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Abstract

The point of adversarial analysis is to model the worst-case performance of an algorithm.
Unfortunately, this analysis may not always reflect performance in practice because the ad-
versarial assumption can be overly pessimistic. In such cases, several techniques have been
developed to provide a more refined understanding of how an algorithm performs e.g., com-
petitive analysis, parameterized analysis, and the theory of approximation algorithms.

Here, we describe an analogous technique called resource competitiveness, tailored for
distributed systems. Often there is an operational cost for adversarial behavior arising from
bandwidth usage, computational power, energy limitations, etc. Modeling this cost provides
some notion of how much disruption the adversary can inflict on the system. In parameterizing
by this cost, we can design an algorithm with the following guarantee: if the adversary pays
T , then the additional cost of the algorithm is some function of T .

Resource competitiveness yields results pertaining to secure, fault tolerant, and efficient
distributed computation. We summarize these results and highlight future challenges where
we expect this algorithmic tool to provide new insights.
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1 Introduction
In his influential exegesis on The Art of War, the warlord Cao Cao wrote that “he who wishes
to fight must first count the cost”, noting that preparing for conflict requires a careful accounting
of available resources [71]. In this article, we argue that this maxim should guide our approach
to distributed computation, which is often analyzed as a struggle between an algorithm and an
adversary.

Resource competitiveness is a recent algorithmic technique that accounts for the cost incurred
by an adversary for disrupting the system. Here, the notion of cost corresponds to any resource
such as bandwidth, computational power, or an onboard energy supply. In parameterizing by this
cost, we can design an algorithm with the following guarantee: if the adversary pays T , then the
additional cost of the algorithm is some function of T .

In much of the literature on robust distributed computing, the adversary has a known (or upper
bounded) budget that can be used to disrupt a task being executed by correct nodes. As a common
example, this budget may be expressed by the number of malicious (bad) nodes controlled by the
adversary. In this context, a number of seminal results have originated from the theory community
(for examples, see [29, 46, 57]) and from the community of practitioners (for examples, see [1, 16,
45, 60, 65]).

Such results fix the maximum amount of resources at the adversary’s disposal — expressed
as an upper bound on the number of bad nodes, t, that can be tolerated —and then focus on
optimizing metrics such as latency or communication overhead. There are many settings where this
treatment makes sense: perhaps the adversary is unconcerned with its own costs, or the distributed
computation is provably impossible beyond this maximum budget t. However, there are limitations
inherent to this approach:

• Both the good nodes and the adversary may be resource constrained, and ignoring this aspect
places algorithm designers at an unnecessary disadvantage. Instead, we should incorporate
the resource constraints of the adversary into the design of our algorithms. Such a situation
may arise when the adversary incurs a cost to obtain physical resources for launching attacks;
for example, there are monetary costs for renting a botnet [30]. In such cases, a notion of
relative cost is compelling.

• The budget may be unknown. Moreover, the adversary may never actually utilize any of
this budget. Consequently, an algorithm that proactively has a large overhead to tolerate
disruption — disruption which may never occur — is inefficient.

By ignoring these aspects, traditional approaches to fault tolerance consider a one-sided pic-
ture. Instead, a more complete approach follows from measuring the performance of an algorithm
relative to the amount of disruption in the system.

1.1 A Formal Definition of Resource Competitiveness
We now formally define what it means for a distributed algorithm A to be resource competitive.
This was originally proposed in [37], but we refine the definition here.



Assume a system with a set G of n good nodes that obey actions specified by algorithm A.
There exists an adversary who incarnates a source of disruption in the system. For example, the
adversary may represent (1) any number of malicious nodes that collude and deviate arbitrarily
from A, or (2) the effects of more benign failures due to software or hardware faults.

Let Cost(α, v) denote the resource expenditure (or cost) to a good node v for executing the
actions prescribed by A in an execution α. A resource might be bandwidth, CPU cycles, energy,
actual money, or another useful domain-specific measure.

Let T (α) be the adversary’s total cost; this is typically unknown to the good nodes. It is possible
for Cost(α, v) and T (α) to correspond to different resources. For example, good nodes may be
concerned with bandwidth while the adversary is concerned with CPU cycles.

