
Resource-Constrained Model Checking of

Recursive Programs ?

Samik Basu1, K. Narayan Kumar1;2, L. Robert Pokorny1, and
C.R. Ramakrishnan1

1 Department of Computer Science,
State University of New York at Stony Brook

Stony Brook, New York, U.S.A.
E-mail: fbsamik,kumar,pokorny,cramg@cs.sunysb.edu

2 Chennai Mathematical Institute, Chennai, India.
E-mail: kumar@smi.ernet.in

Abstract. A number of recent papers present eÆcient algorithms for
LTL model checking for recursive programs with �nite data structures.
A common feature in all these works is that they consider in�nitely long
runs of the program without regard to the size of the program stack.
Runs requiring unbounded stack are often a result of abstractions done
to obtain a �nite-data recursive program. In this paper, we introduce
the notion of resource-constrained model checking where we distinguish
between stack-diverging runs and �nite-stack runs. It should be noted
that �niteness of stack-like resources cannot be expressed in LTL.

We develop resource-constrained model checking in terms of good cycle
detection in a �nite graph called R-graph, which is constructed from a
given push-down system (PDS) and a B�uchi automaton. We make the
formulation of the model checker \executable" by encoding it directly
as Horn clauses. We present a local algorithm to detect a good cycle in
an R-graph. Furthermore, by describing the construction of R-graph as
a logic program and evaluating it using tabled resolution, we do model
checking without materializing the push-down system or the induced R-
graph. Preliminary experiments indicate that the local model checker is
at least as eÆcient as existing model checkers for push-down systems.

1 Introduction

Model checking is a widely used technique for verifying whether a system spec-
i�cation possesses a property expressed as a temporal logic formula [7, 8, 14].
Most early works on model checking have restricted system speci�cations to be
�nite state. A number of recent works have addressed the problem of model
checking push-down processes with �nite alphabets, which are natural models
for recursive programs operating on �nite data structures (e.g. [12, 4, 10, 5, 3]).

In this paper, we consider the problem of LTL model checking of recursive
programs. Models of LTL formulas are usually described in terms of in�nite runs

? This work was supported in part by NSF grants EIA-9705998, CCR-9876242, EIA-
9805735, N000140110967, and IIS-0072927.

bool g;
procedure main() {

g = false;
while (true) {

flip();
flip();
if (!g)

reach: skip
}

}

procedure flip() {
if (g) {

if (*) {
flip();
flip();
}}

g = !g;
return;

}

void flip(N) {
int (0..7) i;
if (g) {

i = 0;
while (i < 7) i++;

} else if (N > 0) {
flip(N - 1);
flip(N - 1);

}
g = !g;
return;

}

(a) (b) (c)

Fig. 1. Recursive programs with �nite-domain variables

of a system. For push-down systems, the stacks may diverge on some in�nite
runs, indicating runs not realizable in any implementation of the system. In
fact, stack-diverging runs may be an artifact of abstractions performed to obtain
�nite-data recursive programs. Such abstractions are often performed to obtain
a single program that represents the behaviors of an in�nite family of programs.
For instance, consider the �nite-domain program shown in Fig. 1(a) and (b).
The example was derived from ones used in [2] and [11]. The procedure flip()
in Fig. 1(b) is an abstraction of procedure flip(N) in Fig. 1(c) (from [11]). In
the program, the statement if (*)... indicates a non-deterministic choice, the
result of abstracting away the conditional expression.

The need for resource-constrained model checking. For the program in
Fig. 1(a,b) consider the veri�cation of the LTL property AGF reach starting
from a state representing the �rst statement in procedure main. This property
does not hold since the program has a run where it keeps recursively invoking
flip. However, such a run is clearly unfeasible in any concrete implementation
of the program, since the program stack grows without bound.

It is hence natural to restrict our attention to runs where the stacks remain
�nite. However, traditional mechanisms to restrict the runs under consideration
such as adding fairness constraints cannot be used to capture stack-�niteness:
separating a run that involves in�nite number of unmatched pushes from the
rest cannot be done using a regular language.

Returning to the example in Fig. 1(a,b), observe that the property AGF
reach holds for every run that consumes only a �nite stack. It is easy to see
that flip, whenever it terminates, negates the global variable g. Hence two
consecutive calls to flip leave g unchanged, making reach true in every iteration
of the loop in main. Since flip terminates if and only if the program stack
remains �nite, AGF reach holds on all �nite-stack runs.

Our approach. In this paper, we describe a model checker, called resource-
constrained model checker, that separates the �nite-stack runs from stack-
diverging runs. Our technique can determine that AGF reach holds for all �nite-
stack runs of the program in Fig. 1(a,b), while there are stack-diverging runs

2

that violate the property. We give a brief overview of our technique below. For
simplicity we assume in the following that the push-down system has a single
control state: i.e., a context-free process. Our formal development in the later
sections considers general push-down systems.

Given a push-down system P and a B�uchi automaton B (corresponding to
the given LTL property), we develop a model checker as follows. We �rst build a
�nite graph R, called the R-graph, that abstracts the product of P and B. The
nodes of R are labeled with pairs (b;), where is a stack alphabet of P and b

is a state in B. Edges in R are labeled with a goodness label (true or false) and
a resource label (0 or 1).

