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Abstract

This paper gives tight bounds on the cost of cache-oblivious searching. The paper shows that no
cache-oblivious search structure can guarantee a search performance of fewer than lg e log

B
N memory

transfers between any two levels of the memory hierarchy. This lower bound holds even if all of the block
sizes are limited to be powers of 2. The paper gives modified versions of the van Emde Boas layout, where
the expected number of memory transfers between any two levels of the memory hierarchy is arbitrarily
close to [lg e+ O(lg lgB/ lgB)] log

B
N +O(1). This factor approaches lg e ≈ 1.443 as B increases. The

expectation is taken over the random placement in memory of the first element of the structure.
Because searching in the disk-access machine (DAM) model can be performed in log

B
N +O(1) block

transfers, this result establishes a separation between the (2-level) DAMmodel and cache-oblivious model.
The DAM model naturally extends to k levels. The paper also shows that as k grows, the search costs
of the optimal k-level DAM search structure and the optimal cache-oblivious search structure rapidly
converge. This result demonstrates that for a multilevel memory hierarchy, a simple cache-oblivious
structure almost replicates the performance of an optimal parameterized k-level DAM structure.

Keywords: cache-oblivious B-tree, cache-oblivious searching, van Emde Boas layout.

1 Introduction

Hierarchical Memory Models. Traditionally, algorithms are designed to run efficiently in a random
access model (RAM) of computation, which assumes a flat memory with uniform access times. However,
as hierarchical memory systems become steeper and more complicated, algorithms are increasingly designed
assuming more accurate memory models; see e.g., [2–5, 7–9, 28, 33–35, 39–41]. Two of the most successful
memory models are the disk-access model (DAM) and the cache-oblivious model.
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The DAM model, developed by Aggarwal and Vitter [4], is a two-level memory model, in which the
memory hierarchy consists of an internal memory of size M and an arbitrarily large external memory parti-
tioned into blocks of size B. Algorithms are designed in the DAM model with full knowledge of the values
of B and M . Because memory transfers are relatively slow, the performance metric is the number of block
transfers.

The cache-oblivious model, developed by Frigo, Leiserson, Prokop, and Ramachandran [27, 31], allows
programmers to reason about a two-level memory hierarchy but to prove results about an unknown multilevel
memory hierarchy. As in the DAM model, the objective is to minimize the number of block transfers
between two levels. The main idea of the cache-oblivious model is that by avoiding any memory-specific
parametrization (such as the block sizes) the cache-oblivious algorithm has an asymptotically optimal number
of memory transfers between all levels of an unknown, multilevel memory hierarchy.

Optimal cache-oblivious algorithms have memory performance (i.e., number of memory transfers) that
is within a constant factor (independent of B and M) of the memory performance of the optimal DAM
algorithm, which knows B and M . There exist surprisingly many (asymptotically) optimal cache-oblivious
algorithms (see, e.g., [24, 30]).

I/O-Efficient Searching. This paper focuses on the fundamental problem of searching: Given a set S
of N comparison-based totally-ordered elements, produce a data structure that can execute searches (or
predecessor queries) on items in S.

We prove tight bounds on the cost of cache-oblivious searching. We show that no cache-oblivious search
structure can guarantee that a search performs fewer than lg e logB N block transfers between any two levels
of the memory hierarchy, even if all of the block sizes are limited to powers of 2.1 We also give search
structures in which the expected number of block transfers between any two levels of the memory hierarchy
is arbitrarily close to [lg e+O(lg lgB/ lgB)] logB N +O(1), which approaches lg e logB N +O(1) for large B.
This expectation is taken over the random placement in memory of the first element of the structure.

In contrast, the performance of the B-tree [10, 23], the classic optimal search tree in the DAM model, is
as follows: A B-tree with N elements has nodes with fan-out B, which are designed to fit into one memory
block. The B-tree has height logB N + 1, and a search requires logB N + 1 memory transfers.

A static cache-oblivious search tree, proposed by Prokop [31], also performs searches in Θ(logB N) mem-
ory transfers. The static cache-oblivious search tree is built as follows: Embed a complete binary tree with
N nodes in memory, conceptually splitting the tree at half its height, thus obtaining Θ(

√
N) subtrees each

with Θ(
√
N) nodes. Lay out each of these trees contiguously, storing each recursively in memory. This type

of recursive layout is commonly referred to in the literature as a van Emde Boas layout because it is remi-
niscent of the recursive structure of the van Emde Boas tree [37, 38]. The static cache-oblivious search tree
is a basic building block of most cache-oblivious search structures, including the (dynamic) cache-oblivious
B-tree [14, 15, 15, 22, 32] and other cache-oblivious search structures [1, 6, 11, 12, 16–21,25, 26]. Any improve-
ments to the static cache-oblivious search structure immediately translate to improvements in these dynamic
structures.

Results. We present the following results:

• We give an analysis of Prokop’s static cache-oblivious search tree [31], proving that searches perform

at most 2
(

1 + 3√
B

)

logB N +O(1) expected memory transfers; the expectation is taken only over the

random placement of the data structure in memory. This analysis is tight to within a 1 + o(1) factor.

