graphs do not have transition conditions on the arcs and
that the speci�cation does not contain concurrent-Horn rules
that de�ne sub-work
ows. In Section 7, we discuss how our
results apply to graphs that include these features.

Let G be a concurrent-Horn goal with unique event prop-
erty (De�nition 3.1), which represents a control
ow graph,
and let C � CONSTR be a set of constraints. The three
central problems in work
ow management systems can be
formulated as follows:

Consistency: Determine whether G is consistent with C.

Veri�cation: Determine whether every legal execution of
the work
ow satis�es some property � 2 CONST R.

Scheduling: Find an execution path (or all paths) in G
where C holds.

In CT R, the consistency problem is tantamount to the ex-
istence of an execution for the formula G ^ C.

The veri�cation problem is a special case of the consis-
tency problem. Indeed, every legal execution of the work
ow
satis�es � i� G^C^:� cannot execute (i.e., G is inconsistent
with C ^ :�).

The veri�cation problem also subsumes the redundancy
problem: � 2 C is redundant i� every legal execution of
G ^ (C � f�g) satis�es �.

In this paper, we solve the veri�cation problem construc-
tively by transforming the formula G ^ C into an equivalent
concurrent-Horn formula G0, which is always executable;
or if this is impossible, G ^ C reduces to :path | a non-
executable transaction, which is the CT R analog of the clas-
sical false. Our algorithm is exponential in the size of C (in
the worst case), which turns out to be inherent to the veri-
�cation problem:

Proposition 4.1 (Complexity of Veri�cation). Let G
be a concurrent goal and C � CONSTR be a set of constraints.
Then determining whether G^C is executable in CT R is NP-
complete.

The NP-hardness proof is by reduction to satis�ability
of propositional logic [16]. That the decision problem is in
NP follows from the fact that given an arbitrary sequence of
events the satis�ability of a set of constraints and a unique-
event control
ow graph is decidable in polynomial time.
A similar result has been previously obtained in [24]. How-
ever, their NP-completeness result is based on synchronizer -
constraints. Each synchronizer corresponds to a combina-
tion of an existence constraint5 and an order constraint6 in
our formalism. We tighten their complexity result by show-
ing that synchronization per se is not a culprit: the problem
is NP-complete even in the presence of just the existence
constraints. In fact, it follows from our solution to the con-
sistency problem that for order constraints the veri�cation
problem can be solved in polynomial time.

The scheduling problem needs more explanation. Work-

ow literature distinguishes two approaches to the problem:
passive and pro-active.

Passive schedulers receive sequences of events from an
external source, such as a work
ow or a transaction man-
ager, and validate that these sequences satisfy all global
constraints (possibly after reordering some events in the se-
quences). Several such schedulers are described in [26, 3, 19].
To validate a particular sequence of events, each of these
schedulers takes at least quadratic time in the number of
events.7 However, in passive scheduling environments, it
is left to an unspeci�ed external system to do consistency
checking, to ensure the liveness of the scheduling strategy
and to select the event sequences for validation. The known
algorithms for these tasks are worst-case exponential.

In contrast to passive scheduling, our approach is pro-
active. In particular, we do not rely on any external system.
Instead, we construct a \compressed" explicit representation
of all allowed executions (i.e., executions that are known to
satisfy all constraints). This representation can be used to
enumerate all allowed executions at linear time per execu-
tion path (linear in the size of the path). In this way, at each
stage in the execution of a work
ow, the scheduler knows all
events that are eligible to start. There is no need to validate
constraints at run time, since the constraints are \compiled
into" the structure.

More precisely, our solution to the scheduling problem
capitalizes on the solution to the consistency problem. First,
we verify that the speci�cations are consistent by transform-
ing G ^ C into an equivalent concurrent-Horn goal G0, as ex-
plained above. The formula G0 plays the role of the aforesaid
explicit representation for the set of all allowed executions
of G ^ C.