We now define what it means for A to be resource competitive:

Definition 1. Algorithm A is (ρ, τ )-resource competitive if max
v ∈ G
{Cost(α, v)} ≤ ρ(T (α)) + τ for

any α.

Definition 1 states that A is resource competitive if the maximum cost incurred by any good node
is less than some function of the adversary’s total cost, ρ(T (α)), plus some additive term τ , where
both ρ and τ are functions mapping to non-negative real values. The function ρ is called the
robustness function and it is a function of T and possibly other parameters such as n. Throughout,
we will simply refer to T instead of T (α) since α is implicit.

Why do we need τ? Note that when T = 0 (there is no disruption), the good nodes clearly
cannot incur less than zero cost; τ represents the unavoidable cost to attain a goal when there is
no disruption. It is useful to make this separation explicit via this notation τ which we call the
efficiency function; τ can be a function of parameters such as n, but it is not a function of T .

In designing A, we desire ρ to be a slow-growing function. The efficiency function, τ , may
not be a slow growing function, but it should be small relative to the best-performing algorithm
that functions in the absence of disruption. For example, if a distributed computation requires n
messages to be exchanged, then τ = O(n) would imply only a constant-factor increase in overhead
which, while not a slow-growing function, is asymptotically optimal.

In the example to follow in Section 2, we will observe the following adaptive behavior of
A. When T is zero or “small”, the efficiency function will dominate the cost of A; this is the
unavoidable (or upfront) cost of running the algorithm. As T increases, the robustness function
will be the dominating component. Therefore, beyond the upfront cost, the cost of A grows as a
function of the amount of disruption.

Functions other than the maximum cost over all nodes may be appropriate depending on the
context. For instance, we may consider the average or median cost. Furthermore, if a resource-
competitive algorithm is randomized, then we can speak of cost in terms of a high probability
guarantee, or in expectation, with minor changes to the definition.

Definition 1 accounts for finite executions. In the case of an infinite execution, an algorithm
is resource competitive if it is resource-competitive for every prefix of the execution. Finally,
we note that resource-competitive results are typically reported using big-O notation of the form
O(ρ(T ) + τ).



LESS NAIVE for any round

Send Phase: For each of ` slots do

• Alice sends m with probability d/
√
`

• Bob listens with probability d/
√
` and termi-

nates if he receives m

Nack Phase: For 1 slot do

• Bob sends a nack message

• Alice listens with probability 1 and terminates
if the slot is clear

ROBUST COMMUNICATION for round i ≥ 2

Send Phase: For each of 2ci slots do

• Alice sends m with probability 2/2i

• Bob listens with probability 2/2(c−1)i and ter-
minates if he receives m

Nack Phase: For each of 2i slots do

• Bob sends a nack message

• Alice listens with probability 4/2i and termi-
nates if she hears a clear slot

Figure 1: Pseudocode for LESS NAIVE and ROBUST COMMUNICATION.

2 Proof of Concept: Jamming-Resistant Communication
We now provide a concrete “proof of concept” by summarizing a result from [43] dealing with
wireless sensor networks. The wireless medium is vulnerable to interference caused by malfunc-
tioning, or even malicious, devices; such interference is called jamming.

A number of elegant results have addressed communication under jamming attacks (see [76]
for examples). However, these prior works constrain the jamming strategy of the adversary in some
fashion; for example, the jamming may be random [58], or bounded within a window time [5, 21,
61–63], or limited to a subset of the total spectrum [24, 25, 28, 35, 50].

Using a resource-competitive approach, we can avoid placing these constraints on the jam-
mer. Instead, we should identify a relevant resource and model its expenditure. In many wireless
network settings, there are stringent energy constraints placed on devices since they are typically
battery powered. For example, a sensor network may be deployed in hard-to-access terrain, and
once a device has exhausted its energy supply, it may be permanently disabled. The devices con-
trolled by the adversary are also likely to be battery powered. Therefore, energy is a constrained
resource for both good and bad devices.