Intuitively, an edge in R, say from (b;) to (b0; 0) corresponds to a �nite
sequence of moves that take P from a con�guration with on top of stack to
one with 0 on top of stack, and correspondingly moves B from state b to state
b0. The edge is good (i.e. its goodness label is true) if and only if there is some
good state in B that is visited in that corresponding run in B from b to b0. The
resource label on the edge is 0 if the corresponding run in P leaves the size of
the stack unchanged; the resource label is 1 if the stack size increases by 1.

An accepting path in R is an in�nite path where good edges appear in�nitely
often and only �nitely many edges have resource label 1. We show that there is an
accepting path in R if, and only if, there is a �nite-stack run of P accepted by B.
The R-graph is analogous to the automaton Abr described in [12]. However, the
resource labels of R distinguish between �nite-stack and stack-diverging runs of
P . Thus, ignoring the resource labels in the acceptance criterion of R, we obtain
a model checker that is, in concept, equivalent to the ones previously de�ned
in the literature [4, 10, 12, 11]. Although R-graph has much in common with
techniques described in these works in terms of formulation, our implementation
strategy is substantially di�erent, as described below.

Contributions.

{ We introduce the notion of resource-constrained model checking of push-
down systems. We formulate this problem in terms of good cycle detection
in R-graph, a �nite graph.

{ We develop the R-graph R so that the equations de�ning the edge relation
can be readily speci�ed as a Horn-clause logic program (Section 3). The
transition relation of R can be computed on the y based on the transition
relations of P and B, which may themselves be derived from more basic
procedures (such as LTL tableaus for B�uchi automata construction).

{ We present a local good-cycle detection algorithm based on Tarjan's algo-
rithm [18] along the lines of [9], to handle the unique acceptance criteria of
R-graph. The local algorithm detects good cycles as early as possible, ensur-
ing that we explore only those transitions in P and B needed to complete
the proof (Section 4). By evaluating these programs using the XSB logic
programming system [19], we get a local, on-the-y model checker.

{ We show that, using tabled resolution, the model checker runs in O(c� b3�
2g+l) time (where c is the size of program's control ow graph, b the size of

3

B�uchi automaton and g and l are the maximum number of global and local
variables) and O(c� b2�2g+l) space. Our experiments show that our model
checker is at least as eÆcient in practice as described in earlier literature,
including the symbolic model checkers (Section 4).

We begin with a review of LTL model checking for push-down systems ig-
noring resource constraints.

2 Model Checking Push-Down Systems

In this section we give an overview of model checking push-down systems (PDS).
PDSs can be used to model programs with procedures and can be extracted from
the control ow graphs of programs. For details refer to [11].

Preliminaries. A PDS is a triple P = (P; �;�) where P is a �nite set of control
locations, � is a �nite set of stack alphabets and � � (P � �)� (P � � �) is a
�nite set of transition rules. We shall use , 0 etc. to denote elements of � and
use u, v, w etc. to denote elements of � �. We write hp; i ,! hp0; wi to mean
that ((p;); (p0; w)) 2 �.

We restrict ourselves to PDSs such that for every rule hp; i ,! hp0; wi; jwj �
2; any PDS can be put into such a form with linear size increase.

A con�guration or state of P is a pair hp; wi where p 2 P is a control location
and w 2 � � is a stack content. If hp; i ,! hp0; wi, then 8v 2 � � the con�guration
hp0; wvi is an immediate successor of hp; vi. Then we say hp; vi has a transition
to hp0; wvi and denote it by hp; vi ! hp0; wvi. A run of P is a sequence of
the form hp0; w0i; hp1; w1i; : : : ; hpn; wni; : : : where hpi; wii ! hpi+1; wi+1i for all
i � 0. A run denotes a �nite or an in�nite run.

A B�uchi automaton is de�ned as (Q;�!; �;Q0; F) where Q is the �nite set
of states, �!� (Q���Q), � is the set of edge labels, Q0 � Q is the set of start
states and F � Q is the set of �nal states. An accepting run in the automaton is

de�ned to be a sequence q0
�0�! q1

�1�! : : :
�k�1
�! qk : : : with q0 2 Q0 where qk 2 F

appears in�nitely many times.
A B�uchi PDS is de�ned as (Pbp; P0; �bp; �bp; Gbp) where Pbp is the �nite set

of control locations, P0 2 Pbp is the set of starting control location, �bp is the
set of stack alphabets, �bp � (Pbp � �bp) � (Pbp � � �

bp) and Gbp � Pbp is the
set of good control locations. The subscript bp may be dropped whenever it is
obvious from the context. An accepting run in the B�uchi PDS is de�ned to be
an in�nite sequence where con�gurations with control locations 2 Gbp appear
in�nitely many times.

Let Prop be a �nite set of propositions. Given a linear time temporal logic
(LTL) formula � over Prop, as is well known, one can construct a B�uchi au-
tomaton with � = 2Prop that accepts the models of the formula �.

Our aim is to verify PDSs against properties expressed as LTL formulas. Let
P = (P; �;�) be a PDS, and let � : (P � �) ! � be a labeling function. The
truth of a proposition at a con�guration is determined by the control location

4

and the symbol at the top of the stack in that con�guration. Thus, any (in�nite)
run of P de�nes a model for LTL over Prop.