If the transformation succeeds (i.e., the speci�cations are
consistent), enumerating all execution paths of G0 takes time
linear in G per path (note: linear in the original graph, not
in the much larger graph G0!). This means that after the
compilation, we can pick a legal schedule for work
ow ac-
tivities in time linear in the size of the original control
ow

5Existence constraints form the subset of CONST R obtained from

primitive constraints by combining them with ^ and _ only.
6Order constraints form the subset of CONST R that does not use

_.
7Two of these schedulers are actually exponential in the size of

the largest global constraint, but it is reasonable to assume that in

practice this size is bound by a small constant.

graph. In contrast, the event scheduler of [27] has quadratic
complexity.

Thus, while expanding the e�ort on consistency checking
(which needs to be done anyway), we compile the original
speci�cations into a form that lets us �nd allowable sched-
ules much more e�ciently than with the passive approaches
of [27, 3, 19] (It should be noted that, these latter algorithms
do not do consistency checks).

5 Compiling Constraints into the Control Flow Graph

We de�ne the process of compiling the constraints in
CONST R into unique-event goals by starting with simple
events and extending the transformation to more complex
ones. The unique-event property assumption is crucial for
the correctness of the results in this section.

Compiling primitive constraints.
The following transformation takes a primitive constraint
of the form O� or :O� and a control
ow graph (expressed
as a concurrent unique-event goal) and returns a concurrent-
Horn goal whose executions are precisely those executions
of the original graph that satisfy the constraint. Intuitively,
this means that the contraint is compiled into the graph.

De�nition 5.1 (Primitive Constraint Compilation).
Let �;� 2 EVENT . Then:

Apply (O�; �) = �

Apply (O�; �) = :path if � 6= �
Apply (:O�; �) = :path
Apply (:O�; �) = � if � 6= �

Let T and K be concurrent-Horn goals and let � stand for
O� or :O�. Then:

Apply(O�; T
K) =
(Apply(O�; T)
K) _
(T
 Apply (O�; K))

Apply(:O�;T
K) = Apply(:O�;T)
 Apply(:O�;K)

Apply(O�; T j K) =
(Apply(O�; T) j K) _
(T j Apply (O�; K))

Apply(:O�;T j K) = Apply(:O�;T) j Apply(:O�;K)

Apply(�; � T) = �(Apply(�; T))

Apply(�; T _K) = Apply(�; T) _ Apply (�; K) 2

Observe that, due to the properties given in (3), the
above transformation preserves the unique-event property of
concurrent-Horn goals. For example, if T is

(�_�_�)
�,
then:

Apply(O�; T) =

 �
 �
Apply(:O�; T) =

 (� _ �)
 �

Proposition 5.2 (Primitive Constraint Compilation).
If T is a concurrent-Horn goal and � is a primitive con-
straint, then Apply(�; T) � T ^ �.

Compiling order constraints. Next we extend Apply

to work with order constraints, i.e., constraints of the form
O�
 O�.

De�nition 5.3 (Order Compilation). Let �;� 2 EVENT
and let T be a concurrent-Horn goal. Then:

Apply(O�
O�; T) =
sync(� < �;Apply(O�; Apply(O�; T)))

The transformation sync is designed to synchronize
events in the desired order. It is de�ned as follows:

sync(� < �; T) = T
0

where T 0 is like T , except that every occurrence of event �
is replaced with �
 send(�) and every occurrence of event
� is replaced with receive(�)
�, where � is a new constant.

The actions send and receive are easily expressed in CT R
(see [6]) and their semantics is what one would expect of such
synchronization primitives: receive(�) is true if and only if
send(�) has been previously executed. In this way, � cannot
start before � is done. 2

It is easy to verify that, due to (3), the above transforma-
tion preserves the unique-event property of concurrent-Horn
goals. The following examples illustrate the transformation:

Apply(O�
O�;
 _ (�
 �)) =

receive(�)
 �
 �
 send(�)

Apply(O�
O�; � j � j �1 j ::: j �n) =

(�
 send(�)) j (receive(�)
 �) j �1 j ::: j �n (4)

Proposition 5.4 (Order Compilation). Let T be a
concurrent-Horn goal and �;� 2 EVENT . Then
Apply(O�
 O�; T) � T ^ (O�
O�).

