
Compositional Analysis for Verification of

Parameterized Systems

Samik Basu a and C. R. Ramakrishnan b

a Dept. of Computer Science, Iowa State University, Ames, IA 50014

bDept. of Computer Science, Stony Brook University, Stony Brook, NY 11794

Abstract

Many safety-critical systems that have been considered by the verification commu-
nity are parameterized by the number of concurrent components in the system,
and hence describe an infinite family of systems. Traditional model checking tech-
niques can only be used to verify specific instances of this family. In this paper, we
present a technique based on compositional model checking and program analysis
for automatic verification of infinite families of systems. The technique views a pa-
rameterized system as an expression in a process algebra (CCS) and interprets this
expression over a domain of formulas (modal mu-calculus), considering a process
as a property transformer. The transformers are constructed using partial model
checking techniques. At its core, our technique solves the verification problem by
finding the limit of a chain of formulas. We present a widening operation to find
such a limit for properties expressible in a subset of modal mu-calculus. We de-
scribe the verification of a number of parameterized systems using our technique to
demonstrate its utility.

Key words: Parameterized systems, compositional model checking, formula
equivalence, acceleration, widening.

1 Introduction

Model checking is a widely used approach for verifying whether a system
specification possesses a property expressed in temporal logic [13, 41]. Many
efficient verification tools have been developed based on approaches such as

Email addresses: sbasu@cs.iastate.edu (Samik Basu), cram@cs.sunysb.edu
(C. R. Ramakrishnan).

Preprint submitted to special issue of Theoretical Computer Science

P
def
= a.P

C
def
= a.C

sys(n)
def
= (Pn|C)\{a}

ϕ ≡ X where X =ν 〈τ〉tt ∧ [τ]X

ϕc ≡ Y where Y =ν 〈τ, a〉tt ∧ [τ, a]Y

ϕ1 ≡ Z1 where Z1 =ν [τ, a, a]Z1

ϕ2 ≡ Z2 where Z2 =ν [τ, a, a]Z2

(a) (b)

Fig. 1. (a) Parameterized System with one consumer and arbitrary number of pro-
ducers; (b) Deadlock-freedom formula ϕ and property transformation results.

explicit-state [29], symbolic [12] and compositional [4] techniques. Tradition-
ally, model checkers have been restricted to the verification of finite-state sys-
tems, although recent research on constraint-based techniques (e.g. [19]), sym-
metry reduction [30], data independence [44], and symbolic checking with rich
assertional languages [32] have extended model checking techniques to certain
classes of infinite-state systems.

The Driving Problem. In this paper, we focus on an interesting class of in-
finite state systems, parameterized systems. A parameterized system describes
an infinite family of (typically finite-state) systems; instances of the family can
be obtained by fixing the parameters. Consider a simple example of parame-
terized producer-consumer system shown in Figure 1(a). A producer process
P performs an action a and continues to behave as P. Similarly, the consumer
process C repeatedly performs action a. The processes communicate by syn-
chronization on a and a actions. The parameterized system sys(n) is specified
as parallel composition of n producers, denoted by P n, and a consumers (C).
Our objective is to verify deadlock-freedom property for all instances of the
system sys.

Models of many safety-critical systems are parameterized: e.g., resource arbi-
tration protocols, communication protocols, etc. Traditionally, model checkers
have been used to verify specific instances of the infinite family described by a
parameterized system: e.g., to verify that a mutual exclusion protocol is cor-
rect for fixed numbers of objects and threads [9]. Clearly, this strategy cannot
be used to verify all instances of the infinite family of systems.

Our Solution. In this paper we present an automatic technique for checking
whether any or all arbitrary instances of an infinite family of systems possess
a given temporal property. At a high level, our solution to the verification
problem is analogous to program analysis. Each instance of a parameterized
system is viewed as an expression in a process algebra (specifically, CCS [38]).
We then interpret these process algebraic expressions over a domain consisting
of formulas in an expressive temporal logic (specifically, the alternation-free
modal mu-calculus [33]). The interpretation is based on associating a property
transformer Π for each process p in the parameterized system. Given a system
s consisting of p concurrently composed with an arbitrary environment e, Π
captures the relationship between properties that hold in the environment

2

e and the properties that hold in the system s. For instance, consider the
process P in Figure 1(a), and a system s consisting of P composed in parallel
with an (unknown) environment e. Consider the verification of the property
that s does an internal τ action. The τ action can either be solely due to the
environment e, or a result of P making an a action that is synchronized with
an a action of e. Thus, process P can be seen as transforming the property
“do a τ action” on system s to the the property “do an a or a τ action” on
the environment e.

The property transformer for a given process is generated using the notion of
quotienting due to [3]. Based on the property transformer, we define a chain
of mu-calculus formulas whose limit characterizes the behavior of an arbi-
trary instance of the parameterized system. Consider the problem of verifying
deadlock-freedom for the parameterized system sys(n) for all n ≥ 1. The
formula to be checked for the entire system is given in Figure 1(b) as ϕ. ϕ is a
greatest fixed point formula where the first conjunct is satisfied by states with
at least one outgoing τ transition while the second disjunct requires that ϕ is
satisfied at every destination states reachable after a τ transition.

We first compute the property expected of the producers alone, by transform-
ing the property ϕ using the property transformer for C process. The resulting
“quotient” property is the formula ϕc in the figure. Intuitively, ϕc states that
ϕ can be modeled by an environment composed in parallel to process C if the
environment can perform infinitely many a or τ actions. Therefore, if Pn |= ϕc
then sys(n) |= ϕ. Next, we transform ϕc using the property transformer
for process P. The resultant property, ϕ1 in the figure, is the “residue” that
captures the property Pn−1 must satisfy, for sys(n) to satisfy ϕ. Repeated ap-
plications of the property transformer of P yields a sequence ϕ1, ϕ2, . . ., which
are “residues” corresponding to processes Pn−1, Pn−2, In our example, we
see that this sequence converges immediately, with ϕi = ϕ1 for all i ≥ 1. We
can thus conclude that if 0 |= ϕ1 then ∀n ∈ N sys(n) |= ϕ (0 denotes a
deadlocked process which does not interact with its environment). The above
discussion presents a high level view of the technique used to verify proper-
ties for all or any members of a parameterized system. The actual technique
is a little more complex, keeping track of various restriction and relabeling
operations applied to the processes (see Sections 3 and 4 for details).

The sequence of residues can be easily seen as a chain (i.e. the elements of
sequence are nondecreasing with respect to a partial order). However, the se-
quence may not have a limit since the domain of interpretation, the modal
mu-calculus, has infinite ascending chains. Nevertheless, we find that the iter-
ative computation of the limit does converge for a number of example param-
eterized systems. Moreover, we define a widening operation to accelerate the
convergence, and in some cases guarantee termination.

3

Related Work. Verification of parameterized systems is known to be un-
decidable in general [5]. A number of techniques have been proposed with
varying degree of user intervention ranging from fully automatic techniques
(mostly sound but incomplete), which focus on domain of representation of
systems, to program transformation-based methods capable of inferring the
underlying structure of induction proofs. Other than the degree of depen-
dence on user guidance, the techniques can also be classified on the basis of
parameterized systems on which they are applicable: (a) systems where sub-
systems interact via shared variables (asynchronous) and (b) systems where
communication mechanism depends on message passing (synchronous).

One of the automatic approaches for synchronously communicating systems
involves reduction of the infinite-state verification problem to an equivalent
finite-state one by identifying an appropriate cut-off value for the parame-
ter corresponding to the system and the temporal property [21, 22, 31, 8].
Cache coherence and unidirectional token ring protocols have been success-
fully verified using these techniques. Another approach focuses on identifying
an appropriate representation technique for parameterized system: e.g. count-
ing abstraction with arithmetic constraints [18], covering graphs [23, 24], and
context-free grammars [14]. Such representation mechanisms have been effec-
tively used to generate network invariants capturing the common aspects of
the members of an infinite family. However, generation of network invariants
can be automated only for a class of systems with restricted communication
patterns (ring and linear topologies [34, 43]). Most of these techniques are not
applicable directly to systems communicating by shared variables. In the realm
of asynchronous systems, Kesten and Pnueli [32] present the importance of ap-
propriate abstractions to generate invariants of parameterized systems. Pnueli
and Shahar [40] use a representation mechanism based on regular languages
to symbolically verify safety and liveness properties of parameterized systems.
More recently, automatic techniques based on identification of cut-off of the
parameters have been proposed for verifying a wide range of parameterized
systems using a rich class of data objects and operations [39, 7].

