
Local and Symbolic Bisimulation using

Tabled Constraint Logic Programming�

Samik Basu
1

Madhavan Mukund2

C.R. Ramakrishnan1

I.V. Ramakrishnan1

Rakesh Verma
3

1 Dept. of Computer Science, SUNY at Stony Brook, New York.
2 Chennai Mathematical Institute, Chennai, India.

3 Dept. of Computer Science, University of Houston, Texas.

E-mail : bsamik@cs.sunysb.edu, madhavan@smi.ernet.in,

cram@cs.sunysb.edu, ram@cs.sunysb.edu, rmverma@cs.uh.edu

Abstract

Bisimulation is a fundamental notion that characterizes behavioral equivalence of concurrent
systems. In this paper, we study the problem of encoding eÆcient bisimulation checkers for
�nite- as well as in�nite-state systems as logic programs. We begin with a straightforward and
short (less than 10 lines) encoding of �nite-state bisimulation checker as a tabled logic program.
In a goal-directed system like XSB, this encoding yields a local bisimulation checker: one where
state space exploration is done only until a dissimilarity is revealed. Local checking can often
outperform the traditional global checking by several orders of magnitude even for �nite-state
systems, as our experimental results show. Surprisingly, even when the systems are equivalent
where the entire state space may need to be explored, the performance of our local checker is
comparable to hand-coded equivalence checking algorithms implemented in other veri�cation
tools.

More importantly, the logic programming formulation of local bisimulation can be extended
to do symbolic bisimulation for checking the equivalence of in�nite-state concurrent systems
represented by symbolic transition systems. We show how the two variants of symbolic bisim-
ulation (late and early equivalences) can be formulated as a tabled constraint logic program
in a way that precisely brings out their di�erences. We use a a constraint meta-interpreter
over disequality constraints that evaluates tabled constraint logic programs to support the sym-
bolic bisimulation checker. We present experimental results to illustrate the practical eÆcacy of
our logic programming based symbolic bisimulation checker. Finally, we show that our symbolic
bisimulation checker, despite the overheads imposed by the constraint meta-interpreter, actually
outperforms non-symbolic checkers even for relatively small �nite-state systems.

�This research was partially supported by NSF Grants CDA-9805735, EIA-9705998, CCR-9876242, and CCR

9732186.



1 Introduction

A tabled logic programming system o�ers an attractive platform for encoding computational prob-
lems in the speci�cation and veri�cation of systems. The XMC system [12] casts the problem of
model checking| verifying whether a given concurrent system is in the model of a temporal logic
formula| as query evaluation over an \equivalent" logic program [11]. This formulation is based
on the connection between models of logic programs and models of temporal logics. In this paper,
we consider the related problem of bisimulation checking which checks for equivalence of two system
descriptions.

Bisimulation checking is a problem of fundamental importance in veri�cation. Many veri�cation
systems such as the Concurrency Workbench of the New Century (CWB-NC) [3] and CADP [1]
incorporate bisimulation checkers in their tool sets. Informally, a pair of automata M , M 0 are said
to be bisimilar if for every transition in M there exists a corresponding transition in M 0 and vice
versa. There has been a lot of research on eÆcient algorithms for bisimulation checking. But the
focus of this vast body of work has been on �nite-state systems, i.e., one assumes that M and M 0

are both �nite state. But in many practical problems that arise in veri�cation M and M 0 are no
longer �nite-state systems. Hennessy and Lin were the �rst to consider the problem of bisimilarity
checking of in�nite-state systems [4] in the setting of value-passing languages. This initial work has
been recently expanded [7, 6]. Nevertheless research on this problem remains in a state of infancy.

In this paper, we explore the use of logic programming for the above problem. We begin
with a direct formulation of strong- and weak-bisimulation checking for �nite-state systems (see
Section 2). We show that, using query evaluation with a tabled logic programming system, this
encoding yields a local bisimulation checker: one where the state space of the concurrent systems
is explored only until the �rst evidence of non-bisimilarity is found. Note that when the systems
are indeed bisimilar, the local checker explores the entire (reachable) state space. Even in this
case, our bisimulation checker encoded in XSB logic programming system [13] shows performance
comparable to the global bisimulation checker in CWB-NC. For systems that are non-bisimilar, the
local checker outperforms the global checker by several orders of magnitude.

Having established the baseline that logic-programming-based bisimulation checkers can in-
deed be practical even for �nite-state systems, we consider the problem of checking equivalence of
in�nite-state systems. In particular, we introduce symbolic transition systems (STSs) which can
�nitely represent in�nite-state systems (see Section 3). STSs are more general than Symbolic Tran-
sition Graphs (STGs) and STGs with Assignments (STGAs) used in [4] and [7] respectively. We
formulate symbolic bisimulation algorithms for checking two kinds of equivalences widely studied in
the literature| late- and early-equivalences| as tabled constraint logic programs (see Section 4).
Similar to the �nite-state case, our formulation is a direct encoding of the de�nition of the bisim-
ulation relations themselves. We describe how the programs can be evaluated using a constraint
meta-interpreter implemented in XSB. Our experimental results show that symbolic bisimulation
is practical for realistic systems. Surprisingly, our results show how even for relatively small �nite-
state systems, it may be better to perform symbolic bisimulation on its in�nite-state counterparts.
We conclude in Section 5 with a short discussion of the implications of this work.