Compiling general constraints. We are now ready to

extend Apply to handle the general constraints in CONSTR.

De�nition 5.5 (Compiling General Constraints). Let
T be a concurrent-Horn goal. We assume that work
ows
are speci�ed by a set of constraints C and each individual
constraint is represented in the normal form of Corollary 3.5.
Therefore, C can be written as a single dependency of the
form

�1 ^ �2 ^ :::^ �n (5)

where each �i is in the normal form. In particular, all serial
constraints are assumed to have been split into simpler order
constraints. To extend Apply to such constraints, we only
need to de�ne:

Apply(C1 _C2; T) � Apply(C1; T) _ Apply(C2; T)
Apply(C1 ^C2; T) � Apply(C1; Apply(C2; T)) 2

As before, it is easy to see that the above transformation
preserves the unique-event property.

Proposition 5.6 (Compiling General Constraints).
Let T be a concurrent-Horn goal and let � be a constraint
of the form (5). Then Apply(�; T) � T ^ �.

Knots. After compiling the constraints C into the graph
G, several things still need to be done. First, the result of
the compilation, GC, can have literals of the form :path so,
strictly speaking, GC is not a concurrent-Horn goal. How-
ever, we can use the following CT R tautologies to simplify
GC:

:path
 � � �
:path � :path
:path j � � � j :path � :path
:path_ � � � _ :path � �

The result would be either a concurrent-Horn goal or :path.

If the result is not :path, this still does not mean that we
have a directly executable work
ow speci�cation. The rea-
son is that the send/receive synchronization primitives may
cause a \deadlock". In model-theoretic terms, this means
that such a formula is CT R-equivalent to :path, and in
proof-theoretic terms this means that the proof procedure
would halt and declare that no execution exists. In this case,
we rewrite GC into :path.

Also, when the proof procedure declares a failure, it pro-
duces a concurrent Horn goal, Gfail, which in a sense is the
smallest subpart of the original work
ow that is inconsistent
with the constraints. In this way, the work
ow designers can
be given a feedback that might help them �nd the bug in
their speci�cations.

Even if the proof procedure of CT R does �nd a proof
and thus GC is an executable work
ow speci�cation, GC may
have sub-formulas where the send/receive primitives cause
a cyclic wait, which we call knots.

The problem with knots is that, when they exist, �nding
an execution path in GC may not be a linear task (despite
what we have promised in Section 4). Fortunately, it is easy
to show that a variant of the proof theory of CT R can be
used to remove all knots from GC in time linear in the size
of GC. This procedure, which we call Excise, yields either a
knot-free concurrent-Horn goal equivalent to GC, or :path,
if GC is inconsistent.

We illustrate the Excise process with the following ex-
ample.

Example 5.7 (Knots). Let the graph G be

 (� _ (� j
� j �)) and let the constraints be as follows: c1 � :O� _
(O�
 O�); c2 � :O� _ (O�
 O�); c3 � :O� _ (O�

O�): The constraint c1 says, If � takes place, then � must
also happen afterwards. The other constraints have similar
interpretation. Omitting some intermediate steps, we have:

Apply(c1;G) = Apply(:O�;G) _ Apply(O�
 O�;G)
= G1 _ G2;
where G1 �

 (�
 send(�1) j receive(�1)
 � j �)
and G2 �

 �

Apply(c2;G1 _ G2) = Apply(c2;G1) _ Apply(c2;G2)
= G3 _ G2;

where G3 �

 (�
 send(�1) j receive(�1)
 �

send(�2) j receive(�2)
 �)
Apply(c3;G3 _ G2) = G4 _ G2;

where G4 �

 (receive(�3)
 �
 send(�1) j
receive(�1)
 �
 send(�2) j receive(�2)
 �

send(�3))

Finally, Excise(G4 _ G2) = Excise(G4) _ Excise(G2).
The proof procedure of CT R �nds no knots in G2, so
Excise(G2) = G2. On the other hand, it detects a knot
in G4 as follows.

