My Relationship with Insertion Sort
Fall 1990. I'm an undergraduate.
My Relationship with Insertion Sort
Fall 1990. I'm an undergraduate.

```
2 5 7 10 12 15 3 13 8
```

insertion: $O(N)$
insertion sort: $O(N^2)$
My Relationship with Insertion Sort
Fall 1990. I'm an undergraduate.

insertion: $O(N)$

What a boneheaded way to implement insertion!
My Relationship with Insertion Sort
Fall 1990. I’m an undergraduate.

Leave empty spaces or gaps to accommodate future insertions.

2 5 7 10 12 15

3 13 8

Snore

Yawn

Pzzzzzz
My Relationship with Insertion Sort

Anybody who has spent time in a library knows that insertions are cheaper than linear time.
Everybody (except computer scientists) know that gaps make inserts cheaper than $O(n)$ ("folk computer science").

Question: how much.

14 years after that lecture on insertion sort
(1 BA, 1 DEA, 1 Magistère, 1 Ph.D., tenure-almost)
Insertion Sort is $O(N \log N)$

Michael A. Bender
Martin Farach-Colton
Miguel Mosteiro
Results

• **LibrarySort**, a natural implementation of **InsertionSort** with gaps.

• **Theorem**: **LibrarySort** runs in $O(N \lg N)$ time w.h.p. and uses linear space. Each insertion is $\exp O(1)$ and $O(\lg N)$ w.h.p..
Library Sort is \(O(N \log N) \)

for \(k = 1 \) to \(N \) do

find location to insert \(x_k \) (binary search)

insert \(x_k \)

if \(k \) is power of 2 then

rearrange elements evenly in \((2 + \varepsilon)k \)-sized region.
Library Sort is $O(N \log N)$

for $k = 1$ to N do

find location to insert x_k (binary search)

insert x_k

if k is power of 2 then
 rearrange elements evenly in $(2 + \epsilon)k$-sized region.
Library Sort is $O(N \log N)$

for $k = 1$ to N do

find location to insert x_k (binary search)

insert x_k

if k is power of 2 then
rearrange elements evenly in $(2+\epsilon)k$-sized region.
Library Sort is $O(N \log N)$

for $k = 1$ to N do

find location to insert x_k (binary search) $O(\log N)$

insert x_k $O(\log N)$ w.h.p.

if k is power of 2 then

rearrange elements evenly in $(2 + \varepsilon)k$-sized region.
Library Sort is $O(N \log N)$

for $k = 1$ to N do

find location to insert x_k (binary search)

insert x_k

if k is power of 2 then

rearrange elements evenly in $(2 + \epsilon)k$-sized region.
Thm: each insertion has cost $O(\log N)$ w.h.p.
Thm: each insertion has cost $O(\lg N)$ w.h.p.

Pf idea: Phase l: elements $2^l \rightarrow 2^{l+1}$ inserted.

Beginning of phase: elements are rebalanced (evenly spread in array).

2^l support elements
Thm: each insertion has cost $O(\lg N)$ w.h.p.

\textbf{Pf idea:} Phase i: elements $2^i \rightarrow 2^{i+1}$ inserted.

\textbf{beginning of phase:} elements are rebalanced (evenly spread in array).

\begin{center}
\begin{tikzpicture}
\foreach \x in {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14}
\draw[fill=blue] (\x,0) circle (0.1cm);
\end{tikzpicture}
\end{center}

\textbf{\textit{2}^i \textbf{support elements}}

\textbf{end of phase:} for sufficiently large constant c, any region of size $c\lg N$
has gaps w.h.p.

\begin{center}
\begin{tikzpicture}
\foreach \x in {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14}
\draw[fill=red] (\x,0) circle (0.1cm);
\end{tikzpicture}
\end{center}

\textbf{\textit{2}^i \textbf{support and \textit{2}^i \textbf{intercalated elements}}}
Invariant

The \((k+1)\)st element is equally likely to be inserted between any two of the \(k\) elements already in the array.

Follows because elements are inserted in random order.

key order \rightarrow

\[4 \rightarrow 2 \rightarrow 1 \rightarrow 6 \rightarrow 3 \rightarrow 5\]
(numbers = order of insertion)
Difficulty

Dense regions of array act as attractors.

4x more likely to insert than .

Need to show that despite attraction dense regions do not get too big.
Balls and Bins Game

Idea: model attracting regions when M emitters in array.

- M additional balls thrown in bins.
- k^{th} ball thrown into Bin A or B with probability proportional to the number of balls in bins.

$$X_k = \begin{cases} 1 & \text{if ball } k \text{ thrown into Bin A} \\ 0 & \text{otherwise.} \end{cases}$$
Balls and Bins Game

Idea: model attracting regions when M emits in array.