• We then present a class of generalized van Emde Boas layouts that optimizes performance through
the use of uneven splits on the height of the tree. For any constant ε > 0, we optimize the layout
achieving a performance of [lg e + ε+ O(lg lgB/ lgB)] logB N + O(1) expected memory transfers. As

1Throughout the paper lgN means log2 N .
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before, the expectation is taken over the random placement of the data structure in memory2. While
the derivations in the proof of the upper bound might not provide great insight into the reasons why
it holds, its mere existence is valuable information. It shows that the tightness of the lower bound and
points to the surprising fact that uneven splits, contrary to established practice, are of key importance
in the building of this data structure.

• Intuitively, the improvement of uneven splitting, as compared to the even splitting in the standard van
Emde Boas layout, is likely to be due to the generation of a variety of subtree sizes at each recursive
level of the layout. Such a variety will on any search path reduce the number of subtrees that can have
particularly bad sizes compared to the block size B. We strengthen this intuition by presenting another
generalization of the van Emde Boas layout, which generates an explicit distribution of subtree sizes at
each recursive level. The definition of this layout is more involved than for the first layout presented,
but the corresponding proof of complexity is shorter and more direct. The achieved complexity is the
same as for the first layout.

• Finally, we demonstrate that it is harder to search in the cache-oblivious model than in the DAM model.
Previously the only lower bound for searching in the cache oblivious model was the logB N lower bound
from the DAM model. We prove a lower bound of lg e logB N memory transfers for searching in the
average case in the cache-oblivious model. Thus, for large B, our upper bound is within a factor of
1 + o(1) of the optimal cache-oblivious layout.

Interpretation. We present cache-oblivious search structures that take 44% more block transfers than
the optimal DAM structure, and we prove that one cannot do better. However, this result does not mean
that our cache-oblivious structures are 44% slower than an optimal algorithm for a multilevel memory
hierarchy. To the contrary, this worst-case behavior only occurs on a two-level memory hierarchy. To design
a structure for a k-level memory hierarchy, one can extend the DAM model to k levels. A data structure for
a k-DAM is designed with full knowledge of the size and block size of each level of the memory hierarchy.
Thus, the 2-DAM is the standard DAM where searches cost logB N + 1 block transfers (using a B-tree).
Surprisingly, in the 3-DAM this performance cannot be replicated in general. We show in Corollary 2.3
that a 3-DAM algorithm cannot achieve less than 1.207 logB N block transfers on all levels simultaneously.
Thus, the performance gap between a 3-DAM and the optimal cache-oblivious structure is about half that
of the 2-DAM and the optimal cache-oblivious structure; naturally, a modern memory hierarchy has more
than three levels. Furthermore, we show that as the number k of levels in the memory hierarchy grows, the
performance loss of our cache-oblivious structures relative to an optimal k-DAM structure tends to zero.
Thus, for a modern memory hierarchy, our cache-oblivious structures combines simplicity and near-optimal
performance.

Our cache-oblivious search trees also provide new insight into the optimal design strategy for divide-
and-conquer algorithms. More generally, it has been known for several decades that divide-and-conquer
algorithms frequently have good data locality [36]. The cache-oblivious model helps explain why divide-and-
conquer can be advantageous.

When there is a choice, the splitting in a divide-and-conquer algorithm is traditionally done evenly. The
unquestioned assumption is that splitting evenly is best. Our new search structures reveal a setting in which
it is crucial that the resulting subtrees across the recursive decomposition not be of equal size.

Indeed, even splits lead to a performance slowdown factor of two in the worst case as each access might
straddle two blocks. In contrast uneven splits lead to an expected slowdown of at most lg e ∼ 1.443. This
shows that so long as the placement in memory is random, the tree accesses are reasonably well aligned with
the cache blocks on the average. In this case, the intuitive reasons behind the superiority of uneven split is
that the regularity of even splits allows for the construction of adversarial worst case configurations. This
can be observed from the proof of Theorem 3.3.

2Note that explicit programmer intervention might be needed to ensure random placement of the data structure. This could
be accomplished by means such as requesting a block of a fixed larger size and then placing the data structure at a small random
offset from the head of the allocated block.
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2 Lower Bound for Cache-Oblivious Searching

In this section we prove lower bounds on the I/O cost of comparison-based search algorithms optimizing
for several block sizes at the same time. The specific problem we consider is the average cost of successful
searches among N distinct elements, for a uniform distribution of the search key y on the N input elements.
As average case lower bounds are also worst case lower bounds, our results also apply to the worst case
cost. We emphasize that our bounds hold even if the block sizes are known to the algorithm, and that no
randomization of the placement of the data structure of the search algorithm is assumed.