In order to solve the model checking problem for PDSs, i.e. determine whether
(the model de�ned by) every run of P satis�es �, it is suÆcient to construct the
B�uchi automaton B corresponding to :� and verify that no run of P is accepted
by that B�uchi automaton. This is done by constructing the product of P and B
resulting in a B�uchi PDS BP and verifying that it accepts the empty language.
The de�nition of the system BP is as follows:

1. Pbp = (P �Q)
2. P0 = f(p; q) 2 Pbp j q 2 Q0g
3. �bp = �

4. �bp = fh(p; q); i; h(p0; q0); wi j hp; i ,! hp; wi; q
�
�! q0; and � � �(p;)g

5. Gbp = f(p; q) j q 2 Fg

In what follows we use ,! to denote a transition rule in �bp of BP.

De�nition 1 Given a B�uchi PDS BP, we say that p1 can weakly erase and get
to p2 (written (p1; ; p2) 2 Werase) if there is a run starting at the con�guration
hp1; i and ending at hp2; �i. We say that p1 can strongly erase and get to
p2 (written (p1; ; p2) 2 Serase) if there is a run starting at the con�guration
hp1; i and ending at hp2; �i in which at least one of the intermediate control
states belongs to G.

Proposition 1. Let Erase be the least relation satisfying:

1. (p1; 1; g; p
0) 2 Erase if hp1; 1i ,! hp0; �i; g � p1 2 G

2. (p1; 1; (g _ g0); p0) 2 Erase if hp1; 1i ,! hp; i and (p; ; g0; p0) 2 Erase; g �
p1 2 G

3. (p1; 1; (g _ g0 _ g00); p00) 2 Erase if hp1; 1i ,! hp; 2i, (p; ; g
0; p0) 2 Erase

and (p0; 2; g
00; p00) 2 Erase; g � p1 2 G

Then, (p; ; p0) 2Werase i� (p; ; g; p0) 2 Erase for some g and (p; ; p0) 2 Serase

i� (p; ; true; p0) 2 Erase. Thus, Serase and Werase are computable.

In what follows, we shall often write Erase(x; y; z) instead of (x; y; z) 2 Erase.
Erase corresponds to pre�(P) in [10]. Since Erase is the least �xed point of

its de�ning equations, the following corollary is immediate.

Corollary 1. There is an integer k such that, for any pair of control locations
p; p0 and any stack symbol whenever (p; ; p0) 2 Werase(Serase), there is wit-
nessing run from (p;) to (p0; �) in which the size of the stack is bounded by k.

The Erase relation for the B�uchi PDS in Fig. 2(a) is given in Fig. 2(b).

De�nition 2 Given a B�uchi PDS BP, we associate with it two binary relations
W
Æ�! and

S
Æ�!, over the set P � � , as follows: (p;)

W
Æ�! (p0; 0) i� there is a

run from hp; i to hp0; 0wi for some w 2 � �. (p;)
S

Æ�! (p0; 0) i� there is a run
from hp; i to hp0; 0wi, for some w 2 � �, that visits at least one con�guration
whose control location belongs to G.

5

Proposition 2. Let the relation =)� P � � � ffalse; trueg � P � � be the
least relation satisfying:

1. (p1; 1)
p12G
=) (p0; 0) if hp1; 1i ,! hp0; 0i

2. (p1; 1)
p12G
=) (p0; 0) if hp1; 1i ,! hp0; 000i

3. (p1; 1)
p12G_g
=) (p0; 0) if hp1; 1i ,! hp; 0i and Erase(p; ; g; p0)

Then, (p;)
W
Æ�! (p0; 0) i� (p;) =)� (p0; 0) and (p;)

S
Æ�! (p0; 0) i�

(p;) =)� true=)=)� (p0; 0) where =)=
false
=) [

true
=).

Thus the relations
S

Æ�! and
W
Æ�! are computable.

The following theorem, [12], shows that, given the above proposition, the empti-
ness problem for any B�uchi push-down system is decidable. We present the proof
here since its details inspire the de�nition of resource constrained model checking
(Section 3).

Theorem 1 A B�uchi PDS BP accepts some word i� there are p; ; p0; 0 such

that p 2 P0; (p;)
W
Æ�! (p0; 0) and (p0; 0)

S
Æ�! (p0; 0).

Proof : The following observation is useful.

Observation: If hp0; 0w0i
�
! hpn; nwni is a run where for each i with 0 � i � n,

jiwij � j0w0j, then (p0; 0)
W
Æ�! (pn; n) and further if this run involves a

con�guration with pi 2 G then (p0; 0)
S

Æ�! (pn; n). (In either case given run
itself serves as a witness to this membership.)

Let the accepting run of BP be S = hp0; 0i; hp1; 1w1i; : : : hpn; nwni : : :.
The proof proceeds by considering two cases.
Case 1: For any integer d the set fwi j jwij = dg is �nite(i.e. the stack size
grows \monotonically").

Let id be the largest integer such that jwid j = d. Clearly, id is monotonic on

d. Let hqi; ivii = hpdi ; wdii, 8i � 1. Then, hqi; ii
�
! hqj ; jwji 8j > i via the

subrun of the given run and further at every point in this run the size of the stack

is at least jivij. Thus, by the above observation, (qi; i)
W
Æ�! (qj ; j) 8i < j.