How is usage of this resource charged? In practice, accessing the channel dominates the oper-
ational cost of a device. Therefore, we assume that sending, listening, and jamming are the costly
operations in our model that incur a resource expenditure.
Problem and Model: Alice wants to send a message m to Bob over a wireless channel despite a
jamming adversary. We must guarantee that (1) Bob receives m, and (2) that Alice learns that Bob
receives m.

Time is divided into discrete slots and m is assumed to fit in a single slot (if not, m can be sent
piecewise). Messages from Alice can be authenticated and she cannot be corrupted. In practice,
scalable dissemination of a small number of public keys is possible and we may assume that Alice’s
public key is known to receivers in her broadcast range. However, we do not assume that Bob can
be authenticated.

As stated earlier, jamming, sending, and listening on the channel is expensive, and we assign
each operation a unit cost per slot. A slot where no node uses the channel is clear, while a slot
where the adversary jams is jammed. A clear slot cannot be forged by the adversary (see [14]).



In any slot, Alice and Bob are assumed to be in the energy-efficient sleep state if they are not
sending or listening. For simplicity, assume that, in any slot, the adversary’s decision to jam is
made independently of Alice’s or Bob’s actions.1

A Naive Approach: Alice and Bob can try to outspend the adversary. For example, in each even-
indexed slot, Alice sendsmwhile Bob listens. In each odd-indexed slot, if Bob has not receivedm,
he sends a negative acknowledgement (nack) message; otherwise, Bob terminates. Alice listens
in each odd-indexed slot and, if Alice receives a nack, she continues to the next even-indexed
slot and sends m. Similarly, if Alice detects a blocked odd-indexed slot, she interprets this as
the situation where Bob sent nack but the slot was jammed; therefore, she continues with the
protocol. However, if Alice detects a clear odd-indexed slot, she knows that Bob received m and
terminated since the adversary cannot forge a clear slot; in this case, Alice safely terminates.

While Alice and Bob both finish correctly, note that if the adversary jams T consecutive even-
indexed slots, then Alice and Bob each send and listen for 2T + 2 slots. Therefore, Alice and
Bob each spend more than twice what the adversary spends; that is, ρ(T ) > 2T and the adversary
rapidly disables each node by depleting its energy supply. This illustrates why jamming can be an
effective attack.

The LESS NAIVE Algorithm: A first attempt at a resource-competitive approach is LESS NAIVE in
Figure 1. In the Send Phase, over each of ` slots, Alice and Bob are probabilistically sending and
listening, respectively, with probability d/

√
` where d > 0 is a constant. If Bob ever receives m,

he terminates the protocol. In the Nack Phase, if Bob has not terminated, he sends nack to Alice
during the single slot asking her to enter into a new round. If Alice hears nack, or if the slot is
jammed, she proceeds into the next round; otherwise, if the slot is clear, she terminates.

Using a birthday-paradox-like argument, there is likely to be a non-jammed slot where both
Alice sends m and Bob listens; indeed, for an appropriately chosen d, this is true even if up to
`/2 slots in the Send Phase are jammed. Therefore, communication is likely to succeed unless the
adversary jams more than half the slots. Conversely, when more than half the slots are jammed,
Bob may not receive m. But now T = Ω(`) while both Alice and Bob spend only O(

√
`) =

O(
√
T ) in expectation. Therefore, to prevent communication, the adversary must incur a cost that

is roughly quadratically larger. This is exactly the flavor of result that we seek.
Are we done? No, LESS NAIVE is vulnerable to the following attack. Assume that Bob receives

m and terminates. Then, in the next Nack Phase, the adversary may spoof a nack message and
force Alice to execute another round. In each subsequent Send Phase, the adversary will sleep
and then awaken in the Nack Phase to send nack again. Even if messages from Bob can be
authenticated, the adversary can simply generate noise which will yield the same result; this is
unavoidable since collision detection is used as a reliable negative acknowledgement. Therefore,
in each round, Alice incurs a cost of roughly

√
` in expectation while the adversary incurs a cost

of 1. Through this attack, the adversary can force Alice to quickly deplete her energy supply.

ROBUST COMMUNICATION: A better resource-competitive algorithm from [43], ROBUST COM-
MUNICATION, is given in Figure 1. While similar to LESS NAIVE, there are important differences.