Formally, our model is as follows. Given a set S of N elements x1 < · · · < xN from a totally ordered
universe, a search structure for S is an array M containing elements from S, possibly with several copies
of each. A search algorithm for M is a binary decision tree where each internal node is labeled with either
y < M [i] or y ≤ M [i] for some array index i, and each leaf is labeled with a number 1 ≤ j ≤ N . A search
on a key y proceeds in a top-down fashion in the tree, and at each internal node advances to the left child if
the comparison given by the label is true, otherwise it advances to the right. The binary decision tree is a
correct search algorithm if for any xi ∈ S, the path taken by a search on key y = xi ends in a leaf labeled i.
Any such tree must have at least N leaves, and by pruning paths not taken by any search for x1, . . . , xN , we
may assume that it has exactly N leaves.

To add I/Os to the model, we divide the array M into contiguous blocks of size B. An internal node of a
search algorithm is said to access the block containing the array index i in the label of the node. We define
the I/O cost of a search to be the number of distinct blocks of M accessed on the path taken by the search.

We assume in our model that block sizes are powers of two and that blocks start at memory addresses
divisible by the block size. This reflects the situation on actual machines, and entails no loss of generality,
as any cache-oblivious algorithm at least should work for this case. The assumption implies that when
considering two block sizes B1 < B2, a block of size B1 is contained in exactly one block of size B2.

The depth of a leaf in a tree is the number edges on its path to the root, and the height of a tree is the
maximal depth among its leaves. We recall the following standard result on the average depth of leaves in
binary trees.

Lemma 2.1 ( [29, Section 2.3.4.5]) For a binary tree with N leaves, the average depth of a leaf is at least
lgN .

In our lower bound proof, we analyze the I/O cost of a given search algorithm with respect to several
block sizes simultaneously. We first describe our method for the case of two block sizes. This leads to a
lower bound of 1.207 logB N block transfers. We then generalize this proof to a larger number k of block
sizes, and prove that in the limit as k grows, this gives a lower bound of lg e logB N ≈ 1.443 logB N block
transfers.

Lemma 2.2 If a search algorithm on a search structure for block sizes B1 and B2, where B2 = B1
c and

1 < c ≤ 2, guarantees that the average number of distinct blocks read during searches is at most δ logB1
N

and δ logB2
N , respectively, then

δ ≥ 1

2/c+ c− 2 + 3/(c lgB1)
.

Proof: Let T denote the binary decision tree constituting the search algorithm. The main idea of the proof
is to transform T into a new binary decision tree T ′ by a transformation on nodes along each search path.
Nodes that access a new block on the search path will be substituted by inserting small binary decision
trees in their place. These decision trees are carefully chosen to have low height and to allow path nodes not
accessing new blocks to be discarded. The end result is that the transformed path consists of one root-to-leaf
path from each of the trees inserted along the original path, and there is one such tree for each distinct block
access along the original path. By the bounded height of the inserted trees, a lower bound on the lengths of
the transformed paths gives a lower bound on the distinct block accesses along the original paths. Lemma 2.1
supplies such a lower bound.
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The transformation will be done simultaneously for all search paths in T by a top-down process, main-
taining a decision tree at all times. During the process, it will be an invariant that a search for any key ends
in a leaf having the same label as the leaf where the same search ends in T . In particular, the final tree T ′

is a correct search algorithm if T is.
To count the number of I/Os of each type (size B1 blocks and size B2 blocks) for each path in T , we

mark some of the internal nodes by tokens τ1 and τ2. A node v is marked iff none of its ancestors accesses
the size B1 block accessed by v, i.e. if v is the first access to the block. The node v may also be the first
access to the size B2 block accessed by v. In this case, v is marked by τ2, else it is marked by τ1. Note that
the word “first” above corresponds to viewing each path in the tree as a timeline—this view will be implicit
in the rest of the proof.

For any root-to-leaf path, let bi denote the number of distinct size Bi blocks accessed and let ai denote
the number of τi tokens on the path, for i = 1, 2. By the assumption stated above Lemma 2.1, a first access
to a size B2 block implies a first access to a size B1 block, so we have b2 = a2 and b1 = a1 + a2.

As said, we transform T into a new binary decision tree T ′ in a top-down fashion. The basic step in
the transformation is to substitute a marked node v with a specific binary decision tree Tv resolving the
order-wise relation between the search key y and a carefully chosen subset Sv of the elements stored in M .
More precisely, in each step of the transformation, the subtree rooted at v is first removed, then the tree Tv

is inserted at v’s former position, and finally a copy of one of the two subtrees rooted at the children of v
is inserted at each leaf of Tv. The set Sv is always chosen such that it includes the element accessed by
the comparison in v. Hence, at each leaf of Tv, the order-wise relation to that element is known, and the
appropriate one of the two subtrees can be inserted. The top-down transformation then continues downwards
from the leaves of Tv. When the transformation reaches a leaf of T , it is left unchanged. Note that the
invariant mentioned above is maintained at each step.

We now describe the tree Tv inserted, given that the set Sv of elements has been selected. The tree Tv

is a binary decision tree of minimal height resolving the relation of the search key y to all keys in Sv. If we
have Sv = {z1, z2, . . . , zt}, with elements listed in sorted order, this amounts to resolving to which of the
2t+ 1 intervals

(−∞; z1) , [z1; z1] , (z1; z2) , . . . , [zt; zt] , (zt;∞)

y belongs. That tree has height at most ⌈lg(2t+ 1)⌉, since a perfectly balanced binary search tree on Sv

(having, say, comparisons of type “<” in the internal nodes), with one layer of t nodes added at the leaves
to resolve the equality questions, will do.