Further since the set of control locations and the stack alphabet are �nite, there
must be an in�nite sequence j1; j2; : : : with q0 = qj1 = qj2 = : : : and 0 = j1 =
j2 = : : : and clearly there is a k such that in the subrun from hqj1 ; j1vj1 i to
hqjk ; jkvjk i at least one of the intermediate con�gurations involves a control

location from G. Thus, from the above observation (q0; 0)
S

Æ�! (q0; 0). Once

again using the above observation, (p;)
W
Æ�! (qi; i) for each i � 0 and hence

(p;)
W
Æ�! (q0; 0) and this completes the proof of this case.

Case 2: Otherwise, there is a least d such that there are in�nitely many i with
jwij = d. Then, clearly there is an N such that 8j � N jwj j � d. Therefore, there
is an in�nite sequence j1 < j2 < : : :, with d < j1 with jwji j = d. Let wji = jivji .

6

Further, there is a sequence j1 < j2 < : : : such that q0 = qj1 = qj2 = : : : and
0 = j1 = j2 = : : :. Once again, using the above observation (since the size
of the stack at any con�guration beginning at hqj1 ; j1i � d) we conclude that

(q0; 0)
S

Æ�! (q0; 0) and the proof follows as above.

For the converse, (p;)
W
Æ�! (p0; 0) and (p0; 0)

S
Æ�! (p0; 0), then it is easy

to see that there is an accepting run of the form hp = p1; = 1i
�
! hp0; 0v0i

�
!

hp0; 0v1v0i
�
! hp0; 0v1v1v0i : : :. 2

3 Resource-Constrained Model Checking

In Section 2, an accepting sequence in BP is de�ned without regard to the size
of the stack in that sequence. This allows accepting sequences where the stack
may diverge denoting an unfeasible run in any implementation of the program
modeled by a PDS P . We now focus only on runs where the stack size remains
�nite. We call the problem of determining whether a B�uchi PDS has a �nite-
stack accepting run as the resource constrained model checking problem. Note
that we do not bound the stack size a priori but consider all runs that have
�nite stack size.

We de�ne two relations
W
Æ�!0 and

S
Æ�!0 similar to those in De�nition 2.

De�nition 3 Given a B�uchi PDS BP, we associate with it a binary relation
S

Æ�!0, over the set P � � , as follows: (p;)
S

Æ�!0 (p0; 0) i� there is a run
from hp; i to hp0; 0i, that visits at least one con�guration whose control location

belongs to G. Further
S

Æ�!0 corresponds to �nite runs without net change in the
stack size.

Hence we have the following theorem.

Theorem 2 A given B�uchi PDS BP has a �nite stack accepting run i� there is

p; ; p0; 0 such that p 2 P0; (p;)
W
Æ�! (p0; 0) and (p0; 0)

S
Æ�!0 (p

0; 0).

In order to show that the resource constrained model checking problem is decid-

able we need to show that the
S

Æ�!0 relation is computable.

Proposition 3. Given a B�uchi PDS BP we de�ne a relation =)0� P � � �
ffalse; trueg� f0; 1g� P � � as the least relation satisfying:

1. (p1; 1)
p12G
=)0 (p0; 0) if hp1; 1i ,! hp0; 0i

2. (p1; 1)
p12G_g
=)0 (p0; 0) if hp1; 1i ,! hp; 0i and Erase(p; ; g; p0)

Then, (p;)
S

Æ�!0 (p0; 0) i� (p;) =)0
� true
=)0=)0

� (p0; 0). Hence,
S

Æ�!0 is
computable.

7

Proof : Let (p;)
S

Æ�!0 (p0; 0) and let hp = p1; = 1i ! hp2; 2w2i : : : !
hp0 = pn;

0 = ni be the derivation witnessing this. Thus, there is an i such that
pi 2 G.

We show that (p;) =)0
� true
=)0=)0

� (p0; 0) by induction on n. For n = 0,
it must be the case that p = p0, = 0 and p 2 G and thus there is nothing to
prove.

Suppose the result holds for all computations of length less than n. Now,
there are two cases, if w2 = �, then, by induction hypothesis, either p 2 G and

(p2; 2) =)0
� (pn; n) or (p2; 2) =)0

� true
=)0=)0

� (pn; n). In either case we
have the desired result.

Now, suppose w2 6= �. Then w2 = ̂ for some ̂ 2 � . By the de�nition of a run
for a PDS, it then follows that there is a least j > 2 such that j = ̂ and wj = �.
Thus, p2 erases 2 and reaches pj . Hence, depending on whether 1 � i < j

or not, we either have (p1; 1)
true
=)0 (pj ; j) =)0

� (pn; n) or (p1; 1) =)0

(pjj) =)0
� true
=)0=)0

� (pn; n). In either case we have the desired result.

The converse is an easy induction on the iterative de�nition of
g

=)0 and the
details are omitted. 2

Theorem 2 shows that resource constrained model checking of a B�uchi PDS

can be reduced to checking for cycles in a graph induced by �nite relations
W
Æ�!

and
S

Æ�!0. Such a graph called an R-graph is de�ned as follows.