2 Bisimilarity of Finite-State Systems

Labeled transition systems (LTSs) are widely used to capture the operational behavior of concurrent
systems. An LTS is denoted by L = (S;Act;�!), where S is a �nite set of states, Act is a �nite
set of actions (transition labels), and �!� S � Act � S is a transition relation. Transition from

1



p
111

p
112

p
121

p

c

a a

gf h

p p

1

11 12

p
0

c

a a

f

1

11 12

0

gh h

111
q

112 121 122
q q q

q

q

q q

Figure 1: Example non-symbolic LTS

state s to t on an action a is represented by s
a
�! t. Example LTSs are given in Figure 1.

An LTS L = (S;Act ;�!) is encoded as a set of facts in a logic program P such that whenever
s

a
�! t, then trans(s, a, t) is in P . Note that since s; t 2 S as well as a 2 Act are from a �nite

set, they can be represented in a logic program by ground terms.
We �rst begin with a brief overview of bisimilarity in LTSs. Actions on transitions in LTS are

of two types: actions that may be e�ected by external entity, environment, are called observable

actions and actions that are the result of synchronization of subsystems are called internal actions

or � actions. Based on this notion of observability there are two variations of bisimilarity, strong
and weak, described below.

2.1 Strong Bisimulation

Strong bisimulation does not di�erentiate between internal and observable actions.

De�nition 1 (Bisimilarity Relation) Given an LTS L = (S;Act;�!), R is a bisimilarity re-

lation over L if

8s1; s2 2 S: s1Rs2 ) (8(s1
a
�! t1): (9(s2

a
�! t2): t1Rt2) ^ s2Rs1)

Two states in a system are equivalent with respect to bisimulation if they are related by largest

bisimilarity relation R. Two LTSs can be compared for bisimilarity by computing bisimulation
of their disjoint union. For instance, consider the LTSs in Figure 1. States p11 and q11 are not
bisimilar as there exists a transition from p11 with action g for which there is no matching transition
from q11. As such, states p1 and q1 are not bisimilar and also the states p0 and q0 are not bisimilar.

2.1.1 Encoding Strong Bisimulation

Using the dual of De�nition 1, we can say that two states in a system are not equivalent with
respect to bisimulation if they are related by the least relation R de�ned as follows:

8s1; s2 2 S: s1Rs2 ( (9(s1
a
�! t1): (8(s2

a
�! t2) ) t1Rt2) _ s2Rs1) (1)

Note that R can be encoded as a logic program by exploiting the least model computation of logic
program as follows:

2



bisim(S1, S2) :- tnot(nbisim(S1, S2)).

nbisim(S1, S2) :- trans(S1, A, T1),

no_matching_trans(S2, A, T1).

nbisim(S1, S2) :- nbisim(S2, S1).

In the above encoding, nbisim/2 stands forR de�ned by Equation 1. The goal no_matching_trans(S2, A, T1)

stands for 8(s2
a
�! t2) ) t1Rt2 and is in turn de�ned as:

no_matching_trans(S2, A, T1) :-

forall(trans(S2, A, T2), nbisim(T1, T2)). % T1 is not bisimilar to any T2

Note that since the terms S2, A are ground and T2 is free, forall/2 can be encoded without
considering any free variables as follows:

forall(P, Q) :- findall(Q, P, L), all(L).

all([]).

all([Q|Qs]) :- Q, all(Qs).

2.2 Local Bisimulation

Evaluating bisim(s1, s2) using tabled resolution, we can prove or disprove bisimilarity of states s1
and s2. Note that goal directed computation with tabling makes the bisimulation checker \local":
state space exploration is done only until the proof for bisimilarity or non-bisimilarity is obtained.
However, if the given states are actually bisimilar, then we explore all the states reachable from s1
and s2. Another important aspect of our encoding is that it can be directly extended to symbolic
bisimulation checking for in�nite-state systems.

Given any two states in an LTS (S;Act;�!), the worst case time complexity of our bisimulation
checker is O(jSj � j �! j) assuming unit-time table lookups. The quadratic factor in our encoding
comes from checking for bisimulation between (potentially) every pair of states. Table lookups may
add jSj2 factor to the complexity if tables are organized as a list, or j log(S)j factor if binary tree
data structures are used. It should be noted that there are faster bisimulation checking algorithms:
the Kanellakis-Smolka algorithm [5] runs in O(jSj � j �! j); Paige and Tarjan's algorithm [9],
implemented in CWB-NC, runs inO(j �! j�log jSj). These algorithms, unlike our implementation,
compute equivalence classes of bisimilar states bottom up and are thus global.