We now describe how the set Sv is chosen. First consider the case of a node v marked τ2. Here, we let
the subset Sv consist of the at most B1 distinct elements in the block of size B1 accessed by v, plus every
B2

2B1
th element in sorted order among the at most B2 distinct elements in the block of size B2 accessed by v.

The size of Sv is at most B1 + B2/(B2/(2B1)) = 3B1, so the tree Tv has height at most ⌈lg(6B1 + 1)⌉. As
B1 is a power of two, lg(8B1) is an integer and hence an upper bound on the height.

Next, for the case of a node v marked τ1, note that v in T has exactly one ancestor u marked τ2 that
accesses the same size B2 block β as v does. When the tree Tu was substituted for u, the inclusion in
Su of the 2B1 evenly sampled elements from β ensures that below any leaf of Tu, at most B2

2B1
− 1 of the

elements in β can still have an unknown relation to the search key. We let Sv be these B2

2B1
− 1 elements.

The corresponding tree Tv has height at most at most ⌈lg(2(B2/2B1 − 1) + 1)⌉, which is at most lgB2/B1,
as B1 and B2 are powers of two.

For the case of an unmarked internal node v (i.e. a node where the size B1 block accessed at the node
has been accessed before), we can simply discard v together with either the left or right subtree, since we
already have resolved the relation between the search key y and the element accessed at v. This follows from
the choice of trees inserted at marked nodes: when we access a size B2 block β2 for the first time at some
node u, we resolve the relation between the search key y and all elements in the size B1 block β1 accessed
at u (due to the inclusion of all of β1 in Su), and when we the first time access a key in β2 outside β1, we
resolve all remaining relations between y and elements in β2.

By the height stated above for the inserted Tv trees, it follows that if a search for a key y in T corresponds
to a path containing a1 and a2 tokens of type τ1 and τ2, respectively, then the search in T ′ corresponds to
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a path with length bounded from above by the following expression.

a2 lg(8B1) + a1 lg
B2

B1
= b2 lg(8B1) + (b1 − b2) lg

B2

B1
= b2

[

lg(8B1)− lg
B2

B1

]

+ b1 lg
B2

B1

The coefficients of b2 and b1 are positive by the assumption B1 < B2 ≤ B1
2, so upper bounds on b1 and b2

imply an upper bound on the expression above. By assumption, the average over all searches of b1 and b2
are bounded by δ logB1

N and δ logB2
N = (δ logB1

N)/c, respectively.
If we prune the tree for paths not taken by any search for the keys x1, . . . , xN , the lengths of root-to-leaf

paths can only decrease. The resulting tree has N leaves, and each leaf corresponds to a search, so averages
over searches and averages over leaves are the same. As Lemma 2.1 gives a lgN lower bound on the average
depth of a leaf, we get

lgN ≤ δ

c
logB1

N

[

lg(8B1)− lg
B2

B1

]

+ δ logB1
N lg

B2

B1

=
δ

c
logB1

N [3 + lgB1 − (c− 1) lgB1] + δ logB1
N(c− 1) lgB1

= δ lgN [3/(c lgB1) + 1/c− (c− 1)/c+ (c− 1)]

= δ lgN [3/(c lgB1) + c+ 2/c− 2] .

It follows that δ ≥ 1/[3/(c lgB1) + c+ 2/c− 2]. �

Corollary 2.3 If a search algorithm on a search structure guarantees, for all block sizes B, that the average
number of distinct blocks read during searches is at most δ logB N , then δ ≥ 1/(2

√
2− 2) ≈ 1.207.

Proof: Letting c =
√
2 in Lemma 2.2, we get δ ≥ 1/[2

√
2− 2 + 3/(

√
2 lgB1)]. The lower bound follows by

letting B1 grow to infinity. �

Lemma 2.4 If a search algorithm on a search structure for block sizes B1, B2, . . . , Bk, where Bi = B1
ci and

1 = c1 < c2 < · · · < ck ≤ 2, guarantees that the average number of distinct blocks read during searches is at
most δ logBi

N for each block size Bi, then

δ ≥ 1

2
ck

[

1 + lg(8k)
2 lgB1

]

+
k−1
∑

i=1

ci+1

ci
− k

.

Proof: The proof is a generalization of the proof of Lemma 2.2 for two block sizes, and we here assume
familiarity with that proof. The transformation is basically the same, except that we have a token τi,
i = 1, . . . , k, for each of the k block sizes.

Again, a node v is marked if none of its ancestors access the size B1 block accessed by v, i.e. if v is the
first access to this block. The node v may also be the first access to blocks of larger sizes, and we mark v
by τi, where Bi is the largest block size for which this is true. Note that by the assumption stated above
Lemma 2.1, v must be the first access to the size Bj block accessed by v for all j with 1 ≤ j ≤ i.