- M additional balls thrown in bins.
- k^{th} ball thrown into Bin A or B with probability proportional to # balls in bins.

 $$X_k = \begin{cases} 1 & \text{if ball } k \text{ thrown into Bin A} \\ 0 & \text{otherwise.} \end{cases}$$

Thm: Number of balls thrown in Bin A is

$$X = X_{M+1} + X_{M+2} + \ldots + X_{2M} = O(\lg N).$$

Issue: Random variables X_{M+1}, \ldots, X_{2M} are positively correlated.
Need an alternative approach
Alternative Analysis

Elements ordered by insertion order: random permutation on keys

- \(2^0 \) support elements
- \(2^1 \) intercalated elements
Alternative Analysis

Elements ordered by insertion order: random permutation on keys

2^l support elements

2^l intercalated elements

Elements ordered by keys: random permutation on insert order
Alternative Analysis

Elements ordered by insertion order: random permutation on keys

- 2^l support elements
- 2^l intercalated elements

Elements ordered by keys: random permutation on insert order

- $(2+\epsilon) \log N$

Claim: In any window of size $\Theta(\log N)$ there are $\Theta(\log N)$ support elements and $\Theta(\log N)$ intercalated elements w.h.p.

\Rightarrow evenly distributed.
Alternative Analysis

Elements ordered by keys: random permutation on insert order

Claim: For sufficiently large c, in any window of size $(2+\epsilon)\lg N$, there are $>\lg N$ support elements and $< (1+\epsilon)\lg N$ intercalated elements.
Alternative Analysis

Elements ordered by keys: random permutation on insert order

Claim: For sufficiently large c, in any window of size $(2+\varepsilon)\log N$, there are $\geq \log N$ support elements and $< (1+\varepsilon)\log N$ intercalated elements.

Recall: k support elements take space $(2+\varepsilon)k$.
\Rightarrow room for intercalated elements
Alternative Analysis

Claim: In any window of size $\Theta(\lg N)$ there are $\Theta(\lg N)$ support elements and $\Theta(\lg N)$ intercalated elements w.h.p.

Similar to # coin flips until we get a head. $\mathcal{O}(1)$ in expectation & $\mathcal{O}(\lg N)$ w.h.p.

Coins are not independent, but negatively correlated. Easy to solve using Chernoff bounds. Can also solve directly using basic probability.
Concluding analysis

• Pr[given set C, $|C|=(2+\varepsilon)c \lg m$ has too few support elements]

$$\leq \sum_{j=0}^{c \log m} \binom{|C'|}{j} \left(\frac{m}{2m - |C'| + 1} \right)^j \left(\frac{m}{2m - |C'| + 1} \right)^{|C| - j} \sum_{j=0}^{c \log m} \binom{|C'|}{j}.$$

...which is polynomially small.
Minor Detail

Holds only when # elmts is large, but...

claim: while the number of elements $k \leq \sqrt{n}$, the total cost for library sort is $O(n)$.

\Rightarrow only need to consider case $k \geq \Omega(\sqrt{n})$.
Thm: each insertion has cost $O(\log N)$ w.h.p.
Gaps in My Knowledge

This talk: average-case analysis of naïve folk insertion.

• Related work: Ave-case priority queues
 [Itai,Konheim,Rodeh81]
 Contains most ideas of LibrarySort.
 LibrarySort simplifies.
Gaps in My Knowledge

Other work: rebalance schemes for worst case.

<table>
<thead>
<tr>
<th>Upper bound</th>
<th>Lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(N)) gaps</td>
<td>(\Omega(lg^2 N)) insert</td>
</tr>
<tr>
<td>Sequential File Maintenance</td>
<td>[Itai,Konheim,Rodeh] [Willard]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>poly((N)) gaps</th>
<th>(\Omega(lg N)) insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>order maintenance, list labeling</td>
<td>[Deitz][DietzSleator] [Tsakalidis] [Bender,Cole,Demaine,Farach Colton,Zito]</td>
</tr>
</tbody>
</table>

| \(O(N) \) gaps in external memory packed-memory structure in cache-oblivious algorithms | \(O(1+lg^2 N/B) \) insert |

- **Upper bound**
- **Lower bound**
Why do computer scientists say that insertion sort is $O(N^2)$?
Personal Experience?

Bookshelves of Distinguished Computer Scientists
Results

• **LibrarySort**, a natural implementation of **InsertionSort** with gaps.

• **Theorem**: **LibrarySort** runs in $O(N \lg N)$ time w.h.p. and uses linear space. Each insertion is exp $O(1)$ and $O(\lg N)$ w.h.p.