Normalization via Rewrite Closures

L. Bachmair, C. Ramakrishnan, I. V. Ramakrishnan and A. Tiwari

Department of Computer Science, SUNY at Stony Brook,
Stony Brook, NY 11794, U.S.A

{leo,cram,ram,astiwari}@cs.sunysb. edu

Abstract. We present an abstract completion-based method for finding
normal forms of terms with respect to given rewrite systems. The method
uses the concept of a rewrite closure, which is a generalization of the idea
of a congruence closure. Our results generalize previous results on “non-
oblivious” normalization. The presentation simplifies the description and
allows a better understanding of known algorithms, apart from extending
the results to performing normalization by convergent rewrite systems.

1 Introduction

A term rewriting system R is a finite set of rewrite rules, each of the form { — 7,
where [and r are terms built from function symbols in a set X and (universally
quantified) variables in a set V. A rule [— r can be applied to a term s if
a subterm u of s matches | with some substitutions ¢ for variables appearing
in ! (i.e., u = lo). The rule is applied by replacing the subterm u in s with the
corresponding right-hand side ro of the rule, within which the same substitution
o for variables has been made. This process is called reduction. A term s can be
reduced repeatedly until an irreducible term called its normal form is obtained.

Normalization via straight-line reduction are oblivious, i.e., the reductions
done are never remembered. For instance if f(a) is reduced to a in n steps then
f(f(a)) gets reduced to a in 2n steps. Observe that since we did not remember
the earlier reduction we had to repeat it all over again. In contrast had we
remembered it then we could have normalized f(f(a)) in n + 1 steps.

Chew [2] had proposed non-oblivious normalization algorithms. In such al-
gorithms reductions are never repeated. Chew’s algorithm though was restricted
to the class of orthogonal rewrite systems. His algorithm was based on the con-
gruence closure algorithm developed by Nelson and Oppen [6]. But congruence
closure algorithms are used to verify equality of two ground terms with respect
to a set of ground equations. So Chew had to extend it to deal with equalities
containing variables, represented as a rewrite system. Verma [7] extended Chew’s
work to deal with priority systems.

Both of the above works can be viewed as an operational approach to doing
normalization without repeating reductions. In contrast we present an abstract
view of non-oblivious normalization. In particular we describe a completion-
based method to do normalization without repeating reductions. Our abstract
presentation has several advantages. Firstly it simplifies the description of such

normalization algorithms. Secondly the abstract view facilitates a good under-
standing of the conditions under which one can get completeness of such nor-
malization algorithms. Specifically we show how one can derive Chew’s and
Verma’s algorithms as special cases in our abstract description. Finally using
our framework we also obtain non-oblivious normalization algorithms for conver-
gent rewrite systems. Such algorithms were non-existent for this class of rewrite
systems. We skip all proofs here. For details, see [1].

1.1 Preliminaries

Let X denote a signature consisting of constants and function symbols. We use
T(X) to denote terms over X. The symbols s,¢,u, - denote terms; f, g,
denote function symbols; and x,y, z, - - - denote variables. A subterm of a term
t is called proper if it is distinct from ¢. We write s[t] to indicate that a term s
contains ¢ as a subterm and (ambiguously) denote by s[u] the result of replacing
a particular occurrence of ¢ by u.

A binary relation — on terms is monotonic (with respect to the term struc-
ture) if s — t implies u[s] — uft], for all terms s,¢ and u. Tt is stable (under
substitution) if s — ¢ implies so — to, for any substitution o. The symbols —*
and ¢ denote the transitive-reflexive, and symmetric closure of —, respectively.

An equation is a pair (s,t) of terms, written as s & ¢. Directed equations are
also called rewrite rules and are written as s — ¢t. A rewrite system is any set R
of rewrite rules. The rewrite relation — g is the smallest stable and monotonic
relation that contains R. A term ¢ is in normal form with respect to R (in short,
in R-normal form) if there is no term u, such that ¢ - u. We say s —>!R tiff ¢
is a R-normal form of s. Convergent rewriting systems are defined in the usual
way.

Let t[lo] =g t[ro] be a (one step) reduction using the rewrite rule { = r € R.
This reduction will be called a non-root reduction, denoted by =% if lo is a
proper subterm of ¢; otherwise this is called a root reduction, denoted by —77%.

Narrowing is the process of looking for an instance of a term that makes a
rule applicable (not solely within the substitution part) and then applying that
rule. That is, suppose a term #[s] contains a (not necessarily proper) subterm
s that can be unified with a left-hand side [of a rule [— r» € R by the most
general substitution o, i.e., so = lo. Then that substitution is first applied to ¢
- yielding t[so] - and then the rule is applied - yielding t[ro]. If ¢[ro] is not in
R-normal form, it is reduced further, to say ¢’. The term ¢ is then said to narrow
to ¢/, denoted by tgt’.