For any root-to-leaf path, let bi denote the number of distinct size Bi blocks accessed and let ai denote
the number of τi tokens on the path, for i = 1, . . . , k. We have bi =

∑k
j=i aj . Solving for ai, we get ak = bk

and ai = bi − bi+1, for i = 1, . . . , k − 1.
As in the proof of Lemma 2.2, the transformation proceeds in a top-down fashion, and substitutes marked

nodes v by binary decision trees Tv. We now describe the trees Tv for different types of nodes v.
For a node v marked τk, the tree Tv resolves the relation between the query key y and a set Sv of size

(2k − 1)B1, consisting of the B1 elements in the block of size B1 accessed at v, plus for i = 2, . . . , k every
Bi

2B1
th element in sorted order among the elements in the block of size Bi accessed at v. This tree can be

chosen to have height at most ⌈lg(2(2k − 1)B1 + 1)⌉ ≤ lg(8kB1).
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For a node v marked τi, i < k, let βj be the block of size Bj accessed by v, for 1 ≤ j ≤ k. For i+1 ≤ j ≤ k,
βj has been accessed before, by the definition of τi. We now consider two cases. Case I is that βi+1 is the
only block of size Bi+1 that has been accessed inside βk. By the definition of the tree Tu inserted at the
ancestor u of v where βk was first accessed, at most Bi+1/2B1− 1 of the elements in βi+1 can have unknown
relations with respect to the search key y. The tree Tv inserted at v resolves these relations. It can be chosen
to have height at most lg Bi+1

B1
. Case II is that βi+1 is not the only block of size Bi+1 that has been accessed

inside βk. Then consider the smallest j for which βj+1 is the only block of size Bj+1 that has been accessed
inside βk (clearly, j ≤ k − 1). When we the first time accessed the second block of size Bj inside βk at
some ancestor u of v, this access was inside βj+1, and a Case I substitution as described above took place.
Hence a tree Tu was inserted which resolved all relations between the search key and elements in βj+1. This
includes the element accessed by the comparison at v, so the empty tree can be used for Tv, i.e. v and one
of its subtrees is simply discarded.

For an unmarked node v, there is a token τi on the ancestor u of v in T for which the size B1 block β1

accessed by v was first accessed. This gave rise to a tree Tu in the transformation, and this tree resolved the
relations between the search key and all elements in β1, either directly (i = k) or by resolving the relations
for all elements in a block containing β1 (1 ≤ i < k), so v and one of its subtrees can be discarded.

After transformation and final pruning, the length of a root-to-leaf path in the final tree is bounded from
above by the following equation.

ak lg(8kB1) +

k−1
∑

i=1

ai lg
Bi+1

B1

= bk lg(8kB1) + lgB1

k−1
∑

i=1

(bi − bi+1)(ci+1 − 1)

= lgB1

[

bk

(

1 +
lg(8k)

lgB1

)

+ b1(c2 − 1) +

k−1
∑

i=2

bi(ci+1 − ci)− bk(ck − 1)

]

= lgB1

[

bk

(

2 +
lg(8k)

lgB1
− ck

)

+

k−1
∑

i=1

bi(ci+1 − ci)

]

.

For all i, the average value of bi over all search paths is by assumption bounded by δ logBi
N =

(δ logB1
N)/ci, and the coefficient of bi is positive, so we get the following upper bound on the average

number of comparisons on a search path.

δ logB1
N lgB1

[

1

ck

(

2 +
lg(8k)

lgB1
− ck

)

+

k−1
∑

i=1

1

ci
(ci+1 − ci)

]

= δ lgN

[

1

ck

(

2 +
lg(8k)

lgB1

)

+
k−1
∑

i=1

ci+1

ci
− k

]

.

By Lemma 2.1 we have

δ lgN

[

1

ck

(

2 +
lg(8k)

lgB1

)

+

k−1
∑

i=1

ci+1

ci
− k

]

≥ lgN ,

and the lemma follows. �

Theorem 2.5 If a search algorithm on a search structure guarantees, for all block sizes B, that the average
number of distinct blocks read during searches is at most δ logB N , then δ ≥ lg e ≈ 1.443.
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Proof: Let k be an integer, and for i = 1, . . . , k define Bi = 2k+i−1. In particular, we have B1 = 2k and
Bi = B1

ci with ci = (k + i− 1)/k. Consider the following subexpression of Lemma 2.4.

2

ck

(

1 +
lg(8k)

2 lgB1

)

+

k−1
∑

i=1

ci+1

ci
− k

=
2k

2k − 1

(

1 +
lg(8k)

2k

)

+

k−1
∑

i=1

k + i

k + i− 1
− k

=
2k

2k − 1

(

1 +
lg(8k)

2k

)

− 1 +

k−1
∑

i=1

1

k + i− 1

≤ 2k

2k − 1

(

1 +
lg(8k)

2k

)

− 1 +

∫ 2k−2

k−1

1

x
dx

=
2k

2k − 1

(

1 +
lg(8k)

2k

)

− 1 + ln 2.