2.3 Weak Bisimulation

Recall that, strong bisimulation does not di�erentiate between observable and internal actions.
However, in practical settings two systems are considered to be equivalent when they are identical
with respect to the observable actions. Weak bisimulation or observational equivalence formalizes
this notion. It is de�ned on the basis of weak transition relation, which, in turn, is de�ned as
follows:

De�nition 2 (Weak Transition Relation) Given a LTS L = (S;Act;�!), weak transition re-
lation, �!w� S �Act� S, is the smallest relation such that

1. a 6= � and s1(
�
�!)�s2

a
�! s3(

�
�!)�t1 ) s1

a
�!wt1

2. s1(
�
�!)�t1 ) s1

�
�!wt1

3



Note that (2) implies that for every state s, s
�
�!ws.

De�nition 3 (Weak Bisimilarity) Given an LTS L = (S;Act;�!), RW is a weak bisimilarity

relation over L, if

8s1; s2 2 S: s1RW s2 ) (8(s1
a
�! t1): (9(s2

a
�!wt2): t1RW t2) ^ s2RW s1)

2.3.1 Encoding Weak Bisimulation

We begin with the encoding the weak transition relation. Note that (
�
�!)� is the transitive closure

of
�
�! and can be encoded as follows:

taustar(S1, S1).

taustar(S1, S2) :- taustar(S1, T), trans(T, tau, S2).

Using taustar/2 weak transition relation can be directly encoded as follows:

weak_trans(S1, tau, T1) :- taustar(S1, T1).

weak_trans(S1, A, T1) :- taustar(S1, S2),

trans(S2, A, S3),

A \= tau,

taustar(S3, T1).

Note that the only di�erence between De�nitions 3 and 1 lies in the selection of matching
transition, i.e., 9(s2

a
�!wt2):t1RW t2. De�nition 1 uses strong transition

a
�!, whereas De�nition 3

uses weak transition
a
�!w. Thus the previous encoding of strong bisimilarity can be changed as

follows to compute weak bisimilarity:

weak_bisim(S1, S2) :- tnot(nweak_bisim(S1, S2)).

nweak_bisim(S1, S2) :- trans(S1, A, T1),

no_matching_trans(S2, A, T1).

nweak_bisim(S1, S2) :- nweak_bisim(S2, S1).

no_matching_trans(S2, A, T1) :-

forall(weak_trans(S2, A, T2), nweak_bisim(T1, T2)).

2.4 Experimental Results

Below, we compare the performance of our local bisimulation checker with the one based on parti-
tion re�nement algorithm [9] implemented in CWB-NC. Example systems selected are families of
stack(b; d) and queue(b; d) with varying bu�er lengths b and data domain sizes d. All measurements
were made on a Sun 4U sparc Ultra Enterprise with 2G memory running Solaris 5.2.6, using XSB
v2.3 and CWB-NC v1.11.

A stack(b; d) is de�ned with a �xed bu�er of �xed size b, where insert and delete actions
respectively add and delete data to and from the top of the bu�er. Whereas, in case of queue(b; d)
insert action adds data to the bottom of the bu�er and delete action removes data from the top.
Domain of each element in the bu�er ranges over d distinct values. Figure 2 shows the transition
system of a stack(b; d) with b = 2 and d = 2, where insert?1 and delete!1 represents input and
output actions that insert and delete data value 1 to and from the stack.

4



p

p
2

p
1

p
11

p
12 p

21
p
22

de
let

e!1

de
let

e!1 delete!2

delete!2

delete!2

de
le

te
!1

in
se

rt?
1

in
se

rt?
1 insert?2

insert?2

in
se

rt
?1 insert?2

Figure 2: stack(2; 2)

2

2.5

3

3.5

4

4.5

5

5.5

2.5 3 3.5 4 4.5 5 5.5 6 6.5

lo
g(

T
im

e)
 : 

T
im

e 
in

 m
se

c.

log(Transitions)

CWB
XSB

Figure 3: Bisimulation of two identical stack(b; d)s in XSB and CWB-NC

Figure 3 shows the time taken to check for bisimilarity of two identical stack(b; d)s for di�erent
combinations of b and d. In the �gure, the log of time is plotted against the log of number of
transitions. The number of transitions in the system is O(db). Since the systems are bisimilar,
both our encoding and the CWB-NC explore the entire state space. As shown in Figure 3, XSB
implementation is roughly 3 times faster than CWB-NC implementation and hence comparable.

We now present the time taken to check bisimilarity of stack(b; d) and queue(b; d) for di�erent
combinations of b and d. These systems are not bisimilar when b � 2 and d � 2. In this case local
bisimulation checker implemented in XSB outperforms global checking algorithm implemented in
CWB-NC. The XSB implementation can check for bisimilarity of stack(b; d) and queue(b; d) for
b = 5000, d = 5 (Table 1) and with CWB-NC the largest system we can check is of b = 7, d = 4
(Table 2). It is worth mentioning here that local bisimulation checking in case of stack(b; d) and
queue(b; d) is independent of d. An inspection of query evaluation in XSB reveals that only two
elements from the data domain d are considered even when d � 2.

5



XSB Bu�er Length (b)

Data Domain (d) 1000 2000 3000 4000 5000

2 1.68 6.20 13.08 23.69 40.97
3 1.71 6.45 13.27 23.84 41.40
4 1.80 6.41 13.85 23.90 40.49
5 1.66 6.47 13.27 24.25 41.70

Table 1: Strong bisimulation of stack(b; d) and queue(b; d) in XSB (table entries are time in secs.)