The approach proposed for doing non-oblivious normalization involves the
use of the abstract congruence closure, which we describe in section 2. There-
after, in section 3, we discuss the normalization procedure. This basic procedure
is optimized by using a modified congruence closure, called a rewrite closure,
in section 4. However, this optimization is not general enough and it restricts
the applicability of the normalization procedure to finding normal forms only
with respect to certain systems. As special cases, we present this for orthogonal
systems and convergent systems in section 5.

2 Abstract Congruence Closure

We briefly introduce the concept of an “abstract congruence closure” which is
central to all work presented in this paper. Detailed description can be found
in [1]. The term “congruence closure” has typically been used to denote certain
data structures representing congruence relations induced by set of ground equa-
tions. We shall define congruence closures in terms of ground convergent rewrite
systems over an extended signature.

A key characteristic of congruence closure algorithms, as pointed out by
Kapur [4], is that names are introduced for all given terms and subterms. We
may represent such names by constants and specify the correspondence between
the new constants and the original terms by rewrite rules.

Definition 1. Let X be a signature and K be a set of constants disjoint to X.
By a D-rule (with respect to X and K) we mean a rewrite rule of the form

fler, . e8) = co

where f € X and cg,c1,...,c, are constants in K. An equation ¢ — d, where ¢
and d are constants in K, is called a C-rule (with respect to K). An undirected
equation ¢ & d 1s called a C-equation.

For example, let X consist of five function symbols, a, b, ¢, f and g, and let & be
a set of three equations a & b, gfa ~ fa and gfb ~ c. To represent each different
subterm in & by a new constant, we need a set of D-rules, Dy = {a — ¢co, b —
c1, ¢ = ¢q, feg — ¢z, ges — ca, fe1 — ¢, ges — cg}. Using these D-rules to
simplify the original equations in &y, we obtain a set Cy of three C-equations,
g A €1, ¢4 & c3 and cg & c3. The C-equations which represent equivalences
between terms, can be oriented to give C-rules. These C-rules may also allow
one to simplify the presentation of given equations via D-rules and C-rules.

Definition 2. Let R be a set of D-rules and C-rules (with respect to X and
K). We say that a constant ¢ in K represents a term t in T (X U K) (via the
rewrite system R) if t =5 c. A termt is also said to be represented by R if it is
represented by some constant via R.

Definition 3. Let X be a signature and K be a set of constants disjoint to X.
In addition, let £ be a set of ground equations over T(XUK). A ground rewrite
system R = DU C is said to be an (abstract) congruence closure (with respect
to X and K) for £ if

(i) D is a set of D-rules, C is a set of C-rules, and if a constant ¢ € K 1is
in normal form with respect to R, then ¢ represents at least one term t € T (X)
via R,

(ii) R is a ground convergent rewrite system over T(X U K), and

(iii) If s and t are terms over T(X), then s <% t if, and only if, s =’ o 5 t.

For example, the constant cz represents the term fa via Dg. Furthermore, the
rewrite system Ry above is not a congruence closure for &, as it is not a ground

convergent rewrite system. But we can transform Ry into a suitable rewrite
system, using a completion-like process described next, to obtain a congruence
closure, Ry = {a = ¢1, b = ¢1, ¢ = ¢s, fe1 — ¢s, geg — co}, that provides a
more compact representation of &.

2.1 Construction of Congruence Closures

We next present a general method for construction of congruence closures. Our
description is fairly abstract, in terms of transformation (or transition) rules that
operate on triples (K, E, R), where K is a set of new constants that have been
introduced (the original signature X is fixed); F is a set of ground equations (over
X)) yet to be processed; and R is the set of C-rules and D-rules that have been
derived so far. Triples represent possible states in the process of constructing a
closure. The initial state is (¢, &,), where £ is the input set of ground equations.

A key transformation rule is the introduction of new constants as names for
subterms.

. (K,E,R)
Extension: -

(KUA{c}, E,RU{f(e1, -, cx) = c})

where f € X, ¢1,...,cx are constants in K, f(cq,...,ck) is a term occurring in

(some equation in) E, and ¢ ¢ YU K.}

Once a D-rule f(c1,...,c5) — ¢ has been introduced, it can be used to

eliminate any occurrence of f(ecq,...,cg).

K, FE|s|, RU{s —t
Simplification: (5] { }

(K, E[t], RU {s — t})

where s is a subterm of (either the left or the right-hand side of) an equation in
E.?

It 1s fairly easy to see that any equation in E can be transformed to a C-
equation by suitable extension and simplification steps. The final C-equations
are eliminated from FE as follows.

([\7 U {61,62},EU {Cl v CQ}, R)
(I{U {61762},E,RU {Cl — Cg})

Orientation:

if ¢1 > ¢o.

! Some of the transition rules require additional information that is provided by a re-

duction ordering > on terms. (Such an ordering is well-founded and compatible with
the given term structure.) We assume that a suitable ordering is supplied initially
and is extended appropriately whenever a new constant is introduced. For our pur-
poses, it is sufficient to use a lexicographic path ordering based on a total precedence
on symbols in X' U K, for which f > ¢, whenever f € X and c € K.