1Under certain conditions, a stronger adversary that is adaptive — uses past information to inform its decision to
jam in the current slot — or reactive — knows the actions of Alice and Bob in the current slot before deciding to
jam — can be tolerated.



The length of the Send Phase increases geometrically with the round index i and a “mystery” con-
stant c > 0 that we discuss later. Alice and Bob still act probabilistically, but their probabilities
differ.

In the Nack Phase, the number of slots also increases geometrically with i, and Bob is required
to send nack in all slots in order to prevent Alice from terminating. In this way, Bob makes
a “down payment” before proceeding to the next round. In the Nack Phase, Alice samples an
expected O(1) slots and, if all such slots either contain nack or are blocked, she continues into
the next round. An adversary who spoofs Bob may attempt to save energy by sending in only some
of the 2i slots; however, Alice is likely to detect this trickery and terminate.

We must have c > 1; otherwise, Bob’s listening probability in the Send Phase is nonsensical.
Conversely, we must have c < 2; otherwise, the adversary can drain Alice’s energy by spoofing
Bob. The constant c controls the cost functions between Alice, Bob, and the adversary. If we desire
a fair protocol, one where Alice and Bob spend roughly the same amount relative to the adversary,
we can optimize for c. The following result was proved previously:

Theorem 2. (King, Saia, and Young [43]) Assume an adversary that jams an unknown number T
slots. ROBUST COMMUNICATION guarantees communication with an expected cost to Alice and
Bob of O(T 1/ϕ + 1) = O(T 0.62 + 1) where ϕ = 1+

√
5

2
is the golden ratio.

Using Definition 1, the cost function ρ(T ) = O(T 1/ϕ) = O(T 0.62) and the efficiency function
τ = O(1) in expectation. Therefore, when there is no jamming, the players succeed quickly and
with small cost. Alternatively, if there is significant jamming, the faulty devices will deplete their
aggregate energy budget rapidly and then the players will succeed. In this latter case, the adver-
sary is effectively bankrupted! For the energy-constrained domain of wireless sensor networks,
Theorem 2 provides a convincing proof-of-concept of a resource-competitive algorithm.

2.1 Defining Costs and Resources
In our proof-of-concept, the costs for accessing the wireless channel were assumed to be a nor-
malized cost of 1. However, in practice, such costs would be measured in milliwatts; for example,
sending (at 0 dBm) and listening dominate the operating costs of the popular Telos mote at 35mW
and 38mW, respectively [59]. While this is a reasonable match to the Alice and Bob scenario, how
do we reason about costs in general?

To answer this question, we make two points. First, while the unit costs in the Alice and
Bob scenario represent an abstraction, if the actual costs for sending, listening, and jamming are
approximately the same order of magnitude, our asymptotic results should correspond to reality.
More broadly, when considering an assignment of costs, we need not be concerned with absolute
numbers so long as the magnitude of the costs to the good nodes relative to the bad nodes is correct.

Second, while the decision about what constitutes a “resource” should be well motivated, this
should not be a difficult task for many technological domains. For example, the past two decades,
and the literature on the future of wireless devices [4, 17, 69], implies that energy will continue to
be scarce in these networks. In general, CPU cycles, bandwidth, and energy have been viewed as
“resources” since the inception of modern-day computing and this seems unlikely to change.



3 Related Work
We compare and contrast resource competitiveness with a number of related concepts.
Notions of Relative Cost. Competitive analysis is a well-known technique where one evaluates the
worst-case performance of an online algorithm relative to an optimal offline algorithm OPT [68].
While the inputs to an online algorithm can be viewed as adversarially selected, there is no notion
of cost to the adversary for selecting certain inputs over others. In contrast, resource competitive-
ness places the cost to the adversary directly in the performance metric (see Definition 1); this is a
key difference. Unlike online analysis where it is impossible for an online algorithm to outperform
OPT , a resource-competitive algorithm can actually be more efficient than an adversary that tries
to attack.

Parameterized analysis is a general technique that has been used in many contexts such as
online paging algorithms [26, 53], graph theory [10], and the traveling salesperson problem [7, 9].
Resource competitiveness might be viewed as extending this approach to the distributed setting,
where it is often natural to consider an actual struggle with an adversary, and where a careful
modeling of costs is necessary.

