VAN

(VEHICLE AREA NETWORKS)

SHINYOUNG CHO
CONTENTS

• Definition
• Central vision of VAN
• IN-Vehicle Van
• Vehicle-to-Vehicle Communication(V2V)
• Vehicle-to-Cloud Communication
• Vehicle-to-Roadside Infrastructure Communication
• Communication Standards for VAN
• Security and Privacy of VAN
• Secure Communication
• Conclusion
DEFINITION

Vehicle Area Networks (VAN)

- A local area network in and around a moving vehicle
- Enables devices in and around the vehicle to communicate, either directly connected or through wireless protocols over the Internet

Key objective

- To improve driver and vehicle safety
Communication technology
802.11p

1. There is an accident in my area, which blocks the left lane.

2. Left lane closed ahead due to accident. Please prepare to change into the right lane.

3. Left lane closed ahead due to accident. You can take Exit 278 to avoid traffic jam.
CENTRAL VISION OF VAN (2/2)

[VAN key components and functions]
IN-VEHICLE VAN (1/4)

In-Vehicle Data Collection/Analysis Systems.

Intelligent intra-vehicle communication system

- A major stream of research in the area of intelligent vehicle systems

Onboard equipment (OBE)

- Collect information from the driver or vehicle
- Analyze and classify the data collectively to predict or detect driver fatigue
IN-VEHICLE VAN (2/4)

Onboard equipment (OBE) (cont’d)

- Standard vehicle information
 - Speed
 - Pressure on the brake
 - Gas pedal
 - Steering wheel rotation
 - Global positioning system (GPS) routing
 - Driver behavioral information (ex. Facial expression)
 - Physiological signals (ex. BP, EGC)
IN-VEHICLE VAN (3/4)

In-Vehicle Communication Network.

Interconnect all Onboard equipment (OBE)s

[Common in-vehicle protocols]
IN-VEHICLE VAN (4/4)

Top Challenges
• **Car-Suited Physiological Sensors**
• **In-Vehicle Data Analysis**
• **Generic Plug and Play Gateway**

Existing Solutions
• **Intel In-Vehicle Devices**
• **Software for Automotives**
VEHICLE-TO-VEHICLE COMMUNICATION (V2V) (1/2)

V2V communication

- Provide a data exchange platform
- Expand driver assistance
- Facilitate active safety vehicle system development

Wireless connectivity
VEHICLE-TO-VEHICLE COMMUNICATION (V2V) (2/2)

Top Challenges

• Hardware/Software/Firmware
• Cooperative Communication

Existing Solutions

• Vehicle Telematic
VEHICLE-TO-CLOUD COMMUNICATION (1/3)

Vehicles communicating with a broadband cloud

- Communicate via wireless broadband mechanisms
 - 3G/4G, LTE, WiMAX, etc

Useful for..

- Active driver assistance
- Vehicle tracking in network fleet management
VEHICLE-TO-CLOUD COMMUNICATION (2/3)

V2B networks can provide useful information

- **Outgoing data**
 - Vehicle-centric information
 - Driver-centric information
 - Audio/video
 - Forwarded to a central monitoring server for further analysis and storage

- **In-coming data**
 - Receiving data from a central office
 - Infotainment
 - Entertainment (ex. Multimedia streaming)
 - Internet
Top Challenges

- Communication Latency
- Gateway
- Data Processing
- Fleet Management
- Security
VEHICLE-TO-ROADSIDE INFRASTRUCTURE COMMUNICATION (1/2)

Vehicle-to-road communication

• For environmental sensing and monitoring

Information

• Speed limit
• Weather condition information
• Road conditions
• Sensed data of road surface
Top Challenges

- Next Generation of Car Radars
- Prioritization

Existing Solutions

- Radio-Frequency Identification (RFID) technology
COMMUNICATION STANDARDS FOR VAN

Communication protocols for VAN

- IEEE 802.11p
- IEEE 1609
 - IEEE P1609.1 : resource manager
 - IEEE P1609.2 : security issues in WAVE
 - IEEE P1609.3 : network protocol layer standard in WAVE
 - IEEE P1609.4 : multichannel WAVE operations
- ASTM E2213-03
SECURITY AND PRIVACY OF VAN (1/2)

How false or stolen data
- Insert false information
- Eavesdrop private information
- Use private information

The mobility feature of vehicles
- Be carefully designed to avoid overwhelming the radio link bandwidth with sudden node density fluctuations
SECURITY AND PRIVACY OF VAN(2/2)

VAN Communication

V2V

- The client side should be equipped with content inspection or anomaly detection engines to combat intrusions, phishing, spam, and denial-of-service attacks

V2B

- A central monitoring station can assess normalcy of a driver’s behavior and diagnose a vehicle’s malfunction occurrences

V2I

- The security against undesired or malicious incoming data becomes a challenge
Secure Communication

- Message authentication
- Integrity
- Accountability
- Privacy protection

Current research on security in vehicular communication protocols

- Periodic beaconing
- Flooding
- Geocast
- Position-based mechanisms
SECURE COMMUNICATION(2/2)

Top Challenges

- Adapting to Future Platforms
- Secure Beaconing
- Privacy Issues
- Real-world Simulation
- Securing Vehicle Access Control and Theft Prevention

Existing Solution

- Secure Vehicular Communication (SeVeCom) project
 - Customized hardware security modules (HSM)
 - Protects private keys for digital signature generation
 - Handles the key and device management
CONCLUSION

Key elements of VAN
Intelligent in-vehicle systems
V2V, V2B, V2I
Main challenges and solutions
IEEE/ASTM standards
VAN security and privacy
REFERENCE