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Abstract. We introduce the problem of Model Repair for Probabilistic
Systems as follows. Given a probabilistic system M and a probabilistic
temporal logic formula φ such that M fails to satisfy φ, the Model Re-
pair problem is to find an M ′ that satisfies φ and differs from M only
in the transition flows of those states in M that are deemed control-
lable. Moreover, the cost associated with modifying M ’s transition flows
to obtain M ′ should be minimized. Using a new version of parametric
probabilistic model checking, we show how the Model Repair problem
can be reduced to a nonlinear optimization problem with a minimal-cost
objective function, thereby yielding a solution technique. We demon-
strate the practical utility of our approach by applying it to a number of
significant case studies, including a DTMC reward model of the Zeroconf
protocol for assigning IP addresses, and a CTMC model of the highly
publicized Kaminsky DNS cache-poisoning attack.
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1 Introduction

Given a model M and a temporal logic formula φ, the Model Checking problem
is to determine if M |= φ, i.e. does M satisfy φ? In the case of a positive result, a
model checker returns true and may also provide further diagnostic information
if vacuity checking is enabled [9]. In the case of a negative result, a model checker
returns false along with a counterexample in the form of an execution path in
M leading to the violation of φ. One can then use the counterexample to debug
the system model (assuming the problem lies within M as opposed to φ) and
ultimately repair the model so that revised version satisfies φ.

Even in light of model checking’s widespread success in the hardware, soft-
ware, and embedded systems arenas (see, e.g., [6]), one can argue that existing
model checkers do not go far enough in assisting the user in repairing a model
that fails to satisfy a formula. Automating the repair process is the aim of the
Model Repair problem, which we consider in the context of probabilistic systems



such as discrete-time Markov chains (DTMCs), continuous-time Markov chains
(CTMCs), and Markov decision processes (MDPs).

The Model Repair problem we consider can be stated as follows. Given a
probabilistic system M and a probabilistic temporal logic formula φ such that
M fails to satisfy φ, the probabilistic Model Repair problem is to find an M ′ that
satisfies φ and differs from M only in the transition flows1 of those states in M
that are deemed controllable. Moreover, the cost associated with modifying M ’s
transition flows to obtain M ′ should be minimized. A related but weaker version
of the Model Repair problem was first considered in [5], in the (non-probabilistic)
context of Kripke structures and the CTL temporal logic. See Section 8 for a
discussion of related work.

Our main contributions to the probabilistic Model Repair problem can be
summarized as follows:

– Using a new version of parametric probabilistic model checking [7, 13], we
show how the Model Repair problem can be reduced to a nonlinear opti-
mization problem with a minimal-cost objective function, thereby yielding
a solution technique.

– We consider related solution feasibility and optimality conditions, and pro-
vide an implementation of our solution technique using the PARAM tool for
parametric model checking [15] and the Ipopt open-source software package
for large-scale nonlinear optimization [2].

– We also consider a Max-Profit version of the Model Repair problem for
reward-based systems, where profit is defined as the difference between the
expected reward and the cost of model repair.

– We also provide a control-theoretic characterization of the probabilistic Model
Repair problem, and in the process establish a formal link between model
repair and the controller-synthesis problem for linear systems.

– We demonstrate the practical utility of our approach by applying it to a
number of significant case studies, including a DTMC reward model of the
Zeroconf protocol for assigning IP addresses, and a CTMC model of the
highly publicized Kaminsky DNS cache-poisoning attack [1].

The rest of the paper develops along the following lines. Section 2 provides
background on parametric model checking. Section 3 contains our formulation of
the probabilistic Model Repair problem, while Section 4 characterizes Model Re-
pair as a nonlinear optimization problem. Section 5 considers related feasibility
and optimality conditions. Section 6 examines the link between model repair and
optimal controller synthesis. Section 7 presents our case studies, while Section 8
discusses related work. Section 9 offers our concluding remarks and directions
for future work.

1 For a DTMC, each row of the probability transition matrix represents the transition
flow out of the corresponding state.



2 Parametric Probabilistic Model Checking

In this section, we show how the model-checking problem for parametric DTMCs
can be reduced to the evaluation of a multivariate rational function. The defi-
nition of a parametric DTMC is from [13] and the definition of the finite state
automaton derived from a parametric DTMC is from [7].