In this paper we focus only on synchronously communicating systems. Our
technique, unlike the representation-based approaches, directly manipulates
processes specified in standard process algebra. Moreover, being based on pro-
gram analysis, our technique can be applied with little or no knowledge of the
internals of the system and without regard to the network topology of the sys-
tem to be verified. This is in contrast to the representation-based techniques
whose success depends on the clever choice of representations. Our tech-
nique is based on applying compositional model checking techniques for the
automatic verification of infinite families of systems. Considerable amount of
research has been done on using assume-guarantee reasoning for constructing
compositional proofs [35, 25, 2, 36, 10, 27]. However, these methods typically
need user guidance. Recently, [28] developed automatic assume-guarantee veri-

4

fication methodology in the setting of multi-threaded C programs where appro-
priate approximations of single thread behavior is identified using abstraction-
refinement techniques. Another technique, proposed by [16], aims at automati-
cally identifying the assumptions (obligations of the environment in a 2-process
system) by iterative application of model checker. Closely related to our work
are the compositional model checker of [4] and the partial model checker of [3].
The latter work defines property transformers for parallel composition of se-
quential automata, while we generalize the transformers for arbitrary CCS
processes. We also present a simulation-based procedure to detect equivalence
of formulas which is strictly more powerful than the equivalence detection
technique proposed in [3].

Contributions. We present a technique for automatic verification of param-
eterized systems representing an infinite family of finite-state systems.

(1) We develop a compositional model checker for CCS [38] and use this
model checker to generate property transformers (Section 3).

(2) Given a verification problem over a parameterized system, we use prop-
erty transformers to define a sequence of mu-calculus formulas, whose
limit characterizes the property of the parameterized system (Section 4).

(3) Computing the limit of a chain of mu-calculus formulas involves checking
the equivalence of formulas. We present a novel polynomial-time heuristic
for the equivalence checking problem based on constructing automata
from the formulas and testing them for simulation (Section 5).

(4) To guarantee convergence of the iterative procedure, we define accelera-
tion and widening operators (based on widening techniques used in type
analysis) for mu-calculus formulas. (Section 6).

(5) We show the usefulness of the technique by presenting its application
in verifying protocols over token passing rings (Milner’s cycle of sched-
ulers [3]), mutual exclusion protocols (Java meta-lock [1]), and cache
coherence protocols [18] (Section 7).

2 Preliminaries

We briefly outline the syntax of the process algebra CCS [38] and the logic
modal mu-calculus [11] used in the rest of the paper.

CCS and labeled transition systems. CCS is a simple process algebra
that can be used to specify concurrent systems. Below we describe the syntax
of expressions in basic CCS:

P → 0 | A | a.P | P + P | P ′|′P | P\L | P[f]

5

In the above, 0 denotes a deadlocked process. A ranges over process names
(agents) and a ranges over a set of actions Act = L∪L∪τ , where τ represents
an internal action and L is a set of labels and L is such that a ∈ L ⇔ a ∈ L.
Finally, L ranges over the powerset of L, and f : L → L. The operators ‘.’,
‘+’, ‘|’, ‘\’ and ‘[·]’ are called prefix, choice, parallel composition, restriction
and relabeling respectively. A CCS specification consists of a set of process

definitions, denoted by D, of the form A
def
= P , where P ∈ P. Each agent used

in P , in turn, appears on the left hand side of some process definition in D.
Note that process definitions may be recursive.

A labeled transition system (S,→) is specified by a set of states S and a
transition relation →⊆ S × Act × S. The operational semantics of CCS ex-
pressions is given in terms of labeled transition systems where states represent
CCS expressions. See [38] for full treatment of the semantics of CCS.

The modal mu-calculus. The modal mu-calculus [33] is an expressive
temporal logic with explicit greatest and least fixed point operators. Follow-
ing [15, 3], we use the equational form of mu-calculus. The syntax of formulas
in modal mu-calculus over a set of propositional variables X and actions Act
is given by the following grammar :

Φ → tt | ff | X | Φ ∨ Φ | Φ ∧ Φ | 〈α〉Φ | [α]Φ.

In the above, α specifies a set of actions in positive form (as β ⊆ Act) or
negative form (as −β, where β ⊆ Act). 〈α〉Φ states that there exists an action
in α following which formula Φ holds true, while [α]Φ states that after every
action in α, Φ is satisfied. Propositional constants tt and ff represent true
and false respectively. The variables used in a mu-calculus formula are defined
using a sequence of equations where the ith equation has the form: Xi =µ ϕi
or Xi =ν ϕi, where ϕi ∈ Φ. The least and greatest fixed point symbols µ
and ν are said to represent the sign of the equation. In the remainder of
the paper,we use σ, ranging over {µ, ν} to denote the sign of an arbitrary
equation. We assume that each variable occurs exactly once on the left hand
side of an equation. The variable X1 defined by the first equation is called the
top variable. The set of equations representing some property is denoted by
E. The set of all mu-calculus equations is denoted by E .

Model Checking. Given a labeled transition system (S,→), the semantics
of mu-calculus formulas are stated such that each formula denotes a subset
of S. Refer to [11] for semantics of mu-calculus. We say that a mu-calculus
formula ϕ holds at a state s, if s is in the model of ϕ (s |= ϕ).

6

3 Partial Model Checking

Our technique for verification of parameterized systems is based on viewing a
process as a property transformer. We generate property transformers using
a partial model checker [3]. Consider the verification of a formula ϕ over a
process expression of the form P |Q. Given ϕ and P we generate the obligation
ϕ′ on Q such that P |Q |= ϕ iff Q |= ϕ′. Thus we view P as transforming the
obligation ϕ on P |Q to the obligation ϕ′ on Q. This transformation is called
quotienting in [3], where it is defined for modal mu-calculus properties and
systems specified by LTSs.

In Figure 2 we define the property transformer using a function Π : (P × L×

F) → Φ → Φ where L is 2Act and F is a set of partial injective functions
(relabeling functions) f : Act → Act such that f(x) 6= x. We use ⊥ to de-
note empty relabeling function which is undefined everywhere. We define the
composition of two relabeling functions h = f ◦ g such that h is undefined
if f and g are both undefined, h(x) = f(x) if g is undefined, h(x) = g(x) if
f is undefined; otherwise h(x) = f(g(x)). Φ is the set of modal mu-calculus
formulas. Finally P is the set of all CCS process expressions. A process ex-
pression is said to be well-named if all relabeling operations of the form Q[f]
are such that the set of visible actions of process Q is disjoint from the range
of function f .

The transformer ΠL
f (P) considers process P under a set of restricted actions

(L) and a relabeling function (f). The transformer generates a formula ψ as
the obligation of the environment of process P such that (a) modal actions
are suitably relabeled by f and (b) environment is not allowed to synchronize
on actions in L. The transformer ΠL

f (P) transforms ϕ and generates ψ defined
over fixed point variables XP,f,L, where ϕ is defined over variables in X.

The set of visible actions of process P is denoted by vn(P). The names of
formula ϕ are the set of modal actions in ϕ and is denoted by n(ϕ). Note
that, n(X) = n(ϕ), where X =σ ϕ. Range of relabeling f is the set of actions
a such that f : x→ a.

Rules 1 through 5 (Figure 2) for the property transformer correspond to propo-
sitional constants, boolean connectives, formula variables. The property trans-
former for the zero/deadlocked process (Rule 6), which is the identity of the
parallel composition operator of CCS, has the identity function as its property
transformer. Rule 7 states that the property transformer for an agent is the
property transformer of the process expression used to define the agent.

Property transformer of a process with relabeling function fp is property trans-
former of the process under new relabeling function by composing fp with

7

1. ΠL
f
(P)(tt) = tt

2. ΠL
f
(P)(ff) = ff

3. ΠL
f
(P)(ϕ1 ∨ ϕ2) = ΠL

f
(P)(ϕ1) ∨ ΠL

f
(P)(ϕ2)

4. ΠL
f
(P)(ϕ1 ∧ ϕ2) = ΠL

f
(P)(ϕ1) ∧ ΠL

f
(P)(ϕ2)

5. ΠL
f
(P)(X) = XP,f,L

6. ΠL
f
(0)(ϕ) = ϕ

7. ΠL
f
(A)(ϕ) = ΠL

f
(P)(ϕ) if A

def
= P ∈ D

8. ΠL
f
(P [fp])(ϕ) = ΠL

f◦fp
(P)(ϕ)

9. ΠL
f
(P\Lp)(ϕ) = ΠL∪L′

f
(P [L′/Lp])(ϕ)

where L′ ∩ (n(ϕ) ∪ vn(P) ∪ range(f) ∪ L) = { }

10. ΠL
f
(P1|P2)(ϕ) = ΠL

f
(P2)(Π

{}
f

(P1)(ϕ))

11. ΠL
f
(a.P)(〈α〉ϕ) = 〈α〉ΠL

f
(a.P)(ϕ) ∨

{

ΠL
f
(P)(ϕ) if f(a) ∈ α

ff otherwise

}

∨

{

〈f(a)〉ΠL
f
(P)(ϕ) if τ ∈ α ∧ f(a) 6∈ L

ff otherwise

}

12. ΠL
f
(a.P)([α]ϕ) = [α]ΠL

f
(a.P)(ϕ) ∧

{

ΠL
f
(P)(ϕ) if f(a) ∈ α

tt otherwise

}

∧

{

[f(a)]ΠL
f
(P)(ϕ) if τ ∈ α ∧ f(a) 6∈ L

tt otherwise

}

13. ΠL
f
(P1 + P2)(〈α〉ϕ) = 〈α〉ΠL

f
(P1 + P2)(ϕ) ∨ ΠL

f
(P1)(〈α〉ϕ) ∨ ΠL

f
(P2)(〈α〉ϕ)