Game theory provides another measure of competitiveness known as the “price of anarchy”
which is the ratio of the worst-case Nash equilibrium to the global social optimum [54, 64]. In
resource-competitive analysis, each node either obeys the protocol or it does not; in game theory,
nodes seek to maximize their respective utility functions. It is possible to address malicious behav-
ior in the context of game theory (see [2, 3, 19, 48, 72]). The incorporation of game theoretic con-
cepts may be an interesting direction for future work on resource-competitive algorithms; however,
the current challenges in designing resource-competitive algorithms are sufficiently formidable to
warrant their investigation first.

Notions of Inflicting Cost. The idea of inflicting cost on an opponent arises more explicitly
in the domain of cryptography. In [23], Diffie and Hellman state that the goal in designing a
cryptographic system “is to make the enciphering and deciphering operations inexpensive, but to
ensure that any successful cryptanalytic operation is too complex to be economical.” This idea that
an attacker is burdened by a disproportionate cost in attempting to break a cryptosystem underlies
all modern-day cryptosystems.

A major differentiating aspect of cryptographic approaches is that a security parameter, e.g. a
length of a private key, is decided prior to running the algorithm. This roughly determines (i) how
much the adversary must spend in order to compromise the cryptosystem, and (ii) how much the
good nodes must spend to achieve a particular level of security. In contrast, resource-competitive
algorithms are adaptive, as described in Section 1.1. Recall that when T = 0, there is a small
upfront cost quantified by the efficiency function τ . Then, as T increases, the cost function ρ(T )
increases in response and will dominate the cost of the algorithm when T grows large enough. This
is very different from having a predetermined cost.

Additional Related Results. An early example of considering an attacker’s resources involves a
public-key cryptosystem by Merkle [51] where computational puzzles are used to inflict cost on an
eavesdropper. However, the hardness of the puzzles must be set a priori and, therefore lacks the
adaptivity of resource-competitive algorithms.



Inflicting computational cost has been used to deter spam email [27]. Another example arises in
settings where an attacker controls multiple identities. In such a network, one may issue a cost for
joining via computational puzzles [47, 70] or monetary penalties [15]. Even the social cost of es-
tablishing links between two nodes in a social network graph has been exploited to limit the impact
of such attacks [77]. Similar ideas of inflicting cost have been used to mitigate application-level
DDoS attacks. Typically, the focus is on requiring a client to spend bandwidth or computational
resources prior to receiving service (see [49, 56, 73]).

Assuming that the adversary does not have substantially more resources than the good nodes,
these approaches impose a cost that limits the adversary’s ability to disrupt the system. In contrast,
rather than make this assumption, a resource-competitive algorithmA quantifies a cost relationship
between the adversary and the good nodes. This property of the algorithm allows us to better
understand the performance of the system under any amount of disruption. For example, one may
show that the adversary requires more resources (and how much more) in order to thwart A (as
exemplified in Section 2). Conversely, if good nodes are at a disadvantage, then the magnitude
of this disadvantage is known and can be used when provisioning the system in order to still give
guarantees.

4 Recent Resource-Competitive Results
Recently, a number of resource-competitive results have appeared:

Large Wireless Sensor Networks: Following up on [43], the problem of tolerating jamming at-
tacks in larger wireless ad-hoc networks has been investigated with similar advantages to the good
nodes in Gilbert and Young [38] and Gilbert et al. [36]. Together, these three works demonstrate
that there is hope for dealing with adversaries that can employ more general jamming strategies.

Robust Backoff: Randomized binary exponential backoff (or simply backoff) is a well-known and
widely deployed technique for coordinating access to a shared resource, such as a communication
channel (see [52] for wired networks, and [44, 75] for wireless networks). Several works examine
the performance of (variants of) backoff under various models of process arrivals (for examples,
see [8,18,33,39–41,74]). However, prior results cannot guarantee constant throughput in the fully
dynamic case where the number of processes seeking access to the channel can change arbitrarily
from one time step to the next.