Definition 1. A (labeled) Discrete-Time Markov Chain (DTMC) is a tuple D =
(S, s0,P, L) where:

– S is a finite set of states
– s0 ∈ S is the initial state
– P : S × S → [0, 1] is a function such that ∀s ∈ S,

∑
s′∈S P(s, s′) = 1

– L : S → 2AP is a labeling function assigning to each state a set of atomic
propositions from the denumerable set of atomic propositions AP .

Probabilistic model checking is based on the definition of a probability mea-
sure over the set of paths that satisfy a given property specification [20]. In the
PCTL [17] temporal logic, property specifications are of the form P∼b(ψ), with
∼∈ {<,≤, >,≥}, 0 ≤ b ≤ 1, and ψ a path formula defined using the X (next)
and U≤h (bounded/unbounded until) operators for h ∈ N∪ {∞}. A state s sat-
isfies P∼b(ψ), denoted as s |= P∼b(ψ), if P(Paths(s, ψ)) ∼ b; i.e. the probability
of taking a path from s that satisfies ψ is ∼ b.

Definition 2. Let V = {v1, · · · , vr} be a set of real variables and let v =
(v1, . . . , vr). A multivariate rational function f over V is a function of the form

f(v) =
f1(v)

f2(v)

where f1, f2 are two polynomials in v.

Let FV (v) be the field of real-valued rational functions. Given f ∈ FV and
an evaluation function u : V → R, we denote by f [V/u] the value obtained by
substituting each occurrence of v ∈ V with u(v).

Definition 3. A parametric DTMC (PDTMC) is a tuple D = (S, s0,P, V )
where S, s0 are as in Def. 1 and P : S × S → FV , where V = {v1, · · · , vr} is a
finite set of parameters.

Given a PDTMC D over parameters V , an evaluation u of V is said to be
valid for D if the induced probability transition matrix Pu : S × S → [0, 1] is
such that

∑
s′∈S Pu(s, s′)[V/u] = 1, ∀s ∈ S.

Definition 4. For a PDTMC D and PCTL formula φ = P∼b(ψ), the derived
finite state automaton (dFSA) AD,ψ is given by AD,ψ = {S,Σ, s0, δ, Sf}, where:

– S is the same set of states of D
– Σ = {f ∈ FV | ∃i, j,P(i, j) = f(v) 6= 0} is the finite alphabet



– s0 is D’s initial state
– δ : S×Σ 7→ 2S is the transition function derived from P such that δ(s, f) = Q

implies ∀q ∈ Q, P(s, q) = f(v)
– Sf ⊆ S is the set of final states and depends on ψ.

The set R(Σ) of regular expressions over alphabet Σ can be translated into
a multivariate rational function. The composition function comp : R 7→ FV is
defined inductively by the following rules:

comp(f) = f(v) comp(x|y) = comp(x) + comp(y)
comp(x.y) = comp(x) · comp(y) comp(x∗) = 1

1−comp(x)

It can be proved that comp(α) yields the probability measure of the set⋃
sf∈Sf

Paths(s0, sf ) of paths in AD,ψ from s0 to some state sf in Sf . In [7],

Daws characterizes the set of paths satisfying an unbounded formula φ = P∼b(ψ),
but without nested probabilistic quantifiers, as a dFSA AD,ψ, and proves:

Proposition 1. For a PDTMC D and PCTL formula φ = P∼b(ψ), with ψ a
path formula, let α be the regular expression for L(AD,ψ). Then,

s0 |= φ iff there is an evaluation u s.t. u is valid for D and comp(α) ∼ b

Given a PDTMC D and bounded reachability property φ, Hahn [14] presents
a simple recursive algorithm for deriving the multivariate function f that com-
putes the probability by which D satisfies φ. Since the only arithmetic operators
appearing in f are addition and multiplication, f ∈ FV , as FV is a field.

3 The Model Repair Problem

Given a set of parameters V , we write span(V ) for the set of linear combinations
of the elements in V . A n-state DTMC D can be turned into a controllable
DTMC D̃ by pairing it with an n× n matrix Z that specifies which states of D
are controllable, and how the transitions out of these states are controlled using
elements of span(V ).