By E[t] we mean the set obtained from E by replacing a single occurrence of s by ¢
in some equation in F.

We need additional transformation rules to obtain a convergent rewrite sys-
tems in the third component of a state.

(K,E,RU{t > ¢,t > d})
(K,EU{c=~d},RU{t = d})

Superposition:

if t - ¢ and ¢t — d are D-rules.

Additionally, we need (i) a deletion rule to delete trivial equations from the
set E; (ii) a collapse rule, to simplify left-hand sides of D rules; and, (iii) a
composition rule, to simplify right-hand sides of D rules.

FErample 1. Consider the set of equations & = {a ~ b, gfa ~ fa, gfb ~ c}3.
The initial state tuple, therefore, is & = (Kq, Eo, Ro) = (0, &, 0). We show
below the intermediate states of one of the possible derivations. When the third
component is fully-reduced, we don’t show the C-rules.

(@, {am b gfar fa,gfb~ c},)
({co, e1}, {g9fa~ fa,gfb~ c}, {a = co, b= 1, co = 1))
({e1}, {9fa~ fa,gfb~c}, Ri={a—=ci, b=ci})
({e1, ca,e3}, {9fb~c}, Ry U{fe1 — ca, gea — c3, ca = c3})
({e1, e}, {gfb~c}, Ry=RiU{fei = c3, gez = c3})
({Cl, 63}, {}, R3 = Rz U {C — 63})

The set Rs is the required congruence closure.

Definition 4. We use the symbol Fcc to denote the one-step transformation
relation on states induced by the above transformation rules. A derivation s a
sequence of states &g Foc &1 Feoe - A finite derwation &y Fee &1 Fee -+ - Fee
&n 1s said to be maximal if no further transformation rules can be applied to &, .

Proposition 1. (Correctness) Let (K, ¢, R) be the last state of a mazimal deriva-
tion beginning from the state (¢,€,¢). If s,t € T(X), then s &35 t iff s =5 0
t.

This shows that R is a congruence closure for £. In order to get a maximal
derivation, we just need a strategy that is fair, i.e., if any transition rule is
continuously enabled, then it is eventually applied. The above correctness result
is easy to establish, but we skip the proof here [1].

3 Normalization Using Congruence Closure

The problem we address is that of doing efficient non-oblivious normalization:
Given some term rewriting system & (containing variables) and a term t, find
the £-normal form of ¢ without repeating a reduction step. We use the abstract
congruence closure to avoid processing the same rule instance again and again.

? In all examples, new constants will be ordered as follows : ¢; > c; if i < j.

Ut

Ezample 2. For exposition, consider the simple case when £ is a ground rewriting
system. Suppose we want to normalize g fb with respect to the directed equations
Eo={a—b,gfa— fa,gfb— c}, see example 1.

Let Ry denote the (abstract) congruence closure for & computed in that
example. To obtain the normal form of g fb from Ry, we first find the Rg-normal
form of gfb. This is c¢3. Now we need to find a &p-irreducible term represented
by c3. We note that, gfb —% c3 <5, ¢, and also gfb =% c3 3, fa.

Thus, ¢ and fa are two terms represented by ¢z which are also £p-irreducible.
We could return either one as the normal form of gfb.

We generalize the above procedure to deal with systems £ containing vari-
ables too. Introducing variables causes the complication of picking all the needed
(ground) instances from &, for obtaining a normal form for ¢. We use narrowing
for this.

3.1 Narrowing

If the set of directed rules £ contains rules with variables, then it is not imme-
diately clear what instances to process and include in the congruence closure.
Usually, given the term ¢ to normalize, one finds an appropriate substitution o
such that for some left-hand side term I; (of the rules in &), it is the case that
l;0 1s 1dentical to ¢ or a subterm of ¢.

In our case, we don’t know the intermediate terms explicitly. Since every
constant represents some term in the original signature, therefore, we need to
Jjust find a substitution ¢ such that for some left-hand side I;, l;o0 =% ¢, for some
constant c. In other words, we need to check if [; can be narrowed to a constant
cvia R.

We describe a simplified narrowing procedure, that will be used later, using
transition rules. The transition rules are going to be defined on states of the
form (K, R, S), where K and R are inputs, and § is the output of the narrowing
procedure®. The component S will denote a forest of narrowing trees® - one tree
for each left-hand side of a rule in £. If [; — r;, for i = 1,...,n is the set of all
rules in £, § would be a sequence of n sets, each set containing pairs (I}, of),
where o7 is a substitution” and I would be such that l;0f —%, l;. Note that we
are interested in finding if any /; can be narrowed to a constant in K, i.e. if there
is a oy such that l;0; =% ¢, for some ¢ € K. Formally,

(K,R,{...,s; U{(C[t],e%)},..)
(K, R, (...,5;Us},..))