CWB-NC Bu�er Length (b)

Data Domain (d) 3 4 5 6 7 8

2 0.57
3 0.14 0.42 1.37 4.60 15.87
4 0.10 0.42 1.87 8.28 40.50 -
5 0.21 1.19 6.26 -
6 0.38 2.61 -
7 0.66 5.26 -
8 1.09 9.90 -
9 1.73 -
10 2.58 -

Table 2: Strong bisimulation of stack(b; d) and queue(b; d) in CWB-NC (table entries are time in
secs.)

3 In�nite-State Systems

Traditionally model checking and bisimulation algorithms are formulated on the basis of �nite LTSs.
However, an LTS for even a relatively small concurrent system may be very large. We introduce
the notion of Symbolic Transition Systems (STSs) as a way to represent large or in�nite-state
systems. An STS can be viewed as an LTS augmented with state variables, guards on transitions,
and nonground terms as action labels. In�nite-state systems can be represented �nitely by STSs.

3.1 Symbolic Transition Systems

We assume the standard notion of terms, substitutions and uni�ers. We use V to denote an
enumerable set of variables, F to denote a set of function symbols, P to denote a set of predicate
symbols, and B to denote ftrue; falseg. Function and predicate symbols have �xed arity; function
symbols of arity 0 are called constants. Expressions, denoted by E are terms over F [V and guards,
denoted by , are terms over P [F [V where predicate symbols appear at (and only at) the root.
The set of variables in a term t is denoted by vars(t). Substitutions, denoted by � and � (possibly
primed or subscripted), are mappings from V to E . A substitution that maps value v to variable
x is written as [v=x]. A term t under substitution � is denoted by t�; the composition of two
substitutions �1; �2 is denoted simply by �1�2.

A guard  of arity n is interpreted as a mapping from En to B. Alternatively,  can be viewed
as a set of substitutions such that � 2  i� � = true. An action is a term in one of the following
forms:

6



s0
insert?x
�! s1(x)

s1(x)
delete!x
�! s0

s1(x)
insert?y
�! s2(x; y)

s2(x; y)
delete!y
�! s1(x)

q0
insert?x
�! q1(x)

q1(x)
delete!x
�! qs0

q1(x)
insert?y
�! q2(x; y)

q2(x; y)
delete!x
�! q1(y)

Figure 4: Example STS representing 2-length stack (a) and 2-length queue (b) over arbitrary data
domain

� Input Action: Represented as c?x, where c is a constant and x is a variable.

� Output Action: Represented as c!e, where c is a constant and e is an expression.

� Internal Action: Represented by � , a constant.

Output actions without the expression parameter, as in c!, are also known signals, and are simply
represented as c.

De�nition 4 (Symbolic Transition System) A symbolic transition system is a �nite labeled

directed graph (S;�!), where S is a set of terms, called locations, which form vertices of the

graph, and �! is the edge relation where each edge s
;�;�
�! t is labeled with:

� an action � such that

{ vars(�) � vars(s) if � is not an input action.

{ vars(�) \ vars(s) = fg if � is an input action.

� a guard  such that vars() � vars(s), and

� a transfer relation � that relates vars(s) to vars(t).

If a guard is true it is omitted. The transfer relation is used to model updates to variables. The
transfer relation is omitted whenever it is the identity mapping over the source and target variables.
The edge relation of two STSs representing a stack and a queue that stores arbitrary data values,
with maximum bu�er length of 2, are shown in Figure 4 (a) and (b) respectively.

Note that the de�nition of STSs is general enough to capture Symbolic Transition Graphs
(STGs) [4] and STGs with Assignments (STGAs) [7]. For instance, STGs are STSs where each

edge s
;�;�
�! t is such that vars(t) � (vars(s) [ vars(�)).

3.2 Semantics of STS

Semantics of an STS S is given in terms of a transition relation, denoted by T (S), which is generated
by interpreting S with respect to substitutions. Given an STS S, each state in T (S) is a location
s paired with a substitution � on vars(s). There are di�erent variants of semantics depending on
how variables are interpreted. In the following, we describe late and early semantics which are the
most widely studied to date.

Late semantics is a natural interpretation of the symbolic transition systems, by \reading o�"
transitions from a state s� by applying the substitution on all components of edges of the form
s
;�;�
�! t from location s. This is captured formally by the following de�nition.

De�nition 5 (Late Transition Relation) Let � be a substitution such that s
;�;�
�! t 2 S,

� ) , and � satis�es �. Then T (S) contains s�
��
�!lt�.

7



One interesting aspect of late semantics is that we only capture substitutions on variables in
the target state of a transition if they are related by � to those in the start state. For instance,

consider an input transition of the form s
c?x
�! t. From de�nition of STS, x 62 vars(s). If t contains

x, then x does not immediately pick up a value due to this transition. The variable x is left to be
bound by a guard or transfer relation in a subsequent state. Early semantics interprets the new
variables introduced on input actions by immediately assigning values to them.