De�nition 4 An R-graph of BP is de�ned as R = ((P � �);=)) where nodes
are labeled by pair of control location and stack alphabet and set of edges are la-
beled by a pair (goodness label, resource label) with goodness label 2 ftrue; falseg,
resource label 2 f0; 1g.

The edge relation is such that there is an edge between nodes s1 and s2 i�

s1
g

=) s2, where =) is as de�ned in Proposition 2. g is called the goodness label
of the edge.

The resource label of the edge is 0 if s1
g

=)0 s2 where =)0 is as de�ned in
Proposition 3, and 1 otherwise.

A cycle in R-graph is said to be good if there is at least one edge in the cycle
with goodness label true and resource labels of all edges in the cycle are 0 . A
path in R-graph starting at (p;) is said to be good if it reaches a good cycle.

Proposition 4. A given B�uchi PDS BP has a �nite stack accepting run i� there
is a good path in the corresponding R-graph.

The R-graph corresponding to the B�uchi PDS in Fig. 2(a) is shown in
Fig. 2(c).

4 Implementation

We now describe the salient aspects of an implementation of the model checker
developed in the previous sections using logic programming. Encoding the var-
ious relations such as Erase as a logic program, and evaluating the program in

8

P = fp; qg
P0 = fpg
� = fm0;m1; s0; s1; s2g
G = fqg
� = hp;m0i ,! hp; s0m1i

hp;m1i ,! hp;m1i
hq;m1i ,! hq;m1i
hp; s0i ,! hp; s1i
hp; s1i ,! hp; s0s2i
hp; s2i ,! hq; �i

Erase relation

(p; s0; false; p)
(p; s2; false; q)
(p; s1; false; q)
(p; s0; false; q)

g
=)r relation

(p;m0)
false
=)1 (p; s0)

(p;m1)
false
=)0 (p;m1)

(q;m1)
true
=)0 (q;m1)

(p; s0)
false
=)0 (p; s1)

(p; s1)
false
=)1 (p; s0)

(p;m0)
false
=)0 (p;m1)

(p;m0)
false
=)0 (q;m1)

(p; s1)
false
=)0 (p; s2)

(p; s1)
false
=)0 (q; s2)

(a) (b) (c)

Fig. 2. (a) B�uchi PDS, (b) corresponding Erase relation and (c) its R-graph

a goal-directed fashion, we get a local (exploring only the needed states) and
on-the-y (constructing states on demand) model checker.

From program to R-graph. Given a control ow graph representation of a
program, it is straightforward to construct the equivalent PDS. Following [11],
the valuation of global variables form the control states while the current node
label and the valuation of local variables form the stack alphabet. We illustrate
the construction for a call statement below. A transition hp; i ,! hp1; 12i is
represented below as pds trans(p, , p1, [1, 2]).

pds_trans(G1, f(S1, L1), G2, [f(S,FL), f(S2,L1)]) :-

cfg_node(S1, call(Proc, Params)),

entry(Proc, S, Params, FL),

cfg_edge(S1, _, S2).

In the fragment above, cfg_edge denotes the edge relation of a CFG (the
2-nd argument is a guard on the edge) and cfg_node denotes the mapping
between node labels and the statements. The relation entry associates with
each procedure Proc its entry point, formal parameters and local variables (which
include the formals). Values are transformed at a basic level by transfer functions
describing the behavior of statements such as assignments; the other statements
propagate these changes.

A B�uchi automaton can also be encoded with rules similar to those encoding
a PDS. In fact, Horn clauses can be used to describe the construction of an
automaton from the negation of an LTL formula [13]. Product construction to
derive B�uchi PDS is also straightforward and omitted. We assume that the tran-
sitions of a B�uchi PDS are given by a relation bpds_trans(P1,Gamma1,P2,Dest)
where Dest is a list of up to two elements with nil representing � transitions.

9

erase(B1, Gamma, Good, B2) :-
bpds_trans(B1, Gamma, B2, []),
good_beuchi_state(B1, Good).

erase(B1, Gamma, Good, B2) :-
bpds_trans(B1, Gamma, B3, [Gamma1]),
erase(B3, Gamma1, G1, B2),
good_beuchi_state(B1, G2), or(G1, G2, Good).

erase(B1, Gamma, Good, B2) :-
bpds_trans(B1, Gamma, B3, [Gamma1, Gamma2]),
erase(B3, Gamma1, G1, B4),
erase(B4, Gamma2, G2, B2),
good_beuchi_state(B1, G3), or(G1, G2, Gt), or(Gt, G3, Good).

edge(s(B1, Gamma1), l(Good, 0), s(B2, Gamma2)) :-
bpds_trans(B1, Gamma1, B2, [Gamma2]),
good_beuchi_state(B1, Good).

edge(s(B1, Gamma1), l(Good, 1), s(B2, Gamma2)) :-
bpds_trans(B2, Gamma1, B2, [Gamma2, _]),
good_beuchi_state(B1, Good).

edge(s(B1, Gamma1), l(Good, 0), s(B2, Gamma2)) :-
bpds_trans(B1, Gamma1, B3, [Gamma, Gamma2]),
erase(B3, Gamma, G1, B2),
good_beuchi_state(B1, G2), or(G1, G2, Good).