14. ΠL
f
(P1 + P2)([α]ϕ) = [α]ΠL

f
(P1 + P2)(ϕ) ∧ ΠL

f
(P1)([α]ϕ) ∧ ΠL

f
(P2)([α]ϕ)

A. ΠL
f
(P)(X =σ ϕ ∪ E) = XP,f,L =σ ΠL

f
(P)(ϕ) ∪ ΠL

f
(P)(E) ∪

{
⋃

(ΠL′

F ′
(P ′)(X′ =σ′ ϕ′) s.t X′

P ′,F ′,L′
is present in

ΠL
f
(P)(ϕ), X′ =σ′ ϕ′ ∈ F}

B. ΠL
f
(P)({}) = {}

Fig. 2. Partial Model Checker for CCS

existing relabeling function f (Rule 8). Rule 9 presents the property trans-
former for a process with restriction Lp. The restricted actions are mapped
to a set of new names (L′). This set is disjoint from the set of actions in
the formula (n(ϕ)), visible actions of process (vn(P)) and restricted(L) and
relabeled(range(f)) actions of the transformer.

Rule 10 captures the compositionality of property transformers: the property
transformer for a parallel composition of processes is simply the function com-
position of the individual property transformers with appropriate restrictions
and relabeling.

Rule 11 arises from the fact that a.P |Qmay satisfy 〈α〉ϕ in one of the following
three ways:

(1) Q does an α action to Q′ leaving a.P |Q′ to satisfy ϕ. In this case, the
obligation on Q is to do an α action, followed by satisfying the obligation

8

Π
{}
⊥

(C)(X =ν 〈τ〉tt ∧ [τ]X)

I. XC,⊥,{} =ν Π
{}
⊥

(C)(〈τ〉tt ∧ [τ]X) Rule A

=ν Π
{}
⊥

(C)(〈τ〉tt) ∧ Π
{}
⊥

(C)([τ]X) Rule 4

=ν Π
{}
⊥

(a.C)(〈τ〉tt) ∧ Π
{}
⊥

(a.C)([τ]X) Rule 7

=ν 〈τ, a〉tt ∧ ([τ]Π
{}
⊥

(a.C)(X) ∧ [a]Π
{}
⊥

(C)(X)) Rules 11,12,1

=ν 〈τ, a〉tt ∧ ([τ]Xa.C,⊥,{} ∧ [a]XC,⊥,{}) Rule 5

II. Xa.C,⊥,{} =ν Π
{}
⊥

(a.C)(〈τ〉tt ∧ [τ]X) Rule A

=ν Π
{}
⊥

(a.C)(〈τ〉tt) ∧ Π
{}
⊥

(a.C)([τ]X) Rule 4

=ν 〈τ, a〉tt ∧ ([τ]Π
{}
⊥

(a.C)(X) ∧ [a]Π
{}
⊥

(C)(X)) Rules 11,12,1

=ν 〈τ, a〉tt ∧ ([τ]Xa.C,⊥,{} ∧ [a]XC,⊥,{}) Rule 5

Fig. 3. Transformation of property ϕ in Figure 1(b) using process C in Figure 1(a)

left by a.P due to ϕ (first disjunct in the rhs of Rule 11).
(2) a ∈ α and P does the a action, leaving P |Q to satisfy ϕ. In this case

the obligation on Q is simply the obligation left by P due to ϕ (second
disjunct in the rhs of Rule 11).

(3) τ ∈ α, P does an a action that synchronizes with an a action by Q to
produce the necessary τ action. This means that the obligation on Q is
to first produce an a action and then satisfy whatever obligation is left
by P due to ϕ (third disjunct of Rule 11).

Note that, property transformer of P , under a set of restricted actions L, does
not permit the environment Q to synchronize on any action present in L. The
third disjunct generates modal obligation for the environment on the action
f(a) only when f(a) 6∈ L. Rule 12 is the dual of Rule 11.

Rule 13 presents the property transformer for process with choice operator
(P1+P2). It is defined by considering three different cases. In the first disjunct,
selection of the processes P1 and P2 is postponed and the environment is
provided with the obligation to satisfy diamond modality. The second and
third disjuncts represent the cases when the choices are made in favor of
process P1 and process P2 respectively. Rule 14 is the dual of Rule 13.

Rules A and B define a function Π : (P × L × F) → E → E which denote
property transformers over mu-calculus equations. To transform a sequence of
equations E, we construct the set of equations as per Rules A and B.

Figure 3 presents the transformation of the formula ϕ using the property
transformer for process C (see Figure 1(a,b) for definition of the process and
the formula respectively).

Theorem 1 Given a well-named process expression P the following identity

9

holds for all process expressions Q and for all mu-calculus formula ϕ

Q | P |= ϕ ⇔ Q |= Π
{}
⊥ (P)(ϕ)

Proof: The proof proceeds by induction on the size of the process expression
and formula. For details see Appendix A.

4 Verification of Parameterized Systems

Consider a parameterized system Pn defined by parallel composition of pro-
cesses P . The parameter (n) represents the number of processes P present in
the system. Consider verifying whether the ith instance of the above system
possesses property ϕ: i.e. whether Pi |= ϕ. Let

ϕi = ΠL
f (Pi)(ϕ),

where f and L are the relabels and restrictions applied to the process Pi.
Therefore, from Theorem 1, 0 |= ϕi ⇔ Pi |= ϕ.

Now consider verifying whether ∀i. Pi |= ϕ. Let ϕ′
i be defined as follows

ϕ′
i =











ϕ1 if i = 1

ϕ′
i−1 ∧ ϕi if i > 1

(1)

By definition of ϕ′
i, ∀1 ≤ j ≤ i.0 |= ϕj ⇔ 0 |= ϕ′

i. Hence, 0 |= ϕ′
i means

that ∀1 ≤ j ≤ i.Pj |= ϕ. If ϕ′
ω is the limit of sequence ϕ′

1, ϕ
′
2 . . ., then,

0 |= ϕ′
ω ⇔ ∀i ≥ 1.Pi |= ϕ.

A dual method can be used to determine whether ∃i ≥ 1. Pi |= ϕ simply by
defining

ϕ′
i =











ϕ1 if i = 1

ϕ′
i−1 ∨ ϕi if i > 1

(2)

We say that ϕ′
i is said to be contracting (Equation 1) if ϕ′

i =⇒ ϕ′
i−1 and

relaxing (Equation 2) if ϕ′
i−1 =⇒ ϕ′

i. For systems indexed by a single pa-
rameter, the limit of the sequence of ϕ′

is can be computed by a fixed point
iteration procedure.

Two problems need to be solved before this method can be implemented. First
of all, we need a procedure to check if the limit ϕω has been reached: that is to

10

determine the equivalence of two mu-calculus formulas. Checking equivalence
between mu-calculus properties is EXPTIME-hard [20] and hence we need an
efficient procedure to compute an approximate equivalence relation. Moreover,
as remarked in [3] the formulas resulting from property transformers tend to
be large and effective simplification procedures are needed before this method
becomes practical. While we use the simplification rules from [3], we use a
more powerful procedure to test for equivalence between mu-calculus formulas
by constructing graphs from the formulas and checking for their similarity
(Section 5).

The second problem arises due to the existence of infinite ascending chains
in the domain of modal mu-calculus formulas: the iteration procedure may
not always terminate. We describe a widening operator (based on definitions
of widening operators over type domains) to guarantee the termination of
iteration procedure at the expense of completeness in Section 6. In [40], similar
idea has been applied on regular transition relations to ensure convergence of
transitive closures of parameterized systems. The distinguishing feature of
our work is that widening (acceleration) is tailored to property representation
(mu-calculus) unlike the acceleration on transition relations [40].

The approach presented above can be easily applied to infinite families of
systems specified by two or more parameters by considering a multi-parameter
system as a nesting of single parameter systems. However, this is not possible if
the parameters are interdependent; a method capable of verifying such infinite
families remains to be developed.

5 Formula Graph and the Equivalence of Formulas

A formula graph, called F-graph, is an and/or graph that captures the struc-
ture of a mu-calculus formula, and is defined as follows:

Definition 1 F-graph for a set of mu-calculus equations representing a for-
mula ϕ is a tuple Fϕ = (S, ◦−→, A) where

• S is the set of states such that S ⊆ F × B × Σ where F is the set of all
sub-formulas of ϕ, B = {#,∧,∨} and Σ = {µ, ν};

• A is the set of labels such that A ⊆ B×M×Σ where M = A(ϕ) ∪{γ}∪2Prop,
Prop is the set of propositions in ϕ and A(ϕ) = {〈a〉 | 〈a〉ϕ′ ∈ F} ∪
{[a] | [a]ϕ′ ∈ F}; and

• ‘◦−→’ is the set of transitions such that ◦−→ ⊆ S × A× S.