De�nition 6 (Early Transition Relation) Let � be a substitution such that s
;�;�
�! t 2 S,

� ) , and � satis�es �. Then T (S) contains

s�
��
�!et� if � is not an input action

s�
c?v
�!et�[v=x] if � = c?x, and v is a ground term

The two semantics naturally yield two variants of the bisimulation relation, as described in
Section 4. Below, we describe how an STS can be encoded as a logic program so that the late
semantics can be computed directly by resolution.

Encoding STS as a Constraint Logic Program: The edge relation of an STS S can be
encoded as a constraint logic program P such that for each s

;�;�
�! t 2 S

sts edge(s, �, , �, t)

is a fact in P . We can encode each guard  as a predicate in P so that whether � )  can be
checked using the query �. We can also encode the transfer relation � as a predicate in P .

The late transition relation (De�nition 5) can be computed from this set of facts using the
following rule:

late_trans(S, A, T) :-

sts_edge(S, A, Gamma, Rho, T),

Gamma, % The guard is satisfied

Rho. % and so is the transfer relation

Early transition relation cannot be so directly encoded due to the universal quanti�er over values
in its de�nition (see De�nition 6).

In our encoding of the bisimulation relations over STSs, it becomes necessary to explicitly obtain
conditions under which a late transition is enabled. We call this as a symbolic transition, denoted
by strans de�ned by the following rule:

strans(S, A, Gamma, T) :-

sts_edge(S, A, Gamma, Rho, T),

Rho. % The transfer relation is satisfied

The use of strans in the encoding of bisimulation relations is described in Section 4. In fact the
bisimulation relation uses only strans and late trans and do not directly operate on STSs (i.e.
use sts edge).

8



p
111

p
112

p
121

gf h

x=0 x!=0

p p

1

11 12
(x)(x)

p

c?x c?x

hf

x=0 x!=0

q
11

(x)

c?x

gh

x=0 x!=0

q
12

(x)

c?x

q

q
112

q
111

q q
122

1

121

(a) (b)

Figure 5: Example symbolic transition systems

4 Symbolic Bisimulation

Late bisimulation and early bisimulation, which we describe in detail below, di�er in the way input
actions are treated. Consider checking the bisimilarity of locations p1 and q1 in the STSs given in
Figure 5. Clearly, locations p111; p112; p121 are all bisimilar to locations q111; q112; q121; q122 (all are
deadlocked). Furthermore, location p11 is bisimilar to q11 when x = 0, and is bisimilar to q12 if
x! = 0; location p12 is bisimilar to q11 when x! = 0; and is bisimilar to q12 when x = 0. However,
are p1 and q1 bisimilar?

When q1 makes a transition, say q1
c?x
�! q11, what is the matching transition from p1? According

to the bisimilarity sets we have computed so far, the matching transition is the one to p11 when
x = 0 and the one to p12 when x! = 0. These two transitions together cover the transition from
q1 to q11. However, note that the action on this transition is an input: c?x. Do we know enough
about the value of x to make the choice between p11 and p12? According to early semantics, the
value of x is known when a transition is taken. However, according to late semantics, the value of
x is determined only by later guards, and hence unknown when the transition is taken. Hence, p1
and q1 are early-bisimilar but not late-bisimilar.

Before a formal presentation of the bisimulation relations over STSs, we motivate their de�ni-
tions by starting from the basic bisimulation relation for the �nite-state case. In De�nition 1, we
had

8s1; s2 2 S s1Rs2 ) (8s1
a
�! t1 ( 9s2

a
�! t2 t1Rt2) ^ s2Rs1)

The question we have now is, having picked a transition s1
a
�! t1, how do we pick the matching

s2
a
�! t2; and since in the symbolic case the action labels may bind variables, under what sub-

stitution. In the late bisimulation case, recall that the variable in an input label is bound only
afterward, and hence the matching transition s2

a
�! t2 should be such that t1 and t2 are bisimilar

under all substitutions to the input variable. In summary, the matching transition must be picked
before considering substitutions. This intuition is captured by the following formal de�nition of
late bisimulation.

De�nition 7 (Late Bisimulation) Given an STS (S;�!), the late bisimulation relation with

respect to substitution �, denoted by R�
l , is a subset of S � S such that

s1R
�
l s2 ) (8s1�

�1�!lt1� 9s2�
�2�!lt2� 8� (�1[��] = �2[��]) ^ t1R

��
l t2) ^ s2R

�
l s1

9



In the early bisimulation case, recall that the variable in an input action is bound at the
transition itself, there is no choice to make in terms of substitutions. This is captured by the
following formal de�nition of early bisimulation.

De�nition 8 (Early Bisimulation (using �!e)) Given an STS (S;�!), the early bisimula-

tion relation with respect to substitution �, denoted by R�
e, is a subset of S � S such that

s1R
�
es2 ) (8s1�

�1�!et1� 9s2�
�1
�!et2� (t1R

�
et2)) ^ s2R

�
es1

The above de�nition relies on the de�nition of the early transition relation. It turns out,
however, that we can de�ne early bisimulation completely in terms of the late transition relation [10],
as follows:

De�nition 9 (Early Bisimulation (using �!l)) Given an STS (S;�!), the early bisimulation
relation with respect to substitution �, denoted by R�

e, is a subset of S � S such that

s1R
�
es2 ) (8s1�

�1�!lt1� 8� 9s2�
�2�!lt2� (�1[��] = �2[��]) ^ t1R

��
e t2) ^ s2R

�
es1

This alternative de�nition of early bisimulation is especially important to a logic-programming-
based encoding since early transition relations are hard to encode as logic programs.