Definition 5. A controllable DTMC over a set of parameters V is a tuple D̃ =
(S, s0,P,Z, L) where (S, s0,P, L) is a DTMC and Z : S × S → span(V ) is
an |S| × |S| matrix such that ∀s ∈ S,

∑
t∈S Z(s, t) = 0. A state s ∈ S is a

controllable state of D̃ if ∃t ∈ S such that Z(s, t) 6= 0.

Matrix Z can be understood as a strategy for altering or controlling the
behavior of a DTMC, typically for the purpose of repair; i.e. forcing a particular
property to hold for the DTMC. The constraint on mathbfZ implies that the
control strategy embodied in mathbfZ should neither change the structure of
the DTMC nor its stochasticity. Which states of the DTMC are controllable
depends on the model parameters that can be tuned. In general, a model may
be repaired by a number of different strategies.
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Fig. 1. A DTMC (a) and the controllable DTMC (b), with s0, s2 controllable by Z (c)

Example 1. Fig. 1 shows a DTMC in (a), the controllable DTMC in (b), with
s0, s2 controllable, and the associated matrix Z in (c).

Definition 6. Let D̃ = (S, s0,P,Z, L) be a controllable DTMC over parameters
V , D = (S, s0,P, L) the DTMC underlying D̃, φ a PCTL formula for which
D, s0 2 φ, and g(v) a possibly nonlinear cost function, which is always positive,
continuous, and differentiable. The Model Repair problem is to find a DTMC
D′ = (S, s0,P

′ = P + Z[V/u], L), where u : V → R is an evaluation function
satisfying the following conditions:

u = arg min g (1)

D′, s0 |= φ (2)

P(i, j) = 0 iff P′(i, j) = 0, 1 ≤ i, j ≤ |S| (3)

The repair process seeks to manipulate the parameters of D̃ to obtain a
DTMC D′ such that D′, s0 |= φ and the cost of deriving probability transition
matrix P′ from P is minimized. A typical cost function is g(v) = w1v

2
1 + · · · +

wrv
2
r , w ∈ Rr+: a weighted sum of squares of the parameters with weights wk,

1 ≤ k ≤ r, specifying that some parameters affect the model to a greater extent
than others. For w = 1r, g is the square of the L2-norm ‖v‖22. Condition 3 does
not allow the insertion of new transitions nor the elimination of existing ones.

The repair process as specified by Def. 6 is robust in the following sense.

Proposition 2. A controllable DTMC D̃ and its repaired version D′ are ε-
bisimilar, where ε is the largest value in the matrix Z[V/u].

Proof. The result immediately follows from Def. 5 and the definition of ε-bisim-
ulation [11].

Example 2. As an example of the repair process, consider the Die problem pro-
posed by Knuth et al. in [19], where a fair coin is tossed three or more times to
obtain the face of a die; see Fig. 2(a). We wish to repair the model so that the
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Fig. 2. Two different model-repair strategies for the Knuth Die problem.

formula P≤1/8F [die = 1] is satisfied, thereby imposing a probability bound of
1
8 to eventually obtain a 1. In the original model, the probability to eventually
reach any face of the die is 1

6 , and the property is not satisfied.
To repair the model, we need to decide by how much the coin should be

biased each time it is tossed. Figs. 2(b) and (c) provide two different model-
repair strategies. In Fig. 2(b), we use a single biased coin (controllable DTMC
with one parameter), while in Fig. 2(c), we use three differently biased coins
(three parameters). In the latter case, the third coin can be tossed again if
state 3 or 6 is reached. The case with three parameters gives us the opportunity
to prioritize the parameters according to the impact they should have on the
repaired model’s state space using the weighted sum-of-squares cost function
described above.

3.1 The Max-Profit Model Repair Problem

Definition 7. A controllable Markov Reward Model (MRM) is a tuple R =
(D̃, ρ, ι) where D̃ = (S, s0,P,Z, L) is a controllable DTMC, ρ : S → R≥0 a state
reward function, and ι : S×S → R≥0 a transition reward function.