Each state in formula graph is labeled by (i) mu-calculus formula (in F), (ii) a
boolean connective (B ∈ B) stating whether the state is a part of “and” or “or”

11

Special Transition Rule for top variable X

[X]#,σ
#,γ,σ
◦−→ [ϕ]#,σ if X =σ ϕ

General Transition Rules

1(a). [ϕ1 B ϕ2]B
′,σ

B,m,σ
◦−→ [ψ]B,σ if [ϕ1]B,σ

B,m,σ
◦−→ [ψ]B,σ ∧ (B = B′ ∨ B′ = #)

1(b). [ϕ1 B ϕ2]B
′,σ

B,m,σ
◦−→ [ψ]B,σ if [ϕ2]B,σ

B,m,σ
◦−→ [ψ]B,σ ∧ (B = B′ ∨ B′ = #)

2. [ϕ1 B ϕ2]B
′,σ

B,γ,σ
◦−→ [ϕ1 B ϕ2]B,σ if B′ 6= B ∧B′ 6= #

3(a). [〈a〉ϕ]B,σ
B,〈a〉,σ
◦−→ ϕB,σ

3(b). [[a]ϕ]B,σ
B,[a],σ
◦−→ ϕB,σ

4. [p]B,σ
B,p,σ
◦−→ sink if p is proposition

5. [Y]B,σ
B,γ,σ
◦−→ϕB,σ1 if Y =σ1

ϕ

Fig. 4. Transition relation for F-graph

structure (inherited attribute) and (iii) a fixed point operator (σ ∈ Σ) keeping
track of fixed point nature of the current state’s ancestor. Note that the top
variable X (outermost formula variable), thus, has no inherited attributes. We
use a special symbol # as its B label and synthesize the fixed point attribute
from the definition of X. Rules 1 to 5 in Figure 4 complete the definition
of transition relation for all other cases. Rules 1(a) and 1(b) are defined by
transitive closure relation and capture action label m ∈ M present in identical
boolean structures and under same fixed point operators. Note that the special
symbol # can match with both ∧ and ∨ boolean operators. Rule 2 presents
the nesting of boolean structures. In this case, we use another special marker
γ to identify toggling between boolean operators. γ is also used mark the first
transition from a formula variable (Rule 5). Figure 5 shows a set of mu-calculus
formula equations with top variable X and the corresponding F-graph.

F-graphs are labeled transition systems (LTSs) representing the syntactic
structure of the corresponding formula equations. Let ϕ and ψ be mu-calculus
formulas represented by equation sets with top formula variable Xϕ and Xψ re-
spectively; the corresponding F-graphs are Fϕ and Fψ with start states [Xϕ]

#,σ1

and [Xψ]#,σ2. We can establish that if the start states of Fϕ simulates that of
Fψ and vice versa, then the corresponding formulas ϕ and ψ are equivalent.

Definition 2 (Simulation) Given a labeled transition system L, simulation
is the largest relation R such that for all states s1 and s2 in L,

s1Rs2 ⇒ ∀a, t2. s2
a

−→t2 ⇒ ∃t1. s1
a

−→t1 ∧ t1Rt2.

Given LTSs L1 and L2 with start states s1 and s2, L1 is said to simulate L2,
denoted by L1 .L2, if s1Rs2. If L1 .L2 and L2 .L1, we will denote the relation
as L1 /.L2

1 .

1 L1 /.L2 does not imply that L1 and L2 are bisimilar as bisimulation imposes a
stronger requirement of two-way simulation on every bisimilar states [38].

12

Theorem 2 (Safe Equivalence) Given the formula graphs Fϕ and Fψ for
sets of mu-calculus equations representing formulas ϕ and ψ respectively, the
following identity holds for all process expressions P

Fϕ /.Fψ ⇒ P |= ϕ ⇔ P |= ψ.

Proof: The proof proceeds by induction on the size of the formulas. See Ap-
pendix A for details. 2

Discussion. In [3], a similar approach is proposed to detect the equivalence
between mu-calculus formulas. Informally, in the setting of [3], two formulas
(with similar boolean structure and fixed point nature) are said to be equiv-
alent if for every modal action present in one formula there is an identical
modal action present in the other and vice versa. Furthermore, the formula to
be satisfied after matching modal actions must be also equivalent. For exam-
ple the following formulas can be identified to be equivalent using techniques
described in [3] and the technique proposed in this section.

X =ν [a]X ∧ Z Y =ν [a]Y ∧ [a]X ∧ Z

The highlight of our technique is to extract syntactic information of formu-
las by analyzing the corresponding graphical representations (unlike textual
representation). This enhances the ability to effectively detect dependencies
between formula variables. For example consider the formulas in Figure 5. Ap-
plying our technique, we can successfully identify the equivalence between X

and Y and between X and Z. Note that, we consider
B,〈α〉,σ
◦−→ can be matched

by
B,γ,σ
◦−→ ∗

B,〈α〉,σ
◦−→

B,γ,σ
◦−→∗; the reason being γ labelling may be caused due to a

new fixed point variable (Rule 5 in Figure 4). On the other hand, [3] fails to
detect any such equivalence because of the absence of modal actions 〈b〉 and
〈a〉 in the textual definitions of Y and Z respectively.

As remarked in [3], the transformation generates redundant formulas. For ex-
ample, in Figure 3, the formulas defined by the fixed point variablesXC,⊥,{} and
Xa.C,⊥,{} are equivalent. The redundant formulas grow exponentially with the
number of applications of the transformation, and hence redundancy removal
is necessary to make our transformation-based technique usable in practice.

6 Accelerating Fixed Point Iterations

Widening [17] is a well-known technique for accelerating and guaranteeing
termination over domains with infinite ascending chains. We first present an

13

X =ν (〈a〉Y ∧ 〈b〉Z)

Y =ν (〈a〉Y ∧ Z)

Z =ν (〈b〉Z ∧ Y)

#,γ,ν ν/\,ν/\,

#,ν

ν/\,

ν/\, ν/\,

/\, , ν

Z /\ Y

Y

<a>Y /\ Z

<a>Y /\ Z

X

[]

[]

Z[]/\, <a>, ν

γ,/\, ν /\, , ν

/\, ν

/\, νγ,
/\, <a>, ν /\,γ,ν

γ,

[] []

[]

(a) (b)

Fig. 5. (a) Mu-calculus formula equations and (b) the corresponding F-graph

acceleration operation, inspired by the widening operators defined over type
graphs in the area of type analysis [26].

Consider the problem of computing the limit of the sequence ψ0, ψ1, . . . such
that ψi+1 = f(ψi) and ψi+1 ≥ ψi. The acceleration operation, 5, is a mono-
tonic function that views mu-calculus formulas as graphs. It determines a new
formula ψ′ = 5(ψi, ψi+1) based on the differences between ψi and ψi+1 such
that ψ′ ≥ ψi+1. Recall that equivalence of mu-calculus formulas are checked
using similarities between their corresponding graphical representations (Sec-
tion 5); these graphs are used in the definition of 5.

Acceleration based on Formula Graphs. The widening operator over
type graphs [37, 26] identifies topological differences between two graphs and
detects the state (in the graph to be widened) which leads to such a disparity
between the two graphs. This node is termed as witness to topological clash. In
the next step, an ancestor of the witness is selected with some specific property.
Finally all the transitions from the witness is directed to the ancestor resulting
in a loop. This removes the sub-graph of the witness and shortens the graph.

Following the same line, we develop an acceleration operator over mu-calculus
formulas expressing safety and reachability properties as follows. We first for-
malize the notion of a topological clash between the formula graphs (Fϕ1 and
Fϕ2) of two formulas ϕ1 and ϕ2.

Definition 3 (Topological Clash) Formula ϕ2 clashes with ϕ1 (denoted by
ϕ2 	 ϕ1) if there exists a state N2 in Fϕ2 reachable by sequence of transitions
(seq) from start state of Fϕ2 such that for all states N1 in Fϕ1 reachable from
the start state of Fϕ1 by the same sequence seq, N2 has an outgoing transition
that cannot be matched by any outgoing transition from N1s. State N2 is said
to be a witness to the clash.

Intuitively, the above relation identifies the situation when ϕ2 has an new sub-
formula that is not present in ϕ1. This type of divergence in the formula arises
when a formula keeps count of modal actions needed to reach a particular
state. We discard such counts as follows.