4 Correctness issues will be discussed later.

Narrow:

5 K would denote the set of constants and R would be the current congruence closure.

% A narrowing tree for I is obtained by keeping I on the root, and having as children
all possible narrowing steps on ! using R (as described in the rule above). The j-th
component s; then simply is the set of current leaves in the narrowing tree with root
l;.

7 Substitutions here are homomorphic extensions of a mapping from V to T(XUK).
Since the range is the extended signature, we use a superscript e.

where s’ is the set of all pairs (C[c]o$, o%0¢) such that there is a rule [= ¢ in
R and tof = [. If there is no such rule, then s} = ¢.

By Fn we denote the one-step transformation relation on states induced by
the narrowing transformation rule.

3.2 Normalization

Now we have all the gadgets required to describe the normalization procedure,
namely the abstract congruence closure computation relation F¢¢ and the nar-
rowing transformation relation Fp. The transformation rules for normalization
procedure will use these two relations. We would work on states of the form
(&;t;(K,E,R); (K',R',S)), where we apply the relation Fc¢ to the third com-
ponent, and the relation Fy to the fourth. The first and the second components
are the inputs to the normalization.

The normalization procedure is started by representing the term ¢ to be nor-
malized using D-rules. Since a congruence closure would automatically represent
all new terms, we introduce a dummy rule ¢ — ¢ and add it to an appropriate
component.

(&t (0, 9,9); (8,6, 4))
(&:ts({ch {e =1}, 8); (6,6, A))

where ¢ is a new constant, and A is a sequence of empty sets.

Once we have identified a non-empty set E of (ground) equations to add
to the congruence closure, we can perform a step of the congruence closure
computation.

Initialization:

(&:4, (K, E, R); (¢, 6, A))
(&t (K E' R'); (¢, 6, A))

Cong. Closure:

if (K,E,R)Fce (K',E',R').

Once we have processed all ground equations in E| to continue we need to
select new ground instances. The process of selection is done by narrowing, as
described before. The following rule initiates this.

(&t (K, ¢, R); (6,0, 4))
(&t (K,¢9,R); (K,R,({(li;e)}:i=1,...,n)))

ifE={l; >r:i=1,...,n} and R is fully reduced. The symbol ¢ denotes the
empty substitution.

We use narrowing to find out if any instance of a left-hand side of a rule is
represented by a constant.

Init-Selection:

(&;t; (K, ¢, R); (K, R, S))
(&t (K, ¢, R); (K, R,S"))

Narrow:

if (K,R,8)Fn (K,R,S").

The result of narrowing can be used to identify new instances to process.

(&t (K, ¢, R); (K,R,{s1,...,5; U{(c,0°)},...,8n)))
(&t (K, {ljo® = rjo}, R); (6,6, 4))

Selection:

if c € K. The rule [;0° — r;0° which is moved to the set F in this rule, will be
called a selected, or, processed rule®.

Next we need rules for termination. If all the narrowing trees have been fully
explored, and none ends in a constant, then selection rule cannot be applied. This
means that there are no ground instances to process and we can terminate®.

(&;t; (K, ¢, R); (K,R,A))
N

Terminatel:

where 2 = t* if there is a t* € T(X) such that t =% ¢ «5 t*, and t* is &
irreducible; otherwise, 2 = L.

We can have another termination condition too, in which we terminate once
we have 1dentified a normal form of ¢.

(&t (K,¢,R); (K,R,(s1,...,5n))
t*

Terminate?2:

if (i) there is a t* € 7(X) such that t =% ¢ <% t*, and (ii) #* is not further
reducible by &£.1°

Terminating in a state | means that we output “no normal form of ¢ exists”,
and terminating in a state ¢* means that we output ¢* as the normal form of ¢.

Ezample 3. Consider the problem of normalizing the term fa with respect to the
rewrite system £ = {a — b, fX — ¢gfX,9fb — c}. The initial state obtained by
the initialization rule is {_1 = (&; fa; ({c-1}, {c—=1 = fa}, ¢); (¢, ¢, A)). There-

fore, as a result of computing the congruence closure, we would have

£0 = (g;fa; ({6_1,60,62},¢, {a - COafCO — C2,C_1 —> 62}); (¢a¢aA))

In order to choose the next instance to process, we apply the “init-selection” rule.
This means we apply narrowing transition rules on the state ({e_1,co,c2}, {a —

8 Any rule which can potentially be selected will be called selectible.

® The way this has been described here, except for the trivial case when the initial
term ¢ is not reducible by any rule in &, this inference rule will never be applicable.
But, if we add an additional rule that deletes from & any pair that has already been
processed, or selected, then this rule will be more useful. This would however mean
that we somewhere store with each rule in &, the set of substitutions with which it
has been instantiated and applied. We, however, do not need this rule for correctness
of the procedure, though it definitely improves the termination characteristics of the
normalization procedure.