During the repair process, the Max-Profit Model Repair problem seeks to
maximize the expected profit, as measured in terms of the difference between
the expected reward and the expected cost,

Definition 8. Let R = (D̃, ρ, ι) be a controllable MRM with D̃ = (S, s0,P,Z, L)
the associated controllable DTMC and D = (S, S0,P, L) D̃’s underlying DTMC.
Also, let φ be a PCTL formula such that D, s0 2 φ, g(v) a possibly nonlinear cost
function, and e(v) an expected reward function, which, using ρ and ι, measures
the expected reward accumulated along any path in R that eventually reaches a
state in a given set of states B, B ⊆ S [13]. We assume that e(v) − g(v) is
always positive, continuous, and differentiable. The Max-Profit Model Repair
problem is to find a DTMC D′ = (S, s0,P

′ = P + Z[V/u], L) with u : V → R



an evaluation function that satisfies the Conditions (2) and (3) of Def. 6, and
the following condition:

u = arg max e− g (4)

4 Model Repair as a Nonlinear Programming Problem

The controllable DTMC D̃ = (S, s0,P,Z, L) over set of parameters V corre-
sponds to a PDTMC with probability matrix P + Z. If D̃ 2 P∼b(ψ), by para-
metric model checking, we derive the nonlinear constraint f(v) ∼ b, where f is
a multivariate rational function. Let Y be the set of linear combinations in V
defined as Y = {y(v) = P(i, j) + Z(i, j) : Z(i, j) 6= 0, 1 ≤ i, j ≤ |S|}.

Proposition 3. A solution to the Model Repair problem of Def. 6 satisfies the
constraints of the following nonlinear program (NLP):

min g(v) (5)

f(v) ∼ b (6)

∀y ∈ Y : 0 < y(v) < 1 (7)

Proof. Cost function 5 ensures that if there is a solution to the NLP, this yields
an evaluation u such that the resulting DTMC is the closest to D̃ with the
desired property, as implied by Condition 1 of Def. 6. Constraint 6 enforces re-
quirement 2 of Def. 6. Constraint 7, along with the selection of Z in Def. 5,
assure that evaluation u is valid and preserves the stochasticity of the new tran-
sition probability matrix, while the strict inequalities also enforce constraint 3
of Def. 6. If the NLP has no solution, then model repair for D̃ is infeasible.
For the solution of the Max Profit repair problem, we only have to replace cost
function (5) with profit function (4).
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Fig. 3. Model Repair solutions for Knuth Die problem.



Example 3. To find a solution for the Model Repair problem of Example 2 with
the strategy shown in Fig. 2(b), the associated NLP is formulated as follows:

min w1v
2
1 + w2v

2
2 + w3v

2
3

8v1v2v3 − 4(v2v1 − v2v3 − v1v3)− 2(v1 + v2 − v3)− 1

8v2v3 + 4v2 + 4v3 − 6
− 1

8
≤ 0

∀i ∈ {1, · · · , 3},−0.5 < vi < 0.5

Fig. 3 shows two different solutions based on the choice of the vector w of
weights associated with the cost function. In Fig. 3(a), we consider the same
cost for changing each transition probability, i.e. w = [1 1 1]. In Fig. 3(b), we
provide a solution where the cost of v1 is ten times the cost of v3 and two times
the cost of v2, i.e. w = [10 5 1].

We denote by DNLP = Dom(g) ∩ Dom(f) ∩
⋂
y∈Y Dom(y) the domain of

the NLP problem. A solution v∗ ∈ DNLP is a local minimizer if there is ε > 0
such that g(v∗) ≤ g(v) for all |v − v∗| < ε with v ∈ DNLP . If g(v∗) < g(v), v∗

is a strict local minimizer. A local minimizer v∗ ∈ DNLP is a globally optimal
solution if g(v∗) ≤ g(v) for all v ∈ DNLP .

All nonlinear optimization algorithms search for a locally feasible solution to
the problem. Such a solution can be found by initiating the search from the point
01×r, representing the no-change scenario. If no solution is found, the problem
is locally infeasible and the analyst has to initiate a new search from another
point or else to prove that the problem is infeasible.

5 Model Repair Feasibility and Optimality

For a Model Repair problem with property constraint f(v) ∼ b, we denote:

h(v) =

{
f(v)− b, if ∼∈ {<,≤}
b− f(v), if ∼∈ {>,≥}

such that the constraint is written as h(v) ≤ 0, with the inequality becoming
strict if ∼∈ {<,>}.