14

%N1 & N2 are start states of F1 & F2

procedure widen(N1, N2)
1: clash-set := null;
2: visited := null;
3: topoclash(N1 ,N2);
4: visited := null

5: foreach (Nc, Mc) ∈ clash-set do

6: merge(Nc,Mc);
7: endforeach

8: return(N2);

procedure topoclash(N1 , N2)
1: if (N1,N2) ∈ visited then

2: return;

3: if ∃N2
b,m,σ
◦−→M2∧ 6 ∃N1

b,m,σ
◦−→M1 then

4: clash-set := clash-set ∪ {(N2 , M2)}
5: return;

6: foreach N2
b,m,σ
◦−→M2 do

7: foreach N1
b,m,σ
◦−→M1 do

8: visited:=visited ∪ (N1,N2);
9: removeall (N2,) from clash-set;

10: topoclash(M1 ,M2);
11: endforeach

12: endforeach

Fig. 6. Widening algorithm

Consider the case, where the sequence of ϕi generated is contracting (Equa-
tion 1 in Section 4); Let N2, an ∧-node, be a witness to the topological clash
ϕ2 	ϕ1. From Definition 3, we state that N2 has at least one outgoing transi-
tion to N ′

2 which cannot be matched by any transition from N1s. We refer to
such a transition as clash-transition. The witness is detected because of the
introduction of new sub-formulas of the form 〈a〉ψ (or [a]ψ) in ϕ2. Acceleration
is performed by merging the nodes N2 and N ′

2, i.e. by merging the witness
node with all the nodes reachable by clash-transitions. The F-graph obtained
after merging represents a new formula ϕa. Such merging operation leads to
shortening of the F-graph and in terms of abstraction of formula, a restricted
ϕa (⇒ ϕ2) is generated (recall that sequence considered is contracting and N2

is a ∧-node). If the sequence of ϕi is relaxing, then the witness N2 selected
for discarding will be a ∨ node. Thus we ensure that the acceleration operator
applied to ϕi generates its relaxed approximation. Approximation results in
incompleteness of our technique. Recall from Theorem 1, Q |= ϕ′ ⇔ Q|P |= ϕ

where ϕ′ = Π
{}
⊥ (P)(ϕ). If ϕa is restricted or relaxed approximation of ϕ′ then

either Q |= ϕa ⇒ Q|P |= ϕ or Q|P |= ϕ⇒ Q |= ϕa respectively holds true. In
other words, if ϕa results from restriction (relaxation) and Q 6|= ϕa (Q |= ϕa)
then it cannot be inferred that P |Q 6|= ϕ (P |Q |= ϕ).

Note however that the range of the acceleration operator is not a widening
operator. The nodes selected for discarding are restricted by the definition of
generated formulas (contraction or relaxation) and hence not all disparities
between the formula graphs are even considered for pruning. For instance,
sequence may be contracting but a formula can grow under an ‘∨’ node. This
factor for divergence disappears when we restrict the mu-calculus formulas
under consideration to those whose F-graphs have all ∧-nodes or all ∨-nodes.
Simple reachability and safety properties are of this form. This restriction on
mu-calculus formulas makes the acceleration operation a widening operation.

Figure 6 presents the pseudo-code of the widening algorithm. Procedure widen
is invoked with the start states N1 and N2 of the graphs F1 and F2; objective
is to accelerate F2 using its clashes/differences with F1. In Line 3, procedure

15

ff
1

<a> [−]

X1

[−]

Y

ff

2

X2
Z2

Y1

X1

X

<a>

<a>

<a>

<a>
<a>[−]

[−]

[−][−]
[−]

Y

[−]

2

X2

Y1

X1

X

<a>

ff

<a>

<a>
<a>

<a>[−]

[−]

[−]

Y

ϕ′
i
≡ X1 ϕ′

i+1 ≡ X = X1 ∨X2 5(ϕ′
i+1, ϕ

′
i
) ≡ X = X1 ∨X2

where X1 is same as in Figure 7(a) and

X1 =µ 〈a〉Y1 ∨ [−]ff

Y1 =µ 〈b〉X1 ∨ [−]ff

X2 =µ 〈a〉Y2 ∨ [−]ff

Y2 =µ 〈b〉X2 ∨ 〈a〉Z2 ∨ [−]ff

Z2 =µ 〈b〉Y2 ∨ [−]ff

X2 =µ 〈a〉Y2 ∨ [−]ff

Y2 =µ 〈b〉X2 ∨ 〈a, b〉Y2 ∨ [−]ff

(a) (b) (c)

Fig. 7. Simplified F-graph in (a) ith and (b) i+1th iteration, (c) accelerated F-graph
with the corresponding formulas

topoclash is invoked which generates a set of witness states Nc paired with
the corresponding states Mc such that there exists a clash-transition between
them. Members of each such pair are then merged to realize required ac-
celeration (Lines 5 to 7). Algorithmic complexity of this naive algorithm is
exponential with respect to the number of nodes in the graphs, as it considers
all possible transition sequences (paths) from the start states of each graph.
For practical purposes, we restrict the search in procedure topoclash to de-
tect witness nodes within certain pre-specified depth from the start states. A
better algorithm in terms of complexity is still to be developed.

Let us consider a simple formula acceleration example and illustrate the ac-
celeration mechanism. Consider the formula ϕ′

i in Figure 7(a). It defines a
behavior where a deadlocked state (with no enabled transition) is reached af-
ter a and/or b actions. The box modality [-] corresponds to modality on any
action denoted by “-”. The formula graph is shown above the corresponding
formula equations. We have simplified the graph for the sake of clarity and
brevity by only labeling nodes with the fixed point variables. Furthermore,
transition labels µ (fixed point sign) and ∨ (boolean connective) are omit-
ted. Let ϕ′

i+1 (Figure 7(b)) be the next formula that is generated as a result

of transformation using the process P
def
= b.a.P (see definition of X2 in Fig-

ure 7(b)) followed by disjunction with ϕ′
i. The witness to the topological clash

ϕ′
i+1 	 ϕ′

i is the node shown with a • and the corresponding clash transition
labeled by 〈a〉 leads to the node Z2. Acceleration is performed by merging
the witness node with Z2 and the resultant accelerated formula obtained after
simplification is shown in Figure 7(c). Note that acceleration led to merging of
two ∨-structures which in turn led to relaxation of the formula. Further note

16

that acceleration discards all ordering of modal actions caused by the clash
transition 〈a〉.

7 Case Studies

In this section, we discuss the applicability of our technique for automatic
verification of mu-calculus properties for single-parameter systems.

Milner Scheduler. Milner’s Scheduler [38] consists of a number of processes
(called cells) connected in the form of a cycle where the i-th cell waits on
synchronization with (i−1)-th cell and then communicates with the (i+1)-th
cell. Each cell is also capable of performing autonomous actions. Figure 8(a)
shows N cells in a ring topology (a simplified version of Milner’s Scheduler
where all the autonomous actions are discarded). Initially all cells except the
first are waiting to synchronize on a b action from the previous cell in ring.

We consider the verification of the following mu-calculus property that encodes
the existence of a deadlock:

ϕd : X =µ [−]ff ∨ 〈−〉X (3)

Consider a system consisting of N cell processes, denoted by sys(N) (Fig-
ure 8(a)), and the problem of verifying ∃Nsys(N) |= ϕd, i.e. checking whether
deadlock property is satisfied by a member of parameterized family sys(N).
The sequence of formulas as defined in Equation 2 (relaxing sequence in Sec-
tion 4) does not converge. This is because ϕ′

i, the i-th formula in the sequence,
captures all possible interleavings between actions of the first cell and the i-th
cell. In fact, the interleavings that cause the divergence of the formulas in the
sequence are result of infeasible interleaving of actions of the first and the i-th
cell. More precisely, interleavings where a of the first cell appears before a of
the i-th cell are represented in the generated formula. Clearly, such sequences
are infeasible as the first cell can only make a move on a when the last cell is
ready to make the synchronized move on a, which, in turn, is possible after
all the actions of the intermediate cells (e.g. i-th cell). Equivalence reduction
alone cannot discard such interleavings. However, when the widening operator
(Section 6) is used, the resulting sequence converges after three cells (other
than the first one) have been used to transform the formula; the acceleration
operator ignores the exact nature of interleaving that causes of divergence.
The fixed point after acceleration leaves for the environment the obligation
to satisfy ϕf ≡ X =µ 〈−〉ϕ. As 0 has no outgoing transition, 0 6|= ϕf . This
implies ∀N sys(N) 6|= ϕd.

17

Definition of individual cells

cell 0
def
= a.cell 1

cell 1
def
= b.cell 0

System definition

sys(N)
def
= (. . . (cell 1

| cell 0[b/a])\{b}

| . . .

| cell 0[b/a, a/b])\{a, b}

N
ce

ll
s

invalid

exclusive shared

valid

read

ow
ne

rs
hi

p

ow
ne

rs
hi

p

read

write

read

copy

invalidate

invalidate

copy

(a) (b)

Fig. 8. (a) Simple ring structure. (b) Behavior of single processor in cache coherence
protocol

Note here that similar behavior is exhibited by token-ring protocol and queues
with two or more buffers. In all these cases, while the transformation sequence
does not converge directly, the widening technique forces termination.