This inference rule can be effectively applied. We simply non-deterministically guess
for each constant d € K, a D rule f(---) — d. Then the required t* is one which
reduces to ¢ using these guessed rules, and which satisfies (ii) above.

co, feo = ca,cc1 = eat, ({(a, 6)}, {(F X,)}, {(gfb,€)})). Note that a narrows to
co with the empty substitution. Therefore, the rule a — b is selectible. The new
congruence closure obtained by adding this rule is Ry = {b — ¢1,a — ¢1, fe1 —
¢g,¢0 = ¢1,¢—1 — c2}. Now note that fX can be narrowed to a constant, with
the substitution X + ¢;. Thus we process the instance fe; — gfeq next. We get
a congruence closure Ry of example 1 (ignoring C' rules). Finally we can choose
to process gfb — ¢ and get R3 as the new closure. Now we would identify the
normal form and terminate, using the rule terminate2, as fa —'% c3 and ¢ =% c3
and c is not further reducible by £.

3.3 Soundness and Completeness

By i(£)® we shall denote the set of all ground instances of the rules in & in the
extended signature UK. Let F' C i(£)° be the set of processed rule instances of
E. When we compute the congruence closure R of a set of rules F', we in essence
actually compute the closure of the set Ff in the original signature, which is

defined below.

Definition 5. Let R be a set of D-rules and C-rules (with respect to X and K).
If F is a set of equations over T(X U K), then the R-extension of F is defined
to be the set Ff, of all equations sp — tp, where s — t is an equation in F and
p is a mapping from K to T(X), such that ¢ % cp, for all constants ¢ in K.

Theorem 1. (Soundness) Assume that the rewrite system £ is confluent. If a
derivation starting from (&;t; (¢, ¢, 0); (9,8, A)) terminates with normal form
t*, then t* s the £-normal form of t.

We next establish completeness of the procedure. First we need to make
sure that normal form of ¢ would be eventually represented. For this, we require
fairness conditions.

Definition 6. A derivation is said to be fair if either it is finite (i.e. some
termination rule has been successfully applied), or, (i) it is always the case that
eventually we get to states of the form (€;t; (K, ¢, R); (K, R, (s1,...,5n))) where
each s; contains only those pairs whose first element is a constant in K, and,
(ii) the rule terminate2 is applied whenever possible, and, (iii) any rule instance
which can be chosen by the selection rule from such states and which has not
already been chosen, is eventually selected.

Essentially fairness says that after some finite number of steps, we always con-
struct the full narrowing forest, and make sure every rule instance gets processed,
unless of course, we terminate. A fair reduction strategy ensures that enough rule
instances are processed so as to guarantee the representation of normal form
term.

Theorem 2. (Completeness) If t € T(X) has a E-normal form then a fair
derivation starting from state (E;t;(¢,d,¢); (¢, 6, A)) terminates in state t*,
where t* is in £-normal form.

The procedure described above is a rather straight forward modification of
a oblivious normalization algorithm where the derivation tree with root ¢ is
constructed in a breadth first manner, in order to avoid getting caught in an
infinite branch. The difference is that we work on equivalence classes of terms,
rather than individual terms. This however restricts our applicability to confluent
systems only.

The procedure may or may not terminate when the term ¢ does not have
a normal form. Termination when ¢ does not have a normal form is given by
the terminatel inference rule. To apply it usefully, we need to store the set of
processed instances, and delete from the sets in & any substitutions that have
been processed. This can be formulated as another inference rule, but we do not
do so here.

One major drawback of the inference rules for normalization is that the
termination checks essentially involve a non-deterministic step. To make this
more efficient, we can store some information about which rules to use to find
normal form terms in the congruence closure itself. The modified congruence
closure will be called a rewrite closure.

4 Abstract Rewrite Closure

In order to make the termination checks more efficient, the basic congruence
closure procedure requires additional refinements, so that one can determine
whether a given represented term is in normal form or not. We will achieve this
by marking certain rules, or, in other words, we will partition the set D into
two sets: marked rules X, and unmarked rules N. The idea would be that terms
represented by the left-hand sides of N rules will be FJ -irreducible. Hence while
searching for normal forms in the termination rules, instead of guessing, we will
use the N-rules directly.

Definition 7. An abstract congruence closure R = D U C for F is called a
rewrite closure if, the set D can be partitioned into N UX such that for all terms
t in T(X) represented by D, t is in normal form with respect to F}, if, and only
iof, it 1s represented by N .

Equivalently, we can also say that a congruence closure D = N U X is a
rewrite closure for F if for every ¢ € T(X), ¢ is Fp-irreducible, iff, any reduction
sequence starting with ¢ contains only N steps, and no X steps. For example,
let ' ={ffa— fffa, fffa— fa}.If welet Ny be the set of two rules, a — ¢
and feqg — ¢1; and Xy be a set of one rule, fe; — ¢y, then Ny U Xq 1s a rewrite
closure for F'. Rewrite closures need not always exist, though. Consider the set
of equations F' = {fffa — ffa, fffa — fa}. We cannot get a rewrite closure
from the abstract congruence closure Dy = {a — ¢y, feo — c¢1, fer — ¢} for
F'. Since a, fa and ffa are all in normal forms, we are forced to have all the
D-rules in Ry in the set Ng.