Fig. 3. Generation of R-graphs from PDS models

Finally, the Erase relation (De�nition 1) as well as the edge relation of the
R-graph(De�nition 4) are directly encoded as logic programs, as shown in Fig. 3.
We use the relation good_beuchi_state(B,G) to determine if B is an accepting
state of B.

Complexity. The crucial predicate in the encoding is erase. When evaluated
with tabled resolution [17, 6], erase can be computed in O(j�bpj�jPbpj

2), where
�bp and Pbp are the number of transitions and control states, respectively, in
the B�uchi PDS. To derive the space and time complexity in terms of the input
program's size, let c be the size of the control ow graph, b the size of the
B�uchi automaton, and g and l be the (maximum) number of global and local
variables. Then the time complexity of computing erase is O(c�b3�2g+l). The
cubic factor comes from the last rule of erase which performs a join and hence
e�ectively iterates once over all states in the B�uchi automaton (note that B4 is
drawn only from the states of B) for each tuple in the relation. The size of erase
relation is O(c� b2 � 2g+l).

It can also be readily seen that the time taken to completely evaluate edge
is O(c � b � 2g+l) once erase has been computed. The size of the R-graph
is also O(c � b � 2g+l). Good cycles in the R-graph can be detected in time
proportional to the size of the graph and hence the overall time to model check
is O(c� b3� 2g+l), matching the best-known algorithms. The time complexities
assume unit-time table lookups. Organizing the tuples of the relations as binary
trees would increase the complexity by a factor of O((log(c) + log(b))(g+ l)). In
an implementation platform, such as the XSB logic programming system [19],
the tuples are a factor of O((log(c)+log(b))(g+ l)). In a realistic implementation
platform, such as the XSB logic programming system, the tuples are organized

10

using trie data structures, giving close to unit-time lookups in practice. The tries
sometimes induce parts of tuple representations to be shared, reducing the space
complexity.

The analysis does not take into account the locality due to the goal-
directedness of tabled evaluation, since it does not appear to reduce the worst
case complexity. However, if the transfer functions were monotonic (as in data-
ow analyses), the factor of 2g+l will be brought to g(g + l)2 with goal-directed
evaluation. We now present a local cycle detection algorithm that exploits the
locality, by invoking edge and, in turn, erase only until a good cycle is found.

Local detection of good cycles. The �nal step in model checking is determining
if there is a reachable good cycle in the R-graph. Recall that a good cycle is
de�ned as one which has at least one edge with goodness label being true while
all edges in the cycle have resource labels 0. The �rst condition is a disjunctive
property: a cycle has a good edge if and only if an SCC has a good edge. Tarjan's
SCC algorithm [18] can be adapted to perform local good-cycle detection when
the acceptance condition is a disjunctive property: e.g., Couvreur's algorithm
in [9]. The second condition, however, cannot be cast as a property of SCC.
We present a local algorithm that incorporates both conditions. The algorithm,
presented in Fig. 4, uses a modi�cation of Couvreur's algorithm as a subroutine.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

Boolean good path(v0)
begin
pending := f v0 g;
while (v 2 pending)
pending := pending �fvg;
DFSnum := 1;
Sstack := empty;
Lstack := empty;
push(Lstack, false);
if (good cycle(v)) then

return true;
end while
return false;

end

1.
2.
3.
4.
5.
6.
7.
8.
9.

procedure mark(v)
begin
if not v.complete then
v .complete := true;
forall (w such that there is

an edge from v to w)
mark(w);

end forall
end

1.
2.
3.
4.
5.
6.
7.
8.
9.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

Boolean good cycle(v)
begin
v.visited := true;
v.dfsnum := DFSnum++;
push(Sstack , v.dfsnum);
forall (G,w such that there is an edge

from v to w with goodness label G
and resource label 0)

if (not w .visited) then
push(Lstack, G);
if good cycle(w) then

return true;
else if not w .complete then

if (G) then
return true;

else
while (top(Sstack) > w .dfsnum)

if (top(Lstack)) then
return true

else
pop(Lstack); pop(Sstack);

end while
end forall
if (top(Sstack) = v .dfsnum) then

pop(Sstack); pop(LStack);
mark(v);

forall (w such that there is an edge
from v to w with resource label 1
and not w .visited)

pending := pending + fwg;
end forall
return false;

end

Fig. 4. Local Good-cycle detection algorithm

11

We handle the \all 0-edges" condition by partitioning the depth �rst search
where we explore all edges with a 0 resource label before looking at any with
a 1 resource label. Given a graph with nodes in set S and a starting node v0,
this partitions the nodes into sets S0 and S00, where S0 consists of all (and only)
those nodes that are reachable from v0 using edges with 0 resource labels, and
S00 = S�S0. We do this partitioning while looking for good cycles in the subgraph
induced by S0 using a modi�cation of the algorithm in [9]. If no good cycles are
found, we pick a node, say v1 from S00 that is reachable from some node in S0
via a edge with resource label 1. We use v1 to partition S00 into S1 and S01, and
so on. This procedure will partition the graph into subgraphs containing only
0-edges where the subgraphs are connected by 1-edges. If a good \all 0-edge"
cycle exists it will be within one subgraph since there are no 0-edges from a node
Si to a node in Sj if j > i.