Definition 9. For the NLP problem, the Lagrangian function X : DNLP ×
R2|Y |+1 → R is defined as:

X (v, λ) = g(v) + λ0 · h(v) +

|Y |∑
k=1

λk · (yk(v)− 1)−
2|Y |∑

k=|Y |+1

λk · yk−|Y |(v)

The vector λ is the Lagrange multiplier vector. The Lagrange dual function

w(λ) = inf
v∈DNLP

(X (v, λ))

yields the minimum of the Lagrangian function over v.
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Fig. 4. Feasibility analysis for a probabilistic Model Repair problem.

It is easy to verify that for λ ≥ 0, the Lagrangian dual function w yields
lower bounds on the optimal cost g(v∗) of the NLP problem, since h(v∗) ≤ 0,
y(v∗)− 1 < 0, and y(v∗) > 0, for all y ∈ Y .

Proposition 4. The best lower bound on the the NLP cost function is the cost
for the solution of the following Lagrangian dual problem:

max w(λ)

λ ≥ 0

λk 6= 0, k = 1, . . . , 2 · |Y |
The constraints for λk correspond to the strict inequalities in constraint 7, and
if ∼∈ {<,>}, we eventually have λ > 0.

In [4], the authors developed a criterion for analyzing the feasibility of non-
linear optimization programs, based on the theory of Lagrange duality. More
precisely, the system of inequalities in 6 (Prop. 3) is feasible when the NLPf

min 0 (8)

h(v) ∼ 0 (9)

∀y ∈ Y : y(v)− 1 < 0 (10)

∀y ∈ Y : −y(v) < 0 (11)

is also feasible. The optimal cost for the NLPf is:

p∗ =

{
0 if NLPf is feasible
∞ if NLPf is infeasible

(12)

The Lagrangian dual function wf for this program with zero cost is:

wf (λ) = inf
v∈DNLP

(X (v, λ)− g(v)) (13)



We note that wf is positive homogeneous in λ, i.e. ∀α > 0, wf (α ·λ) = α ·wf (λ).
The associated Lagrange dual problem is to maximize wf (λ) subject to the
constraints λ ≥ 0 and λk 6= 0, k = 1, . . . , 2 · |Y |. The optimal cost for the
homogeneous wf in the dual problem is:

d∗ =

{
∞ if λ ≥ 0, λk 6= 0, wf (λ) > 0 is feasible
0 if λ ≥ 0, λk 6= 0, wf (λ) > 0 is infeasible

(14)

for k = 1, . . . , 2 · |Y |. By taking into account the property

d∗ ≤ p∗

which is known as weak duality [22], we conclude:

Proposition 5. If the Lagrange dual problem of NLPf , with the NLP con-
straints and cost is feasible, then the NLP for model repair is infeasible. Con-
versely, if NLP is feasible, then the Lagrange dual problem of NLPf is infeasible.

Example 4. For the controllable DTMC D̃ of Fig. 4, we show that Model Repair
is not always feasible. For path formula ψ = F [s = 2 ∨ s = 5], from Prop. 1 we
have:

D, s0 |= P≤bψ iff
8v21 + 2

4v21 + 3
≤ b

The Lagrangian dual function for the NLPf program is:

wf (λ) = inf
v1∈]−0.5,0.5[

(
λ0

(
8v21 + 2

4v21 + 3
− b
)

+ λ1(v1 − 1) + λ2(−v1)

)
where λ0 ≥ 0 and λ1, λ2 > 0. The rational function for ψ is minimized in v1 = 0
(Fig. 4) and therefore

wf (λ) = λ0

(
2

3
− b
)
− λ1

The nonlinear program in 14 becomes feasible when b < 2/3 and from Prop. 5
the NLP for repairing D̃ is infeasible for these values of b.

From [4], if v∗ is a local minimizer that also fulfills certain constraint quali-
fications, then the Karush-Kuhn-Tucker (KKT) conditions are satisfied. On the
other hand, if for some feasible point v′ there is a Lagrange multiplier vector
λ∗ such that the KKT conditions are satisfied, sufficient conditions are provided
which guarantee that v′ is a strict local minimizer. Since all the parameters
are bounded it is possible to check global optimality by using an appropriate
constraint solver, such as RealPaver [12].