Note that there are several ways in which the set of D-rules can be parti-
tioned. If s — ¢ is a rewrite rule in F', then its left-hand side s 1s called an

10

F-redex (or simply a redez). One method is to put all D-rules, whose left-hand
sides represent F'-redexes, into the set X. Rules in X are therefore also called
redez rules. We write s — t to indicate that s — ¢ is a rule in N, and s > ¢
to indicate that s — ¢ is a rule in X. If f(e1,...,¢ex) = co is a rule in X, then
the term f(cy, ..., ck) is also called a redex template. However, using this scheme
for marking rules we may not still get a rewrite closure. We need the additional
property of persistence.

Definition 8. Let R be a abstract congruence closure for a set of ground rules
F over T(ZUK). The set F is said to have the persistence property with respect
to R if whenever, there exist terms f(t1,- -, tn), f(t}, - -,t,) € T(X) such that,
f(t1, - t,) is Fh-reducible at the top (root) position, and f(t1,---,t,) H;’gr

J(y, -+ th), it is always the case that, f(t},---,t,) is Fh-reducible.

The idea behind the persistence property is simple. Since we put every redex-
template in the set X, this simply means that we assume that all the terms
represented by that template are reducible. The persistence property is true
whenever this is actually the case.

Lemma 1. Let F be a finite set of equations over T(X U K). A congruence
closure R of F' can be extended to a rewrite closure if F' has the persistence
property with respect to R.

The converse of this theorem is however false, as the set F = {a — b, fa —
¢, ¢ = fb} is not persistent (with respect to its abstract congruence closure),
but the congruence closure can be extended to a rewrite closure.

4.1 Construction of Rewrite Closures

We give a set of transition rules (similar to the ones for congruence closure), that
would compute the rewrite closure for a given F,'" assuming that the persistence
property holds.

The extension inference rule, which introduces new constants as names for
subterms, 1s the same as before except that now it creates N-rules. We have to
be a little careful in simplification rules, as we cannot simplify at the top of the

left hand side.

(K, F[s],RU{s = t})
(K,F[t], RU{s = t})

Simplification:

where s is either a subterm of a right-hand side of a rule in F', or else a proper
subterm of a left-hand side.Note that only proper subterms of left-hand sides of
rules in F' can be replaced.

" It should be mentioned here that the set F' which contains ground equations over
T(X UK) is dynamically generated in our application to normalization. That is the
reason why some constants from K that are introduced by the congruence closure
procedure appear in the set F.

11

It is fairly easy to see that any rewrite rule in £ can be transformed to
a D-rule by suitable extension and simplification steps. The final D-rules are
eliminated from F as follows.

(K,FU{f(c1, -, ex) = ¢}, R)
(K,F,RU{f(c1, - cx) 5 ¢c})

Orientation:

if f(e1,...,cx) = cis a D-rule with respect to X' and K. Note that orientation
generates a redex rule.

In the superposition rule too, we have to be careful with the markings.
(K,F,RU{t 3 c,t 3 d})
(K,F,RU{t Zd,c— d})

Superposition:

if (i)t = ¢ and ¢ — d are D-rules, (ii) ¢ > d, and (iii) a3 is n only in the case
when both a7 and as are n; in all other cases, ajzis z.'?

The other rules like deletion and collapse can be similarly formulated. Let us
illustrate the computation of a rewrite closure with a simple example.

Ezample 4. Consider the set of rules & = {a — b, fb — gfb,9fb — ¢}. Begin-
ning with & = (0, &,) as initial state, we use the same strategy as we used in
example 1. The only difference is that now we also keep track of the markings.

(@, {a—=b,fb— gfb,gfb— c},)
({CO}’ {fb—>gfb,gfb—>c}, {GLCO, bi)co})
({co, c1, 2}, {gfb—c}, RiU{fco B c1, ger = ca, feo = ea})
({co, c2}, {9fb ~ c}, Ry U {fco 5 Ca, gC2 2 ca})
({co, 2, s}, {1, RyU{c D s, gea S cs))

If we fully reduce the last component, we get {a 5 co, b NiY co, feo 5 €3, gC3 N
3, ¢ > c3}, which is a rewrite closure of &.

The correctness proofs are exactly similar to those for the congruence clo-
sure. Using the results from the last section we also know that this procedure
constructs a rewrite closure whenever F' satisfies the persistence property. We
use the symbol Fre to denote the one-step transformation relation on states
induced by the above transformation rules.

4.2 Normalization Using Rewrite Closure

The normalization procedure described earlier, can now be optimized by replac-
ing the inference rule congruence-closure by a step rewrite-closure. The addi-
tional marking information in the rewrite closure can be used to optimize the
terminatel and the terminate?2 inference rules: Essentially all we are saying is

2 In other words, t — d is a redex rule in the new state if, and only if, at least one of
the two superposed rules is a redex rule.