Cache Coherence Protocol. Cache coherence protocols [6] are used in
multi-processor systems with shared memory, where each processor possesses
its own private cache and maintains its own copy of same memory block in
its private cache. The main concern is to ensure that at any point of time,
multiple cached copies of same memory block are consistent in their data con-
tent. Cache coherence protocol defines four distinct states for each processor
– invalid, valid, shared and exclusive. Invalid processor state implies that the
processor’s cached copy of memory block is outdated. Valid and shared states
imply that processor has current copy of memory block in its cache, while
exclusive state denotes that the processor is exclusive owner of the memory
block. Each processor can either perform autonomous read (in all states ex-
cept invalid) or write (only in exclusive state) actions, or can synchronize with
another processor using invalidate, copy or ownership actions (Figure 8(b)).

To prove consistency of data, we need to ensure that each read action to a
memory address reads the last value written to that location. Previous efforts
[42, 18] to verify data consistency involved abstracting the parameterized sys-
tem into a single infinite state system by counting the number of processors in
various states. Model checking was performed by reachability analysis of the
system; reachability of any global state, where the number of processors in
each of valid, shared and exclusive states is greater than or equal to 2, implies
violation of data consistency. In contrast we model the processors such that
two of them in exclusive state can synchronize and lead to an “error” state –
error state can perform autonomous action err. A least fixed point formula is
used to detect an err action as follows:

ϕerr : X =µ 〈err〉tt ∨ 〈−〉X (4)

We model the components of parameterized system and check ∃N sys(N) |=

18

Thread Definition

T1
def
= req.T2

T2
def
= ack.T3 + nack.T1

T3
def
= in.out.rel.T1

Object Definition

NB
def
= req.ack.B

B
def
= req.nack.B + rel.NB

System Definition for Spin Lock

spin(N)
def
= (NB | T1 | . . . | T1)\{req, rel,

ack,nack}

Thread Definition

T1
def
= getfast.T2 + getslow.T3

T2
def
= in.out.T4

T4
def
= putfast.T1 + putslow.T5

T5
def
= handoff.T1

T3
def
= handoff.T2

Object Definition

NB
def
= getfast.B

B
def
= getslow.B1 + putfast.NB

B1
def
= putslow.B

System Definition for Meta-lock

meta(N)
def
= (NB | (T1 | . . . | T1)\{handoff, getfast

getslow, putfast, putslow}

(a) (b)

Fig. 9. Specification of (a) Spin Lock and (b) Meta-lock

ϕerr where sys(N) consists N processors. The limit of a relaxing sequence of
formulas, generated by iterative transformation and disjunction, ϕf is obtained
after three iterations, since at any point of time at most two processors can
share the ownership of cached data. Finally 0 6|= ϕf implying data consistency
is maintained for system consisting of any number of processors.

Shared-Memory Mutual Exclusion Protocols We consider two pro-
tocols that aim to ensure mutually exclusive access to shared memory in a
multi-threaded system: (a) spin lock, where each thread can communicate
only with the object it is trying to access and (b) a simplified version of Java
meta-lock, where each thread either communicates with the object of interest
or with another thread. We use a least fixed point formula ϕm to represent
the failure of mutual exclusion property:

ϕm ≡ Y =µ 〈in〉Z ∨ 〈−〉Y

Z =µ 〈in〉tt ∨ 〈−out〉Z
(5)

where the modal actions in and out denote respectively the cases when a
thread is accessing and has released the object. The modal operator 〈−out〉
represents any action other than out. Two in actions with no intermediate
out indicate simultaneous access of the object by two threads – violation of
mutual exclusion property.

Spin Lock. Spin locks offer a simple mechanism to realize mutually exclu-
sive access of objects by threads (Figure 9(a)). The object has two states:
not-busy (when it is not accessed by any thread, process NB) and busy (when

19

it accessed by some thread, process B). A not-busy object, upon receiving a
req from a thread, replies back with an ack message and behaves like a busy
object. A busy object, on the other hand, denies all requests from threads us-
ing nack message or goes to a not-busy state on receiving a rel (release) signal
from the lock releasing thread. Each thread process can lock an object if it
receives ack in response to a req signal. Once a thread has locked an object, it
can perform autonomous actions in and out indicating it has acquired and is
going to release object lock respectively. Using the system definition spin(N)

consisting of one object and N thread processes, we verified the deadlock (ϕd in
Equation 3) and non mutually exclusive access (ϕm in Equation 5) properties;
the objective is to check whether ∃N spin(N) |= ϕd and ∃N spin(N) |= ϕm.

In both cases, we transform the formulas using the common member of the
system, i.e. the object process. The residue is subsequently iteratively trans-
formed using the thread processes. At each iteration the residue is or-ed with
the transformation result of the previous iteration leading to the generation
of a relaxing sequence (Equation 2 in Section 4). The result is a diverging
sequence of mu-calculus formulas. Widening is employed after two threads are
used as transformers and iterative procedure is forced to terminate. The limit
obtained by transformation and widening, ϕl, is used to check 0 |= ϕl. As 0

does not model the limits obtained in both the cases, (deadlock and no mutual
exclusion), we infer ∀N spin(N) does not model ϕd and ϕm.

Simplified Java Meta-Lock. The Java Meta-Lock is a distributed algo-
rithm designed by SUN Microsystems to ensure fast mutually exclusive access
of objects by Java threads. Meta-locking can be viewed as a two-tiered scheme
for exclusive access to object monitor. To ensure fairness and fast access each
object maintains a synchronization data, which can be viewed as a FIFO queue
of threads waiting to enter the object’s monitor. Meta-lock is designed to pro-
vide exclusive access of per-object synchronization data by threads. A thread
process can communicate with an object process or another thread processes
via dedicated channels identified by the participating processes’ identification
numbers. Similar to the spin lock, the pattern of synchronization involves re-
quests from threads and reply from objects. However in this case, a thread
can directly communicate with another thread and exchange object lock. For
details of the protocol refer to [1].

We consider here a simplified version 2 of meta-lock (Figure 9(b)). A thread

2 The actual specification of meta-lock ([1, 9]) uses a queue to model list of waiting
threads. Specifically, the process B1 in Figure 9(b) can receive getslow requests
from threads and record the number of such requests, subsequently requiring an
infinite domain variable to keep track of the number of queued requests. In the
current setting we avoid maintaining such queue.

20

can either obtain an object lock by a fast path (getfast) or via a slow path
(getslow). In the former case, the object is not accessed by any other thread
and current thread becomes the exclusive owner of the object lock. In the
latter case, the thread waits to synchronize with the lock releasing thread via
handoff. Release of object lock also follows similar pattern. A thread can
release the lock following fast path when no other thread is waiting to access
the object; otherwise, the thread follows slow path, where it relays the object
lock to the waiting thread by synchronizing on handoff.

As in spin lock, we transform the given formulas (ϕd Equation 3 and ϕm
Equation 5) using the object process followed by iterative transformations
using the thread processes. The result of each iterative step is or-ed with the
result in the previous iteration leading to the generation of relaxing sequence
(similar to spin lock case). The sequences of mu-calculus formulas generated
by iterative transformation of both ϕd and ϕm diverge and widening is used to
force termination. Finally, 0 does not satisfy the accelerated formula obtained
as limit of the sequences implying that the formulas ϕd and ϕm are not satisfied
by any member of infinite family of systems defined using meta(N).

Summary. Table 1 summarizes the results of verifying the examples de-
scribed in this section. Observe from the table that the verification technique
has been successfully applied to parameterized systems with different con-
nection topologies and for different properties. Table 2 summarizes the per-
formance of the technique on these examples. Space and time measurements
reported in this table were taken using an implementation of the technique us-
ing XSB Prolog 2.5/Debian Linux 2.4.25 running on a 1.7GHz Xeon processor
with 2GB memory. The third column in the table shows the number of com-
positional analysis iterations (of the common component, e.g. cells, processors
or threads) required to reach the limit of the chain of mu-calculus formulas.
The fourth column presents the maximum size of formula (before and after
reduction) in terms of the number of fixed point equations used to denote the
formula. Note that the technique converges within 3 iterations without the
use of acceleration for the cache coherence protocol, while widening was used
to force convergence for the scheduler, spin lock and meta-lock examples. The
technique verifies most of the example systems within 10 seconds; the only ex-
ception being the mutual exclusion property of spin lock. Recall that in spin
lock specification (Figure 9(a)), a thread is allowed to loop forever by sending
and receiving req and nack respectively to and from the object. This phe-
nomenon of starvation increases the number of possible interleaved behavior
of threads in a spin lock. As such large formulas are generated at each itera-
tion of compositional analysis which increases the reduction and equivalence
checking time. Note that such starvation is not present in our specification of
simplified meta-lock protocol.

21

System Topology Property Result

Milner’s Scheduler Ring Deadlock false

Cache Coherence Mesh Data consistency true

Spin Lock Star
Mutual Exclusion true

Deadlock false

Simplified Meta Lock Star-wired Ring
Mutual Exclusion true

Deadlock false

Table 1
Summary of results from the case studies.