Letting k grow to infinity Lemma 2.4 implies δ ≥ 1/ ln 2 = lg e. �

3 Upper Bound for van Emde Boas Layout

In this section we give a tight analysis of the cost of searching in a binary tree stored using the van Emde
Boas layout [31]. As mentioned earlier, in the vEB layout, the tree is split evenly by height, except for
roundoff. Thus, a tree of height h is split into a top tree of height ⌈h/2⌉ and bottom tree of height ⌊h/2⌋. It
is known [15, 22] that the number of memory transfers for a search is 4 logB N in the worst case; we give a
matching configuration showing that this analysis is tight. We then consider the average-case performance
over all starting positions of the tree in memory, and we show that the expected search cost is 2(1 +
3/

√
B) logB N + O(1) memory transfers, which is tight within a 1 + o(1) factor. We assume that the data

structure begins at a random position in memory; if there is not enough space, then the data structure
“wraps around” to the first location in memory.

A relatively straightforward analysis of this layout shows that in the worst case the number of memory
transfers is no greater than four times that of the optimal cache-size-aware layout. More formally,

Theorem 3.1 Consider an (N − 1)-node complete binary search tree that is stored using the Prokop vEB

layout. A search in this tree has memory-transfer cost of at least

(

4− 4

1 + log6 B

)

logB N and at most

4 logB N in the worst case.

Proof: The upper bound has been established before in the literature [15,22]. For the lower bound we show
that this value is achieved asymptotically. Let the block size be B =

(

22k − 1
)

/5 for any even number k ≥ 4

and consider a tree T of size N − 1, where N = 2k2
m+1

for some constant m. Number the positions within
a block from 0 to B − 1. As we recurse, we eventually obtain subtrees of size 5B = 22k − 1 and one level
down of size 2k − 1. We align the subtree of size 5B that contains the root of T so that its first subtree
R of size 2k − 1 (which also contains the root of T ) starts in position B − 1 of a block. In other words,
any root-to-leaf search path in the subtree of size 5B crosses the block boundary because the root is in the
last position of a block. Observe that R has 2k−1 subtrees of size 2k − 1 hanging from its bottom level.
Number these 2k − 1 subtrees as they are laid in memory in the recursive decomposition and consider the
⌊2(2k +1)/5⌋+1-th subtree of size 2k − 1 in this ordering. The root of this tree starts at a position between
B − 1+ (2k − 1)(2(2k + 1)/5− 1) + 1 = 3B − (2k − 1) and B − 1+ (2k − 1)2(2k + 1)/5 = 3B − 1. Thus, any
root-to-leaf search path in this subtree crosses the block boundary. Observe that because trees are laid out
consecutively, and 5B is a multiple of the block size, all other subtrees of size 5B start at position B−1 inside
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a block and share the above that we can find a root-to-leaf path that has cost 4 inside this size-5B subtree.
Notice that a root-to-leaf path accesses 2m many size-5B subtrees, and if we choose the path according to the
above position we know that the cost inside each size 5B subtree is 4, i.e., the first 4 blocks as a contiguous
structure of size 5B may span at most 6 blocks. Thus, the total search cost is 4 · 2m. Because 2k2

m+1

= N
and 5B = 22k − 1, we have

4 · 2m =
4 logB N

logB(5B + 1)
= 4

lgB

lg(5B + 1)
logB N.

Furthermore, we bound the parameter lgB/ lg(5B + 1) as follows:

lgB

lg(5B + 1)
>

lgB

lg 6B

= 1− lg 6

lg 6 + lgB

= 1− 1

1 + log6 B
.

Therefore, the total search cost has 4(1− 1/(1 + log6 B)) logB N memory transfers in the worst case. �

However, few paths in the tree have this property, which suggests that in practice, the Prokop vEB layout
results in a much lower memory-transfer cost assuming random placement in memory.

In Theorem 3.3, appearing shortly, we formalize this notion. First, however, we give the following useful
inequality to simplify the proof.

Claim 3.2 Let B be a power of 2, t and t′ be positive numbers satisfying t/2 ≤ t′ ≤ 2t,
√
B/2 ≤ t ≤

√
B,

and tt′ ≥ B. Then

2 +
t+ t′

B
≤ 2

(

1 +
3√
B

)

lg t+ lg t′

lgB
.

Proof: Because t2 + (t′)2 ≤ 5tt′/2 for all t/2 ≤ t′ ≤ 2t, we have

t+ t′ ≤ 3

√

tt′

2
. (1)

Define x = tt′ and define

f(x) = 2

(

1 +
3√
B

)

lg x

lgB
− 2− 3

B

√

x

2
.

We will show that f(x) ≥ 0 for B ≤ x ≤ 2B. First, we calculate the second derivative of f(x).

f ′′(x) = −2

(

1 +
3√
B

)

1

x2 lnB
+

3

4
√
2B

1

x3/2
.

Because x ≤ 2B (i.e., x1/2 ≤
√
2B), we obtain

f ′′(x) ≤ 1

x2

[

3
√
2B

4
√
2B

− 2

(

1 +
3√
B

)

1

lnB

]

.