12

that in order to find a normal form in the equivalence class ¢, we need to check
for only those term t’ such that ¢ =% ¢. The only additional condition needed
for correctness is that the processed rules satisfy the persistence property. The
important point to take note of is that in order to do selection, we still have to
construct the narrowing forest using all D rules, and not just N rules, which
would have been desirable. This is because the completeness proof otherwise
doesn’t go through.

We just mention those inference rules of the normalization procedure which
now look different. The congruence-closure inference rule is replaced by the fol-
lowing rewrite-closure rule.

(&:4, (K, E, R); (¢, 6, A))
(&t (K E' R'); (¢, 8, A))

Rewrite-Closure:

if (K,E,R)Fre (K',E', R).
The init-selection, narrow and selection rules are the same as in section 3.
Next we need rules for termination.

(&t (K ¢, R); (K, R, A))
2

Terminatel:

where £2 = t* if there is a t* € T(X) such that ¢ =% ¢ 3 t*; otherwise, 2 = L.

(&t (K,¢,R); (K,R,(s1,...,8n))
t*

Terminate?2:

if (i) there is a t* € T(X) such that t =% ¢ <% t*, and (ii) ¢* is in £-normal
form.

The soundness theorem 1 holds under these changes. In order to prove com-
pleteness of the method, we need to be able to get a rewrite closure for the set
F of processed instances of £. To make sure that normal form of ¢ would be
eventually represented, we require fairness conditions exactly like before.

Theorem 3. (Completeness) If t € T(X) has a E-normal form t* then a fair
derivation (starting from state (£;t;($, ¢, 8); (6, ¢, A))) in which the processed
rule instances F is always (eventually) persistent, terminates in state t*.

The conditions of fairness and persistence are complementary. In order to sat-
isfy persistence, we should process fewer and only particular rules. On the other
hand, to satisfy fairness we are required to process as many rules as possible. For
example, informally, an innermost strategy in choosing instances to process shall
always process sets of instances that are persistent. But, unfortunately, such a
strategy may violate fairness. In the next section, we consider two special cases
of rewrite systems £ where we can effectively satisfy both conditions together
and use the normalization transition rules to find normal forms.

13

5 Further Optimizations: Special Cases

Next we introduce one further optimization, and show that normalization in
orthogonal systems and in convergent systems can be done using this new set of
inference rules.

It appears wasteful that we use all of the D-rules in the narrowing process.
For computing normal forms, typically we just choose to process rule instances
that reduce current rreducible terms. So, one would conjecture that we just need
to use the N-rules during narrowing, as N-rules represent irreducible terms. In
fact the soundness result still holds even in the presence of this restriction.
The problem is in the proof of completeness where we want to claim that ¢* is
eventually represented (and that we are not caught in an infinite branch). But
in special cases, we can carry out this proof, and hence use only the N-rules to
construct the narrowing forest.

(&:t: (K, 6, NUX UC); (6,0, 4))

Init-Selection: -
(&t (K, o, NUXUC); (K,N,({(li;e)} :i=1,...,n)))
ifE={li—>r;:i=1,...,n} and R is fully reduced.
Essentially this means that we only use the N rules for performing narrowing.

If this is the case, then the second termination check can be further optimized
as follows.

(&;t;(K,¢,R); (K,R,(s1,...,8n))
t*

Terminate?2:

if (i) no further Narrow transitions can be applied, and (ii) there is a t* € T (X)
such that t —% ¢ <% t*, and (iii) none of the constants that appear in the
derivation t* —n ¢ occur in (as the first component in) any element of s1, .. ., sp.

As mentioned before, for soundness and completeness results to hold under
these modifications, all we need is (i) the confluence of £, (ii) persistence of the
processed set of rules, and (iii) a strategy that ensures that the normal form
term is eventually represented. We shall see that all these can be ensured for
two special cases below.

5.1 Normalization in Orthogonal Systems

In this subsection, we consider the problem of performing normalization of terms
with respect to a special kind of rewriting systems, called orthogonal systems.
The correctness proof is simple and clear in our formulation. For details, see [1].
A term rewriting system & is orthogonal if the reduction rules of £ are left-linear
and there are no critical overlaps. We use the following well-known result.

Lemma 2. [5] Every orthogonal term rewriting system is confluent.

Next we note that irrespective of what subset of instances are processed, the
persistence property 1s always satisfied.

14

Lemma 3. Let £ be an orthogonal system. Let t be root reducible (by an instance
of the rule | — r € £) and also reducible to t' at a non-root position by some
rule in £. Then t' is root-reducible by an instance of the rule | — r.

Using the previous two lemmas, it can established that irrespective of the
strategy chosen to select the next instance to process, the processed instances is
confluent, and persistent. Hence, we can conclude the following.