System Property Iterations Max. Formula Size Time (sec)

Raw Reduced

Milner’s Scheduler Deadlock 3 12 6 0.30

Cache Coherence Data consistency 3 34 9 0.71

Spin Lock
Mutual Exclusion 4 329 56 384.24

Deadlock 4 48 14 7.15

Simplified
Meta Lock

Mutual Exclusion 4 56 10 5.52

Deadlock 4 18 7 1.25

Table 2
Performance of compositional verification.

8 Conclusion

We described an automatic technique for the verification of infinite families of
concurrent systems. At the core of the technique is the use of partial model
checking for generating property transformers over modal mu-calculus formu-
las from system specifications in CCS. In our technique, the problem of ver-
ifying an infinite family is posed as a problem of finding the limit of a chain
of modal mu-calculus formulas (similar to program analysis techniques). We
also presented a widening operator to guarantee termination of the analy-
sis for a subclass of modal mu-calculus formulas. We have implemented this
technique in the XSB tabled logic programming system [45]. The utility of
the technique has been demonstrated by verifying a number of example pa-
rameterized systems with diverse characteristics in a uniform manner. The
widening technique, however, can be too approximate to provide useful re-
sults in certain cases. Development of widening operators which perform more
fine-grained approximations is a topic of future research.

Acknowledgments. We would like to thank K. Narayan Kumar and Lenore
Zuck for their detailed and insightful suggestions. We also thank the anony-
mous reviewers for their valuable comments.

This work is supported in part by NSF grants EIA-9705998, CCR-9876242,
EIA-9805735, N000140110967, IIS-0072927, and CCF-0205376.

22

References

[1] O. Agesen, D. Detlefs, A. Garthwaite, R. Knippel, Y.S. Ramakrishna, and
D. White. An efficient meta-lock for ubiquitous synchronization. In Proceed-
ings of ACM SIGPLAN Conference on Object Oriented Programming, Systems,
Languages and Applications, 1999.

[2] R. Alur and T. Henzinger. Reactive modules. In Proceedings of IEEE Sympo-
sium on Logic in Computer Science, 1996.

[3] H.R. Andersen. Partial model checking. In Proceedings of IEEE Symposium
on Logic in Computer Science, 1995.

[4] H.R. Andersen, C. Stirling, and G. Winskel. A compositional proof system
for the modal mu-calculus. In Proceedings of IEEE Symposium on Logic in
Computer Science, 1994.

[5] K.R. Apt and D. Kozen. Limits for automatic verification of finite-state con-
current systems. Information Processing Letters, 22:307–309, 1986.

[6] J. Archibald and J-L Baer. Cache coherence protocols: evaluation using a
multiprocessor simulation model. ACM Transactions on Computer Systems,
4(4):273–298, 1986.

[7] T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verification
with automatically computed inductive assertions. In Proceedings of Computer
Aided Verification, 2001.

[8] T. Ball, S. Chaki, and S. K. Rajamani. Parameterized verification of multi-
threaded software libraries. In Proceedings of Tools and Algorithms for the
Construction and Analysis of Systems, 2001.

[9] S. Basu, S.A. Smolka, and O.R. Ward. Model checking the java meta-locking
algorithm. In Proceedings of Engineering of Computer-Based Systems, 2000.

[10] S. Berezin and D. Gurov. A compositional proof system for the modal mu-
calculus and CCS. Technical Report CMU-CS-97-105, CMU, 1997.

[11] J. Bradfield and C. Stirling. Modal logics and mu-calculi: an introduction. In
Handbook of Process Algebra. Elsevier, 2001.

[12] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 1020 states and beyond. In Proceedings of IEEE Symposium
on Logic in Computer Science, 1990.

[13] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transac-
tions on Programming Languages and Systems, 8(2), 1986.

[14] E.M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks.
ACM Transactions on programming languages and systems, 19(5), 1997.

[15] R. Cleaveland and B. Steffen. A linear-time model checking algorithm for the
alternation-free modal mu-calculus. Formal Methods in System Design, 1993.

[16] J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning assump-
tions for compositional verification. In Proceedings of Tools and Algorithms for
the Construction and Analysis of Systems, 2003.

[17] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Proceedings of Principles of Programming Languages, 1977.

[18] G. Delzanno. Automatic verification of parameterized cache coherence proto-

23

cols. In Proceedings of Computer Aided Verification, 2000.
[19] G. Delzanno and A. Podelski. Model checking in CLP. In Proceedings of Tools

and algorithms for Construction and Analysis of Systems, 1999.
[20] E.A. Emerson and C.S. Jutla. The complexity of tree automata and logics of

programs. In Proceedings of Foundations of Computer Science, 1988.
[21] E.A. Emerson and K.S. Namjoshi. Reasoning about rings. In Proceedings of

Principles of Programming Languages, 1995.
[22] E.A. Emerson and K.S. Namjoshi. Automated verification of parameterized

synchronous systems. In Proceedings of Computer Aided Verification, 1996.
[23] E.A. Emerson and K.S. Namjoshi. On model checking for non-deterministic in-

finite state systems. In Proceedings of IEEE Symposium on Logic in Computer
Science, 1998.

[24] J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols.
In Proceedings of IEEE Symposium on Logic in Computer Science, 1999.

[25] O. Grumberg and D.E. Long. Model checking and modular verification. ACM
Transactions on Programming Languages and Systems, 16(3):843–871, 1994.

[26] P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Type analysis of prolog
using type graphs. Journal of Logic Programming, 22(3):179–209, 1994.

[27] T. Henzinger, S. Qadeer, and S.K. Rajamani. You assume, we guarantee. In
Proceedings of Computer Aided Verification, 1998.

[28] T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer. Thread-modular
abstraction refinement. In Proceedings of Computer Aided Verification, 2003.

[29] G.J. Holzmann. The model checker SPIN. Software Engineering, 23(5):279–
295, 1997.

[30] C.N. Ip and D.L. Dill. Better verification through symmetry reduction. Formal
Methods in System Design, 9(1/2):41–75, 1996.

[31] C.N. Ip and D.L. Dill. Verifying systems with replicated components in murphi.
Formal Methods in System Design, 14(3), 1999.

[32] Y. Kesten and A. Pnueli. Control and data abstraction:the cornerstones of
practical formal verification. International Journal on Software Tools for Tech-
nology Transfer, 2(4):328–342, 2000.

[33] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Sci-
ence, 27:333–354, 1983.

[34] D. Lesens, N. Halbwachs, and P. Raymond. Automatic verification of param-
eterized linear networks of processes. In Proceedings of Principles of Program-
ming Languages, 1997.

[35] D.E. Long. Model checking, abstraction and compositional verification. PhD
thesis, CMU, 1993.

[36] K.L. McMillan. Compositional rule for hardware design refinement. In Pro-
ceedings of Computer Aided Verification, 1997.

[37] P. Mildner. Type Domains form Abstract interpretation: A critical study. PhD
thesis, Uppsala University, 1999.

[38] R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

[39] A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invis-
ible invariants. In Proceedings of Tools and Algorithms for Construction and
Analysis of Systems, 2001.

24

[40] A. Pnueli and E. Shahar. Liveness and acceleration in parameterized verifica-
tion. In Proceedings of Computer Aided Verification, 2000.

[41] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems
in Cesar. In Proceedings of the International Symposium in Programming, 1982.

[42] A. Roychoudhury. Program Transformations for Verifying Parameterized Sys-
tems. PhD thesis, SUNY Stony Brook, 2000.

[43] A.P. Sistla and V. Gyuris. Parameterized verification of linear networks using
automata as invariants. Formal Aspects of Computing, 11(4):402–425, 1999.

[44] P. Wolper. Expressing interesting properties in propositional temporal logic.
In Proceedings of Principles of Programming Languages, 1986.

[45] XSB. The XSB logic programming system v2.6, 2003. Available from
http://xsb.sourceforge.net.

A Appendix

Definition 4 (Process Ordering) Process P1 is said to be smaller than P2, de-
noted by P1 ≺ P2, if either of the following conditions hold: (a) P1 is a sub-process
expression of P2, (b) for all relabeling f and restriction L, P1 = P [f] and P2 = P\L

and (c) P2(≡ A)
def
= P1.

We only allow prefix-guarded process definitions, i.e., A
def
= A|P is not a permitted

process definition.

Definition 5 (Formula Ordering) Formula ϕ1 is said to be smaller than formula
ϕ2, denoted by ϕ1 ≺ ϕ2, if ϕ1 is a sub-formula of ϕ2.

Theorem 1 Given a well-named process expression P the following identity holds
for all process expressions Q and for all mu-calculus formula ϕ

Q | P |= ϕ ⇔ Q |= Π
{}
⊥ (P)(ϕ)

Proof: The proof proceeds by induction on the size of the process expression and
formula. Below we itemize the proof for the Rules 1–14 and A, B in Figure 2.

(1) Rules 1 & 2: The theorem is trivially true when ϕ is a propositional constant
(tt or ff).