By removing the term −6/(
√
B lnB), we bound f ′′(x) as follows:

f ′′(x) ≤ 1

x2

(

3

4
√
B

− 2

lnB

)

≤ 0.
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Thus, we establish that f(x) is convex in the range B ≤ x ≤ 2B. Because both f(B) and f(2B) are greater
than zero, we obtain f(x) ≥ 0 for B ≤ x ≤ 2B, which is equivalent to

2 +
3

B

√

x

2
≤ 2

(

1 +
3√
B

)

lg x

lgB
.

From (1) and the above inequality, we obtain the follows:

2 +
t+ t′

B
≤ 2

(

1 +
3√
B

)

lg x

lgB
.

�

Theorem 3.3 Consider a path in an (N − 1)-node complete binary search tree of height h that is stored in
vEB layout, with the start of its representation in memory determined uniformly at random within a block B.
Then the expected memory-transfer cost of the search is at most 2(1 + 3/

√
B) logB N .

Proof: Although the recursion proceeds to the base case where trees have height 1, conceptually we stop
the recursion at the level of detail where each recursive subtree has at most B nodes. We call those subtrees
critical recursive subtrees, because they are recursive subtrees in the most ”important” level of detail. Let
the number of nodes in a subtree T be |T |. Therefore, any critical recursive subtree T has |T | nodes, where√
B/2 ≤ |T | ≤ B. Note that because of roundoff, we cannot guarantee that |T | ≥

√
B. In particular, if

a tree has B + 1 nodes and its height h′ is odd, then the bottom trees have height ⌊h′/2⌋, and therefore
contain roughly

√
B/2 nodes. Then there are exactly |T | − 1 initial positions for the upper tree that results

in T being laid out across a block boundary. Similarly there are B − |T | + 1 positions in which the block
does not cross a block boundary. Hence, the local expected cost of accessing T is

2(|T | − 1)

B
+

B − |T |+ 1

B
= 1 +

|T | − 1

B
.

Now we need two cases to deal with the roundoff. If
√
B/2 ≤ |T | ≤

√
B for the critical recursive

subtree T , then we consider the next larger level of detail. There exists another critical recursive subtree T ′

immediately above T on the search path in this level of detail. Notice that |T ||T ′| ≥ B. Because otherwise
we would consider the coarser level of detail for our critical recursive subtree. Because we cut in the middle,
we know that 2|T ′| ≥ |T | ≥ |T ′|/2. From Claim 3.2 the expected cost of accessing T and T ′ is at most

1 +
|T | − 1

B
+ 1 +

|T ′| − 1

B
≤ 2

(

1 +
3√
B

)

lg(|T ||T ′|)
lgB

.

For
√
B ≤ |T | ≤ B for the critical recursive subtree T , we show that the cost of accessing T is less than

2(1 + 1/
√
B) lg |T |/ lgB. Define f(x) as follows:

f(x) = 2
lg x

lgB

(

1 +
1√
B

)

− 1− x− 1

B
.

By calculating

f ′′(x) = − 2

x2 lgB

(

1 +
1√
B

)

≤ 0,

we know f(x) is convex. Because both f(
√
B) and f(B) are greater than zero, we obtain f(x) ≥ 0 for the

entire range
√
B ≤ x ≤ B. Thus, considering f(|T |), we obtain that the expected cost of accessing T is

1 +
|T | − 1

B
≤ 2

(

1 +
1√
B

)

lg |T |
lgB

.
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Combining the above arguments, we conclude that although the critical recursive subtrees on a search
path may have different sizes, their expected memory-transfer cost is at most

∑

T

2

(

1 +
3√
B

)

lg |T |
lgB

= 2

(

1 +
3√
B

)

logB N.

This is a factor of 2(1 + 3/
√
B) times the (optimal) performance of a B-tree. �

4 Upper Bounds for Cache Oblivious Searching

We give two cache-oblivious layouts for achieving our main upper bound. One layout, which we term the
generalized van Emde Boas layout is very simply defined, but has a lengthy proof of complexity. The other
layout, termed multi-layer van Emde Boas layout is slightly more involved, but allows a shorter proof.

The intuition behind both methods is to ensure an appropriate diversity of sizes of subtrees at each
level of recursion of a van Emde Boas type layout. When looking at the level of recursion where the sizes
of subtrees get below the block size B, these sizes will then be spread out in the interval [

√
B,B]. Under

randomization of the starting position of the data structure in memory, smaller subtrees will be less likely
to straddle a block boundary thus avoiding a second I/O for these trees during a search. On the other hand,
smaller subtrees mean more such subtrees on a search path, hence more I/Os. The main question is what is
the best possible balance between the two effects holding true for any value of the block size B.

In the multi-layer van Emde Boas layout, we specify an explicit diversity of sizes of subtrees at each level
of the recursion, which we can prove achieves a balance between the two effects that entails a cache-oblivious
search time asymptotically meeting our lower bound.

In the van Emde Boas layout, we split the tree height in a fixed, uneven way during the recursion of the
van Emde Boas layout, and we are able to show that this simple scheme achieves the same result. Intuitively,
the recursive uneven division provides a spread of subtree sizes with the same effect as our explicit scheme.