First, the proof procedure \executes"
 and deletes it
from G4. This results in a goal where each concurrent con-
junct starts with a receive and the corresponding send 's
are slated to occur only later in the execution. There-
fore, the proof procedure halts and we declare a knot in
G4. Thus Excise(G4) = :path. Hence, Excise(Apply(c1 ^
c2 ^ c3;G)) � G2. 2

Main results. We are now ready to summarize how the
Apply and Excise transformations help solve the consis-
tency, veri�cation, and related problems. Theorems 5.8
through 5.10 assume that every activity in the work
ow (ex-
cept for the receive primitive) always succeeds. Without this

assumption, only the \if"-part of Theorem 5.8 holds and its
corollaries, Theorems 5.9 and 5.10, must be adjusted accord-
ingly.

Theorem 5.8 (Consistency Checking). Given a work-

ow speci�cation G ^ C, it is inconsistent i�
Excise(Apply(C;G)) = :path.

Proof. Follows from Proposition 5.6 and the soundness and
completeness of CT R proof theory.

Theorem 5.9 (Property Veri�cation). Given a
work
ow speci�cation G ^ C and a property � 2 CONST R,
there is a constructive way of verifying whether every execu-
tion of the work
ow satis�es �.

Proof. � is satis�ed by every execution of the work
ow if
and only if Excise(Apply(:� ^ C;G)) = :path. Other-
wise, Excise(Apply(:�^C;G)) rewrites to the most general
counter example where � fails to hold.

Theorem 5.10 (Redundancy Elimination). Given a
work
ow speci�cation G ^ C and a constraint � 2 C, we can
verify whether � is redundant.

Theorem 5.11 (Complexity). Let G be a control
ow
graph G and C � CONST R be a set of global constraints in
the normal form of Corollary 3.5. Let jGj denote the size of
G, N be the number of constraints in C, and d be the largest
number of disjuncts in a constraint in C. Then

� The worst-case size of Apply(C;G) is O(dN � jGj).

� The worst-case time complexity of applying Excise is
proportional to the size of Apply(C;G).

A simple corollary of Theorem 5.11 is: If C consists of serial
constraints only, then d = 1 and the size of Apply(C;G) is
proportional to jGj.

6 Related Formalisms

Work
ow veri�cation. Process algebras / temporal logic
suites have been used for modeling concurrent systems (akin
to work
ows) for over a decade now, and model checking is
a pretty standard mechanism for verifying such systems.

However, the salient bene�ts of using CT R over process
algebras and related formalisms are very tangible. First,
CT R is one uniform formalism in which work
ows can be
speci�ed, veri�ed and scheduled. This should be contrasted
with the use of the algebras and temporal logic for speci-
fying work
ows, model-checking for their veri�cation, and
automata for scheduling.

Second, the use of CT R has enabled us to �nd more e�-
cient veri�cation algorithms. Indeed, standard model check-
ing techniques [9] used for veri�cation are worst-case expo-
nential in the size of the control
ow graph. This is often
referred to as the state-explosion problem. In contrast, Apply
is linear in the size of the graph | it is exponential only
in the size of the constraint set (Theorem 5.11), which is a
much smaller object. In a sense, Apply (along with the proof
theory of CT R) can be viewed as specialized, more e�cient
model checker for the problem at hand.

Third, CT R integrates \process oriented" and \data ori-
ented" features, which makes it easy to model processes that
perform complex transformations over the database. In fact,
extending our techniques to work
ows that query the under-
lying database state is the next logical step for our work. In

contrast, using process algebras to model database state is
awkward and impractical.

Fourth, after veri�cation, the proof theory of CT R can
schedule work
ows at time linear in the size of the original
graph, but exponential in the size of the constraint set. In
contrast, process scheduling using the standard toolkit of
process algebras and temporal logic requires automata that
are exponential in the size of the original graph.