Theorem 4 ((Correctness)). If £ is an orthogonal rewriting system, then
given any term and a fair strategy, the inference system outlined above finds its
normal form with respect to £, if one exists.

5.2 Normalization in Convergent Systems

In order to perform normalization of terms with respect to convergent systems,
we need a strategy such that we can satisfy the persistence property and ensure
that the normal form term gets represented. Intuitively, for convergent systems,
the normal form term will always eventually get represented under any strategy
for choosing the next instance, as convergent systems are confluent and terma-
nating. Using an innermost strategy allows us to satisfy persistence.

Definition 9. Let lo® — ro® and l'c’® — v'¢’® be two different (extended) in-
stances of rules in £ that are selectible. Say lo® —% ¢ and l'c’® =% /. An
innermost strategy is one that makes sure that if there exists a term t[c] con-

taining ¢ such that t[c] =% ¢, then the rule lo® — ro® is chosen first.

Lemma 4. Suppose that in a derivation, we choose the next instance to process
using an innermost strategy. If we choose to process the instance lo® — ro® at
some point, then for every proper subtermt of lo®, there exists a constant ¢ such
that t —)}Vlucl ¢ always eventually. (assuming constants introduced earlier are
smaller than constants introduced later).

When £ is convergent, by performing an induction on the number of applica-
tions of the selection rule, we can show that an (i) innermost strategy is unam-
biguous; (ii) the processed set of rules satisfy the persistence property whenever
rules are chosen using an innermost strategy; (iii) the R-extension of the pro-
cessed rules is convergent; and (iv) each new constant in normal form represents
exactly one term in 7(X) via N-rules. Once this result is proven, it is straight-
forward to establish the correctness result.

Theorem 5 ((Correctness)). Let £ be a convergent rewriting system. Then
given any term, the inference system outlined above finds its normal form.

6 Conclusion
The problem of normalization using a given set of rewrite rules is fundamental

to efficient implementations of symbolic simplifiers. Oblivious strategies for per-
forming normalization were studied first by Hoffmann and O’Donnell [3]. The

15

simple straight line reduction methods were replaced by efficient variants. Chew
[2] proposed combining the earlier known straight line reduction strategy with
congruence closure algorithm (in order to avoid repeating reduction steps). The
advantages of using a slightly modified congruence closure to do normalization
were also pointed out there. But Chew’s procedure worked only for orthogonal
systems. His work was further refined and generalized in Verma and Ramakrish-
nan [8] and Verma [7].

The idea of abstract congruence closure presented here helps us to see the
various different congruence closure algorithms in a generalized framework '3.
The extension to the idea of a rewrite closure is fairly natural and simple. The
simplified presentation allows to give straightforward proofs for the results of
Chew and Verma. In contrast, it is said in Verma [7] that the proof of complete-
ness of the normalization method is long and intricate. We dispense away with
the concept of strong closure which is so forcefully used in proofs there.

Our results are strictly more general than the ones known before. The best
known result, that appears in Verma [7], gives six postulates that a rewrite re-
lation £ should satisfy in order to prove completeness of a rewrite-closure based
procedure for normalization. The three postulates relevant for standard rewrite
relations (the other three are for priority rewrite systems which are also con-
sidered in that work, but are not dealt with here) imply confluence of £ and
non-overlapping of rules in £. This means our results are more general. Further-
more, Verma uses his results to show that the rewrite-closure based procedure
could be used to find normal forms with respect to consistent convergent sys-
tems. This he has to do by translating such a system to a priority rewrite system.
In contrast, our approach yields a direct and more general method for normal-
ization in convergent systems.

References

[1] L. Bachmair, C. Ramakrishnan, 1.V. Ramakrishnan, and A. Tiwari. Normaliza-
tion via Rewrite Closure (Full Version). http://www.cs.sunysb.edu/ astiwari/-
rta-full.ps, 1998.

[2] L. P. Chew. Normal forms in term rewriting systems. PhD thesis, Purdue Univer-
sity, 1981.

[3] C. M. Hoffmann and M. J. O’Donnell. Programming with equations. Transactions
on Programming Languages and Systems, 4(1):83-112, 1982.

[4] D. Kapur. Shostak’s congruence closure as completion. In H. Comon, editor, Proc.
8th Intl. RTA, pages 23-37, 1997. LNCS 1232, Springer, Berlin.

[5] J. W. Klop. Term rewriting systems. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 1, chapter 6,
pages 2—-116. Oxford University Press, Oxford, 1992.

[6] G. Nelson and D. Oppen. Fast decision procedures based on congruence closure.
JACM, 27(2):356-364, 1980.

[7] R. M. Verma. A theory of using history for equational systems with applications.
JACM, 42:984-1020, 1995.

13 This aspect is however not discussed in this paper.

16

[8] R. M. Verma and I. V. Ramakrishnan. Nonoblivious normalization algorithms for
nonlinear systems. In Proc. of the Int. Colloguium on Automata, Languages and
Programming, New York, 1990. Springer-Verlag.

17