4.1 Encoding Bisimulation Checkers as Logic Programs

We can encode checkers for equivalence with respect to late as well as early bisimulation following
the encoding of bisimulation checkers for the �nite-state case.

Early Bisimulation: Consider the complement of early bisimulation relation Re, written as Re:

s1R�
es2 ( (9s1�

�1�!lt1� 9� 8s2�
�2�!lt2� (�1[��] = �2[��])) t1R��

e t2) _ s2R�
es1 (2)

Since bisimulation is the largest such relation, the complement is naturally the least relation that
satis�es the above equation. This relation can be encoded as a constraint logic program as follows:

nbisim(S1, S2) :-

late_trans(S1, A1, T1),

no_matching_trans(S1, A1, T1, S2).

nbisim(S1, S2) :-

nbisim(S2, S1).

no_matching_trans(S1, A1, T1, S2) :-

forall((A2, T2),

late_trans(S2, A2, T2),

nsimulate(A1, T1, A2, T2)).

nsimulate(A1, T1, A2, T2) :-

similar_act(A1,A2), nbisim(T1, T2)

; not_similar_act(A1,A2).

10



Several di�erences are apparent between the �nite-state bisimulation checker in Section 2 and
the one given above. The �rst and most obvious di�erence is the use of late trans for trans.
The second is the use of a ternary forall predicate in order to explicitly di�erentiate between the
bound and free variables. Note that in the �nite-state case, there were no free variables in the
universally quanti�ed formula, and hence we could vastly simplify the way forall was encoded.
In the in�nite-state case we need to �nd consistent values for all the free variables used in the
universally quanti�ed formula (8s2�

�2�!lt2� : : : in Equation 2). The more complicated encoding of
forall to accommodate free variables as well as to process constraints is discussed in Section 4.2.

The third di�erence is the use of similar_act (and not_similar_act) to check for
(�1[��] = �2[��]) in Equation 2 (and its negation). Although similar_act(A1,A2) is A1=A2,
not_similar_act(A1,A2) is not simply the negation of A1=A2, for the following reason. Two out-
put actions c!x and c!y can be dissimilar as long as x and y can be bound to di�erent values.
Note that, in contrast, since an input action creates a new bound variable, c?x and c?y are always
similar. Hence, we have the following encoding for similar_act and not_similar_act:

similar_act(A1, A2) :- A1 = A2.

not_similar_act(A1, A2) :-

A1 \= A2,

( (A1 = in(C,_), (A2 = in(D,_), C\=D

; A2 = out(_,_)

; A2 = tau)

; A1 = out(_,_)

; A1 = tau)).

Late bisimulation: Let us now consider Rl, the complement of late bisimilarity relation:

s1R�
l s2 ( (9s1�

�1�!lt1� 8s2�
�2�!lt2� 9� (�1[��] = �2[��])) t1R

��
l t2) _ s2R�

l s1 (3)

The essence of this equation is that in order to show non-bisimilarity, for every transition from
s2 to t2 we should �nd a local � such that either the actions do not match, or t1 and t2 are non-
bisimilar. This condition can be tested by simply ensuring that the di�erent transitions from s2
are standardized apart before checking for matching contexts. Standardization can be done via
copy_term/2 which generates a copy of a term with fresh variables. Late bisimulation can thus be
derived from the encoding of early bisimulation by modifying nsimulate/5 as follows:

nsimulate(A1, T1, A2, T2) :-

( similar_act(A1,A2),

change_environments(A1, (T1,T2), (U1,U2)),

nbisim(U1, U2))

; not_similar_act(A1,A2).

change_environments(in(_,_), E1, E2) :- copy_term(E1, E2).

change_environments(out(_,_), E1, E1).

change_environments(tau, E1, E1).

The predicate change_environments/3 ensures that each transition on input action from s2 is
evaluated in a separate environment, as required by late bisimulation.

11



Discussion: Observe that the nested call to nbisim/2 in the de�nition of nsimulate inherits a
new set of constraints from the guards on the two selected transitions as well as the values under
which the actions are similar. In our encoding, the current context in which nbisim/2 is evaluated
is maintained implicitly. This is a useful simpli�cation as compared to the original algorithm of
Hennessy and Lin [4], where the context of the bisimulation is maintained explicitly. The Hennessy-
Lin algorithm returns the most general context under which the two processes are bisimilar. In a
similar vein, when our encoding detects that two processes are not bisimilar, we can retrieve the
context which witnesses the non-bisimilarity of the two processes.

The complexity of the evaluation is O(jSj � j �! j) assuming unit-time table look up and con-
straint manipulation, which is same as Hennessy and Lin's procedural algorithm [4]. Furthermore,
the encoding clearly separates the logical aspects of bisimulation from its representational aspects.

4.2 Implementation

The encoding can be directly executed in a tabled constraint logic programming system that imple-
ments forall faithfully. Note that even if the guards and transfer relation of an STS contain only
equality constraints, the bisimulation checker itself needs to handle both equality and disequality
constraints.