Work
owmodeling. We have already discussed formalisms
used for passive work
ow scheduling [26, 27, 3, 19]. In addi-
tion, general purpose process speci�cation formalisms such
as Petri-nets, state charts [29], temporal logic [14] or process
algebras [23] can also be used for modeling work
ows. How-
ever, we believe that our results show that CT R provides a
much simpler and uniform way to both describe and reason
about work
ows.

7 Conclusion

We presented a logic-based formalism for specifying, verify-
ing, and executing work
ows. We developed an algorithm
for consistency checking of work
ows and for their property
veri�cation. The algorithm compiles global constraints on
work
ow execution into the control
ow graph. In addition
to solving the consistency and veri�cation problems, this
compilation technique helps optimize the run-time schedul-
ing of work
ow events.

Our work can be extended to handle additional features,
such as the following:

Transition conditions. As a compilation technique, our al-
gorithm cannot fully account for control
ow graphs
with transition conditions that query the database.
For such graphs, our algorithm is sound but not com-
plete for consistency and veri�cation problems. How-
ever, if additional semantic information about the data
base is available, it can be incorporated into our frame-
work to yield more accurate results.

Sub-work
ows. It is straightforward to augment our compi-
lation technique to handle sub-work
ows de�ned via
concurrent-Horn rules. Furthermore, when global de-
pendencies do not span sub-work
ow boundaries, the
complexity reported in Theorem 5.11 can be
reduced. Indeed, it can be shown that, if M is the
largest number of dependencies in a sub-work
ow,
then the size of Apply(C;G) is O(dM � jGj).

Loops and iteration. Loops in control
ow graph can be ex-
pressed using recursive CT R rules. Our techniques as-
sumes the unique-event property for work
ow graphs.
Hence this property has to be relaxed to handle work-

ows with loops.

Failure semantics. Failure atomicity is built into CT R se-
mantics. However, more complex work
ows require
more advanced failure semantics, such as compensa-
tion [15]. Some such semantics can be expressed us-
ing the possibility operator of CT R, 3. Work is in
progress on extending our framework to handle other
failure semantics.

Acknowledgements. The authors would like to thank
Tony Bonner for the helpful comments on a draft of this
paper.

References

[1] G. Alonso, D. Agrawal, A. El Abbadi, M. Kamath,
R. G�unth�or, and C. Mohan. Advanced transaction
models in work
ow contexts. In International Con-
ference on Data Engineering, New Orleans, Louisiana,
February 1996.

[2] G Alonso, D. Agrawal, A. El Abbadi, and C. Mohan.
Functionality and limitations of current work
ow man-
agement systems. In IEEE-Expert (to appear in a spe-
cial issue on Cooperative Information Systems), 1997.

[3] P. Attie, M. Singh, A. Sheth, and M. Rusinkiewicz.
Specifying and enforcing intertask dependencies. In
Intl. Conference on Very Large Data Bases, 1993.

[4] A.J. Bonner and M. Kifer. An overview of transaction
logic. Theoretical Computer Science, 133:205{265, Oc-
tober 1994.

[5] A.J. Bonner and M. Kifer. Transaction logic pro-
gramming (or a logic of declarative and procedural
knowledge). Technical Report CSRI-323, University of
Toronto, November 1995. Unpublished manuscript.

[6] A.J. Bonner and M. Kifer. Concurrency and commu-
nication in transaction logic. In Joint Intl. Conference
and Symposium on Logic Programming, pages 142{156,
Bonn, Germany, September 1996. MIT Press.

[7] A.J. Bonner, M. Kifer, and M. Consens. Database pro-
gramming in transaction logic. In A. Ohori C. Beeri and
D.E. Shasha, editors, Proceedings of the International
Workshop on Database Programming Languages,Work-
shops in Computing, pages 309{337. Springer-Verlag,
February 1994. Workshop held on Aug 30{Sept 1, 1993,
New York City, NY.