(2) Rule 3: ϕ = ϕ1 ∨ ϕ2.

Q | P |= ϕ1 ∨ ϕ2 ⇔ Q | P |= ϕ1 ∨Q | P |= ϕ2

⇔ Q |= Π
{}
⊥ (P)(ϕ1) ∨Q |= Π

{}
⊥ (P)(ϕ2)

induction on formula size

⇔ Q |= Π
{}
⊥ (P)(ϕ1 ∨ ϕ2)

25

The proof for conjunctive formula (Rule 4) proceeds in identical fashion.

(3) Rule 6: Process expression P = 0. Considering the fact that process 0 is the
identity of the parallel composition operator in CCS, we infer

Q | 0 |= ϕ ⇔ Q |= ϕ ⇔ Q |= Π
{}
⊥ (0)(ϕ)

(4) Rule 7: Process expression P is a process name A. By induction on the size of

process expression (D ≺ A if A
def
= D),

Q | A |= ϕ ⇔ Q | D |= ϕ ⇔ Q |= Π
{}
⊥ (D)(ϕ)

(5) Rule 8: P = R[f] where f is the relabeling function.

Q | R[f] |= ϕ ⇔ Q[f−1] | R |= ϕ[f−1]

Recall that, we consider well-named process expressions with injective relabil-
ing functions. We define function f−1 as the inverse of f and ϕ[f−1] as the
formula obtained from ϕ by replacing modal actions (a ∈ n(ϕ)) by f−1(a). By
induction on process size (R ≺ R[f]),

Q[f−1] |= Π
{}
⊥ (R)(ϕ[f−1]) ⇔ Q |= Π

{}
f (R)(ϕ)

⇔ Q |= Π
{}
⊥ (R[f])(ϕ)

(6) Rule 9: P = R\L where L is the set of restricted actions.

Q | (R\L) |= ϕ ⇔ Q | R[L′/L] |= ϕ ⇔ Q |= Π
{}
⊥ (R[L′/L])(ϕ)

where L′ ∩ (L ∪ vn(Q) ∪ vn(R) ∪ n(ϕ)) = {}. Proceeding further, we cosider
the relabeling [Lr/L

′] where Lr∩ (vn(R)∪n(ϕ)) = {} (see Rule 9 in Figure 2).
Proceeding further,

Q |= ΠLr

⊥ (R[Lr/L
′] ◦ [L′/L])(ϕ) ⇔ Q |= ΠLr

⊥ (R[Lr/L])(ϕ)

Note that Lr ∩ vn(Q) may not be empty according to the Rule 9. Process Q
is not permitted to synchronize with R[Lr/L] on any actions ∈ Lr.

(7) Rule 10: P = (P1 | P2)\L. We consider the restricted set of actions L to show
the anotations applies to transformation function Π in Rule 10.

Q | (P1 | P2)\L |= ϕ ⇔ Q | (P1 | P2)[L
′/L] |= ϕ

⇔ Q | P1[L
′/L] | P2[L

′/L] |= ϕ,

where L′ ∩ (L∪ vn(Q)∪ vn(P1|P2)∪ n(ϕ)) = {} (see the proof for Rule 9). By
induction on the size of the process expression

Q | P1[L
′/L] | P2[L

′/L] |= ϕ ⇔ Q | P1[L
′/L] |= Π

{}
⊥ (P2[L

′/L])(ϕ)

⇔ Q |= Π
{}
⊥ (P1[L

′/L])(Π
{}
⊥ (P2[L

′/L])(ϕ))

⇔ Q |= Π
Lp

⊥ (P1[Lp/L])(Π
{}
⊥ (P2[Lp/L])(ϕ))

26

where Lp ∩ (vn(P1|P2)∪ n(ϕ)) = {}. Note that the inner transformation func-
tion Π(P2) is not annotated with the restriction set Lp as P1 is a present in its
environment and P2 can synchronize with P1 on actions ∈ Lp.

(8) Rule 11: P = a.R and ϕ = 〈α〉ψ.

Q | a.R |= 〈α〉ψ ⇔ Q′ | a.R |= ψ if Q
b

−→Q′, b ∈ α

∨ Q | R |= ψ if a ∈ α

∨ Q′′ | R |= ψ if τ ∈ α,Q
a

−→Q′′

Next consider each disjunct separately and proceed by induction on the size
of the formula (ψ ≺ 〈α〉ψ),

Q′ | a.R |= ψ ⇔ Q′ |= Π
{}
⊥ (a.R)(ψ)

⇔ Q |= 〈α〉Π
{}
⊥ (a.R)(ψ)

(A.1)

Considering the second disjunct

Q | R |= ψ ⇔ Q |= Π
{}
⊥ (R)(ψ) (A.2)

and the third disjunct

Q′′ |= R |= ψ ⇔ Q |= 〈a〉Π
{}
⊥ (R)(ψ) (A.3)

Finally,

Q |= a.R |= 〈α〉ψ ⇔ Q |= 〈α〉Π
{}
⊥ (a.R)(ψ) Equation A.1

∨ Q |= Π
{}
⊥ (R)(ψ) Equation A.2

∨ Q |= 〈a〉Π
{}
⊥ (R)(ψ) Equation A.3

Similarly, we can prove for box modality formula (Rule 12).

(9) Rule 13: P = P1 + P2 and ϕ = 〈α〉ψ.

Q | (P1 + P2) |= 〈α〉ψ ⇔ Q′ | (P1 + P2) |= ψ where Q
a

−→Q′, a ∈ α

∨ Q | P1 |= 〈α〉ψ

∨ Q | P2 |= 〈α〉ψ

By induction on the size of the formula (first disjunct) and induction on the
size of the process expressions (second and third disjuncts),

Q | (P1 + P2) |= 〈α〉ψ ⇔ Q |= 〈α〉Π
{}
⊥ (P1 + P2)(ψ)

∨ Q |= Π
{}
⊥ (P1)(〈α〉ψ)

∨ Q |= Π
{}
⊥ (P2)(〈α〉ψ)

The theorem is proved in similar fashion for Rule 14.

27

(10) Rules 5 & A: ϕ = X where X =σ ψ. Q | P |= X iff corresponding state rep-
resented by Q | P is present in the interpretation of equation set E with top
variable X. The equation set E is interpreted by the fixed point semantics of
definitions of equations with appropriate initialization of environments follow-
ing the sign of the equations. The result of transforming X using the transfor-

mation function Π for process P is XP,⊥,{} where XP,⊥,{} =σ Π
{}
⊥ (P)(ψ) (an

equation with same sign as X, see Rule A in Figure 2). From the transforma-

tion function for basic formulas (leading to Q | P |= ψ ⇔ Q |= Π
{}
⊥ (P)(ψ)),

we conclude Q | P |= X ⇔ Q |= Π
{}
⊥ (P)(X). 2

Theorem 2 (Safe Equivalence) Given the formula graphs Fϕ and Fψ for sets
of mu-calculus equations representing formulas ϕ and ψ respectively, the following
identity holds for all process expressions P

Fϕ /.Fψ ⇒ P |= ϕ ⇔ P |= ψ.

Proof: The proof proceeds by induction on the size of the formulas. We consider
below the transition rules presented in Figure 4.

(1) Rule 4: This rule corresponds to the case where ϕ and ψ are atomic propositions
p and q respectively.

Fp /.Fq ⇒ p = q ⇒ ∀P.(P |= p⇔ P |= q).

(2) Rule 3a: ϕ = 〈a〉ϕ′ and ψ = 〈b〉ψ′. For diamond modality formulas the proof
is as follows:

F〈a〉ϕ′ /.F〈b〉ψ′ ⇒ a = b ∧ Fϕ′ /.Fψ′

⇒ a = b ∧ ∀P.(P |= ϕ ⇔ P |= ψ)

Induction on formula size

⇒ ∀P.(P |= 〈a〉ϕ′ ⇔ P |= 〈b〉ψ′)

The proof for the box modality formula (Rule 3b) is realized in similar fashion.

(3) Rules 1a, b & 2: Let ϕ =
∨

ϕi and ψ =
∨

ψj .

F∨

ϕi
/.F∨

ψj
⇒ ∀j∃i.(Fϕi

. Fψj
) ∧ ∀i∃j.(Fψj

. Fϕi
)

⇒ ∀P∀j∃i.(P |= ϕi ⇒ P |= ψj) ∧ ∀i∃j.(P |= ψj ⇒ P |= ϕi)

⇒ ∀P.(P |=
∨

ϕi ⇔ P |=
∨

ψj).

Proof for conjunctive formulas is same as above.

28

(4) Special Rule for top variable & Rule 5: ϕ = X & ψ = Y where X =σx ϕx &
Y =σy ψy respectively.

FX /.FY ⇒ σx = σy ∧ Fϕx /.Fψy

⇒ σx = σy ∧ ∀P.(P |= ϕx ⇔ P |= ψy)

⇒ ∀P.(P |= X ⇔ P |= Y).

2

29