A Meta-Interpreter for Tabled Constraint Logic Programs: We have implemented a con-
straint meta-interpreter that handles tabled logic programs over equality and disequality constraints
in XSB. The meta-interpreter maintains the constraint store and simpli�es the constraints as they
are propagated, thus simulating a tabled CLP environment. We use the traditional trick of trading
o� the costs associated with maintaining constraint stores always in canonical form against the cost
of extra resolution steps due to undetected inconsistencies in non-canonical constraint stores. The
distinctive feature of the meta-interpreter is the encoding of the forall construct. The basis of
this construct is the following implementation of forall that correctly treats free variables in the
quanti�ed formula over equality domain:

forall(BoundVars, Antecedent, Consequent) :-

bagof(BoundVars, Antecedent, BindingList),

excess_vars(Consequent, BoundVars, [], FreeVars),

all_true(BindingList, BoundVars, FreeVars, Consequent).

all_true([Binding|Rest], BoundVars, FreeVars, Consequent) :-

copy_term(f(Consequent, BoundVars, FreeVars),

f(Copy, Binding, FreeVars)),

Copy,

all_true(Rest, BoundVars, FreeVars, Consequent).

all_true([], _, _, _).

The standard Prolog predicate bagof is used to collect the set of bindings on the bound variables for
each valuation of the free variables such that Antecedent is true. Predicate excess_vars collects
the variables in the �rst argument that do not occur in the second, and is used to simply �nd the set
of free variables in a term, given the set of bound variables. For each binding in the set obtained in
bagof, Consequent is evaluated under the proper substitution of bound variables. The copy_term
is used to separate the environments for evaluating Consequent for the di�erent bindings on the
bound variables. Note that the free variables are shared between the evaluations, thereby ensuring
that forall is evaluated for consistent valuations of the free variables. This encoding of forall
is lifted to the constraint meta-interpreter by adding constraint stores and interpretation of bagof
and copy_term over constraint stores. Details are omitted.

12



Changes to the encoding to use the meta-interpreter: Note that the forall construct
is interpreted using an all-solutions predicate (bagof in this case). If we use this implementation
of forall in order to evaluate no_matching_trans/4, note that we will collect constraints under
which there are no matching transitions only considering those transitions that are enabled from
S2. Hence, we need to separate enabling and disabling of transitions from the actual computation
of substitutions. We do so by using, instead of late_trans/3, the predicate strans/4 which
explicitly returns the enabling condition of a transition without evaluating it. For instance, the
implementation of early bisimulation is changed to

nbisim(S1, S2) :-

strans(S1, A1, Gamma1, T1), Gamma1,

no_matching_trans(S1, A1, T1, S2).

nbisim(S1, S2) :-

nbisim(S2, S1).

no_matching_trans(S1, A1, T1, S2) :-

forall((A2, Gamma2, T2),

strans(S2, A2, Gamma2, T2),

nsimulate(A1, T1, A2, Gamma2, T2)).

nsimulate(A1, T1, A2, Gamma2, T2) :-

(Gamma2, (similar_act(A1,A2), nbisim(T1, T2))

; not_similar_act(A1,A2))

; negate(Gamma2).

where negate(p) evaluates the constraints under which p fails. The encoding of late bisimulation
is also modi�ed similarly.

4.3 Experimental Results

We measured the performance of our symbolic bisimulation checker on an in�nite-state version
of stack and queue. Stacks and queues, denoted by stack (n) and queue(n), of di�erent bu�er
lengths (n) but with unspeci�ed domain, were de�ned as STSs (e.g., see Figure 4) and encoded
as sts_edge facts. Note that even for �xed values of n, stack(n) and queue(n) are in�nite-state
systems since each element in them can store arbitrary data values. Tables 3 and 4 show the
time performance for checking early bisimulation comparing stack(n) and queue(n), and stack (n)
and stack(n) respectively. Times for late bisimilarity checking are about 2% more than their early
bisimulation counterpart due to the extra copy_term overhead.

Bu�er Length (n)

10 20 30 40 50 60 70 80

0.42 2.15 6.28 14.22 27.99 49.69 80.38 124.42

Table 3: Time for symbolic bisimulation checking for of stack (n) and queue(n)

At �rst sight, these tables display an anomaly: time taken to check bisimilarity when two
systems are not bisimilar (Table 3) is more than that for systems which are bisimilar (Table 4) for
the same bu�er length. This appears to contradict our previous observation that local bisimulation
explores less state space and takes less time when the systems under consideration are not bisimilar

13



Bu�er Length (n)

10 20 30 40 50 60 70 80

0.16 0.54 1.19 2.22 3.68 5.60 8.14 11.37

Table 4: Time for symbolic bisimulation checking for of stack(n) and stack (n)

as compared to the case when the systems are bisimilar. However closer inspection reveals that
the symbolic state space explored in checking for bisimilarity between two stacks is much less than
symbolic state space explored when checking for bisimilarity between a stack and a queue. In fact,
the symbolic (global) state space explored for checking bisimilarity between two stacks is linear in
the bu�er length. In contrast, the proof for non-bisimilarity of stack and queue depends both on
bu�er length and data domain size. It is worth mentioning that the state space explored for local
bisimilarity checking depends greatly on the way the two transition systems are encoded. In case
of checking for bisimilarity between a queue and a stack, if we �rst explore transitions with output
(delete) actions before exploring those with input (insert) actions the states needed to be explored
before the �rst non-similarity is detected is independent of the bu�er length.