[8] O. Bukhres and E. Kueshn, Eds. Special issue on soft-
ware support for work
ow management. Distributed
and Parallel Databases|An International Journal,
3(2), April 1995.

[9] Edmund M. Clarke, E. Allen Emerson, and A. Prasad
Sistla. Automatic veri�cation of �nite-state concurrent
systems using temporal logic speci�cations. In ACM
Transactions on Programming Languages and Systems
(TOPLAS), pages 244{263, 1986.

[10] Work
ow Management Coalition. Terminology and
glossary. Technical Report (WFMC-TC-1011), Work-

ow Management Coalition, Brussels, 1996.

[11] U. Dayal, M. Hsu, and R. Ladin. Organizing long-
running activities with triggers and transactions. In
ACM SIGMOD Conference on Management of Data,
1990.

[12] A. Elmagarmid, Y. Leu, W. Litwin,
and M. Rusinkiewcz. A multi - database transaction
model for interbase. In Intl. Conference on Very Large
Data Bases, 1990.

[13] A.K. Elmagarmid, editor. Database Transaction Mod-
els for Advanced Applications. Morgan-Kaufmann, San
Mateo, CA, 1992.

[14] E.A. Emerson. Temporal and modal logic. In Handbook
of Theoretical Computer Science, pages 997{1072, 1990.

[15] H. Garcia-Molina and K. Salem. Sagas. In Intl. Con-
ference on Very Large Data Bases, pages 249{259, May
1987.

[16] M.R. Garey and D.S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. Freeman and Company, San Francisco,
CA, 1978.

[17] D. Georgakopoulos, M. Hornick, P. Krychniak, and
F. Manola. Speci�cation and management of extended
transactions in a programmable transaction environ-
ment. In International Conference on Data Engineer-
ing, Houston, TX, February 1994.

[18] D. Georgakopoulos, M. Hornick, and A. Sheth. An
overview of work
ow management: From process mod-
eling to infrastructure for automation. Journal on Dis-
tributed and Parallel Database Systems, 3(2):119{153,
April 1995.

[19] R. Gunthor. Extended transaction processing based
on dependency rules. In Proceedings of the RIDE-IMS
Workshop, 1993.

[20] M. Hsu, Ed. Special issue on work
ow systems. Bulletin
of the Technical Committee on Data Engineering (IEEE
Computer Society), 18(1), March 1995.

[21] M. Kifer. Transaction logic for the busy work
ow pro-
fessional. Unpublished manuscript, August 1996.

[22] J. Klein. Advanced rule-driven transaction manage-
ment. In IEEE COMPCON. IEEE, 1991.

[23] R. Milner. Communication and Concurrency. Prentice
Hall, 1989.

[24] M.E. Orlowska, J. Rajapakse, and A.H.M. ter Hofstede.
Veri�cation problems in conceptual work
ow speci�ca-
tions. In Intl. Conference on Conceptual Modelling, vol-
ume 1157 of Lecture Notes in Computer Science, Cot-
tbus, Germany, 1996. Springer-Verlag.

[25] M. Rusinkiewicz and A. Sheth. Speci�cation and exe-
cution of transactional work
ows. In W. Kim, editor,
In Modern Database Systems: The Object Model, In-
teroperability, and Beyond. ACM Press, 1994.

[26] M.P. Singh. Semantical considerations on work
ows:
An algebra for intertask dependencies. In Proceedings of
the International Workshop on Database Programming
Languages, Gubbio, Umbria, Italy, September 6{8 1995.

[27] M.P. Singh. Synthesizing distributed constrained events
from transactional work
ow speci�cations. In Proceed-
ings of 12-th IEEE Intl. Conference on Data Engineer-
ing, pages 616{623, New Orleans, LA, February 1996.

[28] H. Wachter and A. Reuter. The ConTract model. In
[13], chapter 7, pages 220{263. 1992.

[29] Dirk Wodtke and Gerhard Weikum. A formal founda-
tion for distributed work
ow execution based on state
charts. In Intl. Conference on Database Theory, pages
230{246, 1997.