6 Model Repair and Optimal Control

We show how the Model Repair problem is related to the optimal-controller
synthesis problem for linear systems. Given a (right-)linear system

x(n+ 1) = x(n)A+ u(n)B, x(0) = x0



where x is the state vector, u is a vector of inputs, and A and B are matrices rep-
resenting the system dynamics, the synthesis of an optimal controller is typically
performed in a compositional way as follows: (1) Synthesize a linear quadratic
regulator; (2) Add a Kalman filter state estimator; (3) Add the reference input.

For (1), the input can be written as u(n) = x(n)K, where K is the controller
matrix to be synthesized. Then:

x(n+ 1) = x(n)(A+KB)

An optimal K is then obtained by minimizing the cost function

J = 1/2

∞∑
k=0

(xT (k)Qx(k) + uT (k)Ru(k))

where Q and R are nonnegative definite symmetric weighting matrices to be
selected by the designer, based on the relative importance of the various states
xi and controls uj .

The purpose of (2) is to add an optimal state estimator, which estimates the
current state based on the previous input and the previously measured output.
This is typically done in a recursive fashion with the help of a Kalman filter.

Finally, in (3), the reference input is added, which drives the overall behav-
ior of the controlled system. Typically, the addition of the reference input is
complemented with an integral control.

Although not immediately apparent, all the above steps are related to the
Model Repair problem (Definition 6). First, matrix Z contains in each entry
a linear combination of the parameters in V . This linear combination can be
obtained by decomposing Z as Z = KB, where K is a matrix of parameters (to
be synthesized) and B is a matrix defining the contribution of each parameter
to the next state of the system.

Note however, that the above optimization problem for J does not encode
the stochasticity requirement of Z. Hence, using the available tools for optimal-
controller synthesis, one cannot impose this requirement.

Second, the reference input can be related to the PCTL formula φ. Adding
the reference input to the system is, in many ways, the same as imposing the
satisfaction of φ. Note, however, that the reference input is added after K is
synthesized. In contrast, we synthesize the parameters in Z with φ included as
a constraint of the nonlinear optimization problem.

Finally, the variables occurring in the PCTL formula can be seen as the
observables of the system, i.e., as the outputs of the system. In the model repair
case, we assume that we have full access to the state variables and the model
precisely captures the output.

Overall, our approach seems to be a generalization of the optimal-controller
synthesis problem for the class of linear systems represented by DTMCs. We
also perform a nonlinear multivariate optimization which is by necessity more
powerful than the one used for linear systems.



7 Applications

We present two Model Repair applications: (i) the Kaminsky DNS cache-poisoning
attack, along with the proposed fix (repair), and (ii) the Zeroconf protocol as
a Max-Profit problem. Model Repair was performed using the PARAM tool for
parametric model checking [15] and the Ipopt software package for large-scale
nonlinear optimization [2].

Example 5. The Kaminsky DNS attack makes clever use of cache poisoning, so
that when a victim DNS server is asked to resolve URLs within a non-malicious
domain, it replies with the IP address of a malicious web server. The proposed
fix is to randomize the UDP port used in name-resolution requests. As such, an
intruder can corrupt the cache of a DNS server with a falsified IP address for
a URL, only if it manages to guess a 16-bit source-port id, in addition to the
16-bit query id assigned to the name-resolution request.

Our CTMC model for the Kaminsky attack [1] implements a victim DNS
server that generates times to request url queries to resolve one or more re-
source names within some domain. While the victim waits for a legitimate re-
sponse to its query, the intruder tries with rate guess to provide a fake response
that, if correctly matching the query id, will be accepted by the victim, thus
corrupting its cache.

The only parameter the victim can control is the range of port-id values
used by the proposed fix, which affects the rate at which correct guesses arrive
at the victim. Other parameters that affect the rate of correct guesses, but are
not controlled by the victim are the popularity of the requested names, and
the rate at which other legitimate requests arrive at the victim. If the fix
is disabled, the number of port ids is one, and experiments show that for guess
≥ 200, the attack probability is greater than 0.9 if times to request url ≥ 6.