It should also be noted that the symbolic state space of these systems may, in fact, be smaller
than the ground state space even for data domain sizes as low as 2. For instance, consider the
symbolic state space of a 2-element queue in Figure 4(b). Its symbolic state space has 3 states,
since the states q1(x) and q1(y) are simply variants of each other (i.e., identical modulo names of
variables), and hence identi�ed as a single symbolic state. In contrast, even for a 2-element data
domain, say f1; 2g, observe that q1(1) is a state distinct from q1(2). Moreover, q2(x; y) and q2(y; x)
represent the same symbolic state, while q2(1; 2) and q2(2; 1) behave di�erently. This is one of the
key reasons why we can do symbolic bisimulation checking comparing two stacks with bu�er length
as high as 80 in around 11 seconds, whereas in the non-symbolic case, even comparing two stacks
with bu�er length of 18 each and with data domain size of just 2 explores over over 250K states,
taking over 270 seconds in that process.

Finally, the meta-interpretation of constraints in the symbolic bisimulation imposes a heavy
performance overhead. Using the symbolic bisimulation checker for LTSs (i.e., ground transition
systems) is nearly 60 times slower than using the �nite-state bisimulation checker. It is expected
that a cleverer encoding of the constraint solver, together with the use of attributed variables [2]
to integrate the solver with the LP engine, will signi�cantly lower these overheads.

5 Conclusion

In this paper we demonstrated how the power and versatility of tabled logic programming can be
used for checking bisimilarity of in�nite-state systems in a natural way. Our implementation is
goal-directed, i.e., we explore only states needed to prove or disprove the bisimilarity of the given
states, and it can handle both early and late versions of strong as well as weak bisimilarity. Further-
more, the complexity of this implementation matches that of Hennessy and Lin's algorithm modulo
table-lookup time. Our experimental results show that the symbolic bisimulation checker over an
in�nite-state system can be considerably more eÆcient to use compared to regular bisimulation
checking over LTSs generated by �nite instances of these systems, even for relatively small domain
sizes. Applying the symbolic checker to real-life veri�cation problems thus appears feasible despite
signi�cant overheads imposed by the constraint solver.

A recent paper [8] explored the use of constraint logic programs for checking bisimilarity of

14



timed systems, where timed systems are encoded by their corresponding transition relation. The
encoding used in that work can be seen as specializing the nbisim predicate with respect to the
transition relation. It is therefore expected that our encoding can be used for checking bisimilarity
of timed systems. However, the performance of the checker will crucially hinge on the performance
of a constraint solver for linear constraints needed to evaluate queries over timed systems.

References

[1] CADP. Caesar/Aldebaran Development Package c1.112, 2001. Available from
http://www.inrialpes.fr/vasy/cadp.html.

[2] B. Cui and D.S. Warren. A system for tabled constraint logic programming. In Computational

Logic, pages 478{492, 2000.

[3] CWB-NC. The Concurrency Workbench of New Century v1.1.1, 2001. Available from
www.cs.sunysb.edu/�cwb.

[4] M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer Science, 138:353{389,
1995.

[5] P. C. Kanellakis and S. A. Smolka. CCS expressions, �nite state processes, and three problems
of equivalence. Information and Computation, 86(1):43{68, May 90.

[6] Z. Li and H. Chen. Computing strong/weak bisimulation equivalences and observation congru-
ence for value-passing processes. In Tools and Algorithms for the Construction and Analysis

of Systems (TACAS), pages 300{314, 1999.

[7] H. Lin. Symbolic transition graphs with assignments. In Concurrency Theory (CONCUR),
pages 50{65, 1996.

[8] S. Mukhopadhyay and A. Podelski. Constraint database models characterizing timed bisimi-
larity. In Practical Applications of Declarative Language, 2001.

[9] R. Paige and R. E. Tarjan. Three partition re�nement algorithms. SIAM Journal of Comput-

ing, 16(6):973{989, December 1987.

[10] J. Parrow. An introduction to �-calculus. In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors,
Handbook of Process Algebra, chapter 8, pages 479{544. North-Holland, 2001.

[11] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, T. W. Swift,
and D. S. Warren. EÆcient model checking using tabled resolution. In Proceedings of the 9th

International Conference on Computer-Aided Veri�cation (CAV '97), Haifa, Israel, July 1997.
Springer-Verlag.

[12] C.R. Ramakrishnan, I.V. Ramakrishnan, S.A. Smolka, Y. Dong, X. Du, A. Roychoudhury, and
V.N. Venkatakrishnan. XMC: A logic-programming-based veri�cation toolset. In Computer

Aided Veri�cation (CAV), 2000.

[13] XSB. The XSB logic programming system v2.3, 2001. Available from
http://www.cs.sunysb.edu/�sbprolog.

15