In the algorithm in Fig. 4, we use two global stacks: Sstack , the stack of
DFS numbers of current SCC roots, and Lstack that summarizes the labels on
edges in/between each of the components rooted in Sstack . These stacks guide
the local detection of good cycles within a single subgraph. While exploring a
subgraph, when a previously visited node in an incomplete SCC is seen via a
0-edge, say from v to w, then we combine the SCC roots of v and w. While doing
so we update the status of labels in the combined SCC and return immediately
if the summary indicates a true label (lines 15{23 in good cycle()). We use a set
pending to record nodes reachable via a 1-edge from the current subgraph. Thus,
at the end of exploring a subgraph Si, pending contains exactly the set of nodes
in Si+1. The algorithm also maintains various marks on each node: visited and
complete , both initially false and dfsnum that records the node's DFS number.

It is easy to show that the local algorithm is linear. Although the algorithm
only determines whether or not a good path exists, it can be readily modi�ed
to output such a path. Finally, by organizing pending as a queue, we can ensure
that we will �nd a path with the smallest amount of stack consumed in the
initial segment leading up to the good cycle.

Performance. We tested the performance of our model checker on an exam-
ple program, shown in Fig. 1(a,c) with one modi�cation: main (Fig 1(a)) calls
flip(N) instead of flip. The procedure in Fig. 1(c) is a concrete version of the
one shown in Fig. 1(b) with the recursion control parameter left unabstracted.
Note that in the concrete version calls to the procedure flip from main is done
with the recursion depth parameter N. We veri�ed the property AGF reach for
di�erent values of the recursion depth parameter N. Fig. 5(a) shows the running
time and space statistics for model checking when the global variable g initialized
to false . With this initial value the property is true, and there are no good cycles
in the corresponding R-graph(recall that we check for negation of the property).
Fig. 5(b) shows the performance of our model checker with g left uninitialized
(thus exploring both true and false valuations). In this case, which is identical
to the one reported in [2] and [11], the property is false, and we exit the model
checker as soon as we see the �rst good cycle in the R-graph.

12

(g initially false: no good cycle)

Space
N CPU Time Total Table

1K 0.5s 10M 5M
2K 1.1s 19M 10M
4K 2.1s 37M 20M
8K 4.4s 74M 40M
16K 8.9s 148M 81M
32K 17.2s 295M 161M

(g initially unde�ned : 9 good cycle)

Space
N CPU Time Total Table

8K 0.6s 19M 13M
16K 1.2s 37M 27M
32K 2.2s 74M 54M
64K 4.8s 147M 108M
128K 9.6s 294M 216M
256K 19.0s 587M 431M

(a) (b)

Fig. 5. Performance of our model checker on AGF reach for program in Fig. 1(a,c) for
g initialized to false (a) and left uninitialized (b). Measurements taken using XSB2.4
& Mandrake Linux 8.1 running on a 1.7GHz Xeon with 2GB memory.

The performance numbers are preliminary and only serve to highlight the
unique aspects of our model checker. First of all, the �gures show the impact
of local model checking on this problem, with more than 7-fold di�erence in
running time. Secondly, even though the performance reported here and in [11]
were collected on di�erent hardware platforms, the raw times in Fig. 5(a) are
about 5 times smaller than those given in [11], indicating that a local explicit
state checker can o�er performance comparable to a symbolic one even when
the entire state space is explored. Thirdly, the time and space performance for
both cases is linear in the size of the input program, indicating no hidden costs
in computing over a logic programming engine.

Finally, we ran our model checker on the abstract program shown in
Fig. 1(a,b): the time and space consumption was too small to measure. That
experiment shows the utility of resource-constrained checking: we have in e�ect
shown the validity of the AGF reach for all values of the recursion parameter
N in negligible time. It should be noted that program in Fig. 1(a,b) is natural
abstraction of the case whose veri�cation results are shown in Fig. 5(a).

5 Discussion

As mentioned earlier, our formulation of resource-constrained model checking
is closely related to the works of [12, 4, 10, 11], where eÆcient algorithms have
been described for model checking PDSs. Apart from the annotation of resource
consumption on the edges of the R-graph, we provide a considerably di�erent
implementation strategy. For instance, [10] presents a model checking technique
where Pre� relation (analogous to our Erase) is used in two phases: one to identify
good cycles (repeating heads) and another to check if such cycles are reachable.
The subsequent paper [11] presents a symbolic algorithm for model checking
PDSs. In contrast, we encode our model checker so as to derive a local (explicit-
state) algorithm, and avoid the second use of Erase.

Recent works in [1, 3], show that (recursive or hierarchical) state machines
can be used to model control ow of sequential programs consisting of recursive

13

calls. Both works give model checking algorithms that, when used for model
checking push-down systems, run in time cubic in the size of the B�uchi automaton
and linear in the size of the push-down system. Furthermore, [3] describes special
classes of state machines for which the model checking algorithms have better
complexity. The main essence of both these works is to compute summary edges
that reveal the relationship between the entry and exit points of each state
machine. In addition, [1] points out that identifying edges that lead to increase in
stack size, model checking can be restricted to �nite-stack paths. The important
similarities between [1, 3] and our work are as follows:

{ Summary edges are analogous to =)0 relation as computed in Proposition 3.
{ Edges Fa and Fu as computed in [1], revealing �nite- and in�nite-stack paths

respectively, are identical to
S

Æ�!0 and =)1.
{ Optimization techniques involving forward and backward analysis of sum-
mary edges as discussed in these papers can be directly incorporated in our
work.