By applying model repair on the controllable embedded DTMC, we deter-
mined the minimum required range of port ids such that P≤0.05F cache poisoned.
While the value of times to request url determines the size of the state space,
we observed that nonlinear optimization with Ipopt is not affected by state-space
growth. This is not the case, however, for the parametric model-checking times
given in Table 1 (popularity=3,guess=150,other legitimate requests=150).
The model was successfully repaired for all values of times to request url

from 1 to 10.

Example 6. According to the Zeroconf protocol for assigning IP addresses in a
network, when a new host joins the network it randomly selects an IP address
among K possible ones. With m hosts in the network, the collision probability
is q = m/K. A new host asks the other hosts whether the randomly selected IP
address is already used and waits for an answer. The probability that the new
host does not get any answer is p, in which case it repeats the query. If after
n tries there is still no answer, the host will erroneously consider the chosen
address as valid.



Table 1. Model Repair of the Kaminsky CTMC.

times to request States Transitions CPU PARAM PORT ID P=? [F cache poisoned ]

1 10 13 0m0.390s 5 0.04498
2 60 118 0m0.430s 10 0.04593
3 215 561 0m0.490s 14 0.04943
4 567 1759 0m1.750s 19 0.04878
5 1237 4272 0m15.820s 24 0.04840
6 2350 8796 1m56.650s 28 0.0498
7 4085 16163 10m55.150s 33 0.0494
8 6625 27341 47m21.220s 38 0.0491
9 10182 43434 167m58.470s 42 0.0499
10 14992 65682 528m32.720s 47 0.0496

We used Max Profit model repair on the DTMC model of [7] to determine
the collision probability q that optimizes the trade-off between (a) the expected
number of tries until the algorithm terminates, and (b) the cost of changing
q from its default value. The change applied to q is the only parameter used
in our Max Profit model; all other transition probabilities were maintained as
constants as in the original model. For n = 3, p = 0.1, and initial q = 0.6, we
determined the optimal q to be 0.5002, which reduced the expected number of
steps to termination from 6.15 to 5.1.

8 Related Work

Prior work has addressed a related version of the Model Repair problem in the
nonprobabilistic setting. In [5], abductive reasoning is used to determine a suit-
able modification of a Kripke model that fails to satisfy a CTL formula. Addition
and deletion of state transitions are considered, without taking into account the
cost of the repair process. The problem of automatically revising untimed and
real-time programs with respect to UNITY properties is investigated in [3], such
that the revised program satisfies a previously failed property, while preserving
the other properties. A game-based approach to the problem of automatically
fixing faults in a finite-state program is considered in [18]. The game consists of
the product of a modified version of the program and an automaton representing
an LTL specification, such that every winning finite-state strategy corresponds
to a repair. In [23], the authors introduce an algorithm for solving the paramet-
ric real-time model-checking problem: given a real-time system and temporal
formula, both of which may contain parameters, and a constraint over the pa-
rameters, does every allowed parameter assignment ensure that the real-time
system satisfies the formula?

In related work for probabilistic models, a Bayesian estimator based on run-
time data is used in [10] to address the problem of model evolution, where
model parameters may change over time. The authors of [21] consider paramet-



ric models for which they show that finding parameter values for a property to
be satisfied is in general undecidable. In [8], a model checker together with a
genetic algorithm drive the parameter-estimation process by reducing the dis-
tance between the desired behavior and the actual behavior. The work of [16]
addresses the parameter-synthesis problem for parametric CTMCs and time-
bounded properties. The problem is undecidable and the authors provide an
approximation method that yields a solution in most cases.

9 Conclusions

We have defined, investigated, implemented, and benchmarked the Model Repair
problem for probabilistic systems. Ultimately, we show how Model Repair can be
seen as both a nontrivial extension of the parametric model-checking problem for
probabilistic systems and a nontrivial generalization of the controller-synthesis
problem for linear systems. In both cases, its solution requires one to solve a non-
linear optimization problem with a minimal-cost (or maximal-profit) objective
function.

The problem we considered is one of offline model repair. As future work,
we would like to investigate the online version of the problem, where an online
controller runs concurrently with the system in question, appropriately adjusting
its parameters whenever a property violation is detected. Meeting this objective
will likely require a better understanding of the similarities between the model
repair and controller synthesis problems.
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