In addition to throughput, another important metric is the number of access attempts performed
by a process prior to successfully utilizing the channel. This number should be relatively small;
otherwise, bandwidth is wasted and, in the case of an excessive number of attempts, throughput
is degraded. Recall that interference on the communication medium may render the channel un-
available. If disruption leads to T time slots of unavailability, then the number of access attempts
should be a small function of T .

A recent result by Bender et al. [6] addresses these challenges. The authors demonstrate a
resource-competitive algorithm that yields constant throughput and where each process makes
only an expected O(logO(1) T + logO(1) n) access attempts, where n is the total (unknown) number
of process arrivals over the lifetime of the system.



Interactive Communication: Alice and Bob wish to communicate over a noisy binary channel.
The goal in interactive communication is to give an algorithm that takes as input some distributed
protocol π that executes over a noise-free channel, and outputs a distributed protocol π′ that works
over the noisy channel. Communication over the channel is synchronous, and a channel step is
defined to be the amount of time taken to send one bit over the channel. Given that π works over
L channel steps, the goal is to minimize the number of channel steps required by π′ and, therefore,
reduce the bandwidth used.

A number of important results have been established [11–13, 31, 32, 34, 55, 66, 67]. However,
common to all of these previous works is a focus on tolerating the maximum possible noise rate,
but how do these algorithms perform with smaller noise rates? This question was the subject of
recent work by Haeupler [42] who noted that these schemes incur a large communication overhead
for smaller noise rates. Motivated by this inefficiency, Haeupler [42] demonstrated an algorithm
that achieves a conjectured near-optimal overhead for a given noise rate which is known in advance.

What if the noise rate is unknown? In this case, for an arbitrary and unknown T ≥ 0 bit
flips, work by Dani et al. [22] provides a resource-competitive algorithm that succeeds with high
probability in L and, if successful, has an expected cost of L+O

(
(T +

√
LT + L) log(LT + L)

)
channel steps.

Reliable Bridge Distribution in Tor: Tor is the largest anonymous communication network that
allows users to access the Internet anonymously by providing them with the option to connect to
a set of servers called bridges. In networks that are under censorship, adversarial authorities can
inject dishonest users in the network in order to learn the addresses of bridges and then block them.
A challenging problem is to distribute a set of bridges among n users in such a way that all honest
users are guaranteed to be able to connect to Tor in the presence of an adversary corrupting T < n
number of users. In this setting, the power of the adversary, and thus T , is usually unknown.

Crandall et al. [20] describe a randomized bridge distribution algorithm when T is unknown.
Their algorithm is resource-competitive; it adaptively increases the number of bridges according
to the behavior of the adversary. It requires Õ(T ) bridges and the number of times a user fails to
connect to Tor via bridges is bounded by O(log T ) with high probability.

While each of these results parameterize algorithmic performance by T , the implications of the
cost relationship differ. For wireless sensor networks, our concerns are security oriented: we
attempt to thwart a denial-of-service attack by bankrupting the attacker. In constrast, for backoff
and interactive communication, we are concerned with (bandwidth) efficiency and we seek to
minimize the communication overhead relative to the amount of disruption. This diversity of
results illustrates how resource competitiveness can be applied to achieve results in a variety of
settings.

5 Conclusion and Future Work
Resource competitiveness is a useful addition to the collection of tools that algorithmicists can
use for designing fault-tolerant systems. In security settings where both good and bad devices are
resource constrained, this technique allows us to compete with an attacker. Under more benign
fault models, efficient robustness to disruption can be obtained.



There are a number of open problems that seem amenable to a resource-competitive approach.
To date, results addressing jamming in wireless sensor networks have been confined to single-hop
networks, and it would be interesting to see a result for a multi-hop setting. Additionally, the
analogue to jamming attacks in the wired domain are denial-of-service attacks, and it would be of
interest to determine what results are possible under such attacks.

While [36, 38] addresses the challenge of broadcast, this does not lead directly to a resource-
competitive algorithm for leader election, consensus, or Byzantine agreement. Results pertaining
to these canonical distributed computing problems would be of interest.

Acknowledgements. We are grateful to Valerie King for her valuable suggestions in writing this
article.
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