The distinguishing aspect of our work is that we concretely describe a high-
level yet eÆcient implementation of a local, on-the-y model checker that can
distinguish �nite-stack runs from arbitrary runs of a push-down system.

The idea behind of Erase and R-graph appears to be more universal than
model checking of PDSs. For instance, inter-procedural data ow analysis tech-
niques de�ne summaries of calls, which are simply variants of Erase. Closer in-
spection of data ow techniques reveal striking (although not surprising) similar-
ities. These similarities are best exhibited by [15] and related works, where data
ow analysis is formulated in terms of graph-reachability. Some of the analogies
are listed below:

{ Same Level Inter-procedurally valid paths (SLIVP): All the calls in the path
is matched by the corresponding return. This is analogous to Æ�!0 that we
use to de�ne a good cycle in R-graph.

{ Inter-procedurally valid path (realizable path IVP) : All returns are matched
but not all calls. This is similar to Æ�!1.

{ Path Edge � SLIVP: This is =)0
� and Æ�!0

{ Summary Edge � SLIVP: This is =)0 restricted to call nodes.

Although the interplay between data ow analysis and model checking has
been widely recognized (e.g. [16]), the closeness in the details of algorithms used
indicates a potential for furthering the practice in both areas through a better
understanding of the interactions. Finally, although model checking of recursive
programs using mu-calculus has been explored [5], the techniques appear to have
an exponential blowup to handle recursion. It will be interesting to explore the
relationship between these techniques and the ones presented in this paper, and
is a topic of current research.

References

1. R. Alur, K. Etessami, and M. Yannakakis. Analysis of recursive state machines.
In Computer-Aided Veri�cation (CAV 2001). Springer-Verlag, 2001.

14

2. T. Ball and S. Rajamani. Bebop: A symbolic model checker for boolean programs.
In SPIN00: SPIN Workshop, volume 1885 of Lecture Notes in Computer Science,
pages 113{130, 2000.

3. M. Benedikt, P. Godefroid, and T. Reps. Model checking unrestricted hierarchi-
cal state machines. In Twenty-Eighth Int. Colloq. on Automata, Languages, and
Programming(ICALP 2001). Springer-Verlag, 2001.

4. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown
automata: Application to model checking. In Concurrency Theory (CON-
CURR 1997), 1997.

5. O. Burkart and B. Ste�en. Model checking the full-modal mu-calculus for in�nite
sequential processes. In Proceedings of ICALP'97, volume 1256 of Lecture Notes
in Computer Science, pages 419{429, 1997.

6. W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic
programs. Journal of the ACM, 43(1):20{74, January 1996.

7. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skele-
tons using branching-time temporal logic. In D. Kozen, editor, Proceedings of the
Workshop on Logic of Programs, Yorktown Heights, volume 131 of Lecture Notes
in Computer Science, pages 52{71. Springer Verlag, 1981.

8. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic veri�cation of �nite-
state concurrent systems using temporal logic speci�cations. ACM TOPLAS, 8(2),
1986.

9. J.-M. Couvreur. On-the-y veri�cation of linear temporal logic. In Proceedings of
FM'99, volume 1708 of Lecture Notes in Computer Science, pages 253{271, 1999.

10. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. EÆcient algorithms for
model checking pushdown systems. In Computer-Aided Veri�cation (CAV 2000),
pages 232{247. Springer-Verlag, 2000.

11. J. Esparza and S. Schwoon. A bdd-based model checker for recursive programs. In
Computer-Aided Veri�cation (CAV 2001), pages 324{336. Springer-Verlag, 2001.

12. A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model
checking pushdown systems. In Second International Workshop on Veri�cation of
In�nite State Systems(INFINITY 1997), volume 9. Elsevier Science, 1997.

13. L.R. Pokorny and C.R. Ramakrishnan. LTL model checking using tabled logic
programming. In Workshop on Tabling in Parsing and Deduction, 2000. Available
from http://www.cs.sunysb.edu/�cram/papers.

14. J. P. Queille and J. Sifakis. Speci�cation and veri�cation of concurrent systems
in Cesar. In Proceedings of the International Symposium in Programming, volume
137 of Lecture Notes in Computer Science, Berlin, 1982. Springer-Verlag.

15. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataow analysis via
graph reachability. In Twenty-Second ACM Symposium on Principles of Program-
ming Languages, pages 49{61, 1995.

16. D. A. Schmidt and B. Ste�en. Program analysis as model checking of abstract
interpretations. In Static Analysis Symposium, pages 351{380, 1998.

17. H. Tamaki and T. Sato. OLDT resolution with tabulation. In International Con-
ference on Logic Programming, pages 84{98. MIT Press, 1986.

18. R. E. Tarjan. Depth �rst search and linear graph algorithms. SIAM Journal of
Computing, 1(2):146{160, 1972.

19. XSB. The XSB logic programming system. Available from
http://xsb.sourceforge.net.

15