5 Upper Bound for the Generalized van Emde Boas Layout

We now propose and analyze a generalized van Emde Boas layout having a better search cost. In the original
vEB layout, the top recursive subtree and the bottom recursive subtrees have the same height (except for
roundoff). At first glance this even division would seem to yield the best memory-transfer cost. Surprisingly,
we can improve the van Emde Boas layout by selecting different heights for the top and bottom subtrees.

The generalized vEB layout is as follows: Suppose the complete binary tree contains N − 1 = 2h − 1
nodes and has height h = lgN . Let a and b be constants such that 0 < a < 1 and b = 1− a. Conceptually
we split the tree at the edges below the nodes of depth ⌈ah⌉. This splits the tree into a top recursive subtree
of height ⌈ah⌉, and k = 2⌈ah⌉ bottom recursive subtrees of height ⌊bh⌋. Thus, there are roughly Na bottom
recursive subtrees and each bottom recursive subtree contains roughly N b nodes. We map the nodes of the
tree into positions in the array by recursively laying out the subtrees contiguously in memory. The base case
is reached when the trees have one node, as in the standard vEB layout.

We find the values of a and b that yield a layout whose memory-transfer cost is arbitrarily close to
[lg e+O(lg lgB/ lgB)] logB N +O(1) for a = 1/2− ξ and large enough N . We focus our analysis on the first
level of detail where recursive subtrees have size at most the block size B. In our analysis memory transfers
can be classified in two types. There are V path-length memory transfers, which are caused by accessing
different recursive subtrees in the level of detail of the analysis, and there are C page-boundary memory
transfers, which are caused by a single recursive subtree in this level of detail straddling two consecutive
blocks. It turns out that each of these components has the same general recursive expression and differs only
in the base cases. The total number of memory transfers is at most V + C by linearity of expectation.

The recurrence relation obtained contains rounded-off terms (⌊·⌋ and ⌈·⌉) that are cumbersome to analyze.
We show that if we ignore the roundoff operators, then the error term is small. We obtain a solution expressed
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in terms of a power series of the roots of the characteristic polynomial of the recurrence. We show for both V
and C that the largest root is unique and hence dominates all other roots, resulting in asymptotic expressions
in terms of the dominant root.

Using these asymptotic expressions, we obtain the main result, namely a layout whose total cost is
arbitrarily close to [lg e+O(lg lgB/ lgB)] logB N +O(1) as the split factor a = 1/2− ξ approaches 1/2 and
for N large enough. This performance matches the lower bound from the Section 2 up to low-order terms.

Causes of Memory Transfers:

Path-Length and Block-Boundary-Crossing Functions

We let B(x) denote the expected block cost of a search in a tree of height x. To begin, we explain the base
case for the recurrence, when the entire tree is a critical recursive subtree. Recall that a critical recursive
subtree is a recursive subtree of size less than B. If a critical recursive subtree crosses a block boundary,
then the block cost is 2; otherwise the block cost is 1. As in the Theorem 3.3, the expected block cost of
accessing a critical recursive subtree T of size |T | = t− 1 and height x = lg t is

1 +
t− 2

B
= 1 +

2x − 2

B
.

Thus, the base case is when |T | < B, which means that t ≤ B and 1 ≤ x ≤ lgB.
We next give the recurrence for the block cost B(x) of a tree T of height x. By linearity of expectation,

the expected block cost is at most that of the top recursive subtree plus the bottom recursive subtree, i.e.,

B(x) ≤ B(⌈ax⌉) + B(⌊bx⌋),

for x > lgB, 3 for a+ b = 1, 0 < a ≤ b < 1.
We decompose (an upper bound on) the cost of B(x) into two pieces. Let V(x) be the number of critical

recursive subtrees visited along a root-to-leaf path (V stands for “vertical”), i.e.,

V(x) =
{

V(⌈ax⌉) + V(⌊bx⌋), x > lgB;
1, 1 ≤ x ≤ lgB.

(2)

Let C(x) be the expected number of critical recursive subtrees straddling block boundaries along the root-
to-leaf path (C stands for “crossing”), i.e.,

C(x) =
{

C(⌈ax⌉) + C(⌊bx⌋), x > lgB;
(2x − 2)/B, 1 ≤ x ≤ lgB.

(3)

Observe that both V(x) and C(x) are monotonically increasing. By linearity of expectation, we obtain

B(x) ≤ V(x) + C(x)

for all x ≥ lgB.
The recurrences for V(x) and C(x) are both of the form

F(x) = F(⌈ax⌉) + F(⌊bx⌋).

As we will see, it is easier to analyze a recurrence of the form

G(x) = G(ax) + G(bx),

where the roundoff error is removed. In the next few pages, we show that F(x) can be approximated by
G(x) as x increases. Afterwards, we show how to calculate G(x).

3We cannot claim equality, i.e., that B(x) = B(⌈ax⌉) + B(⌊bx⌋), because the leaf node of the top recursive subtree and root
node of a bottom recursive subtree can belong to the same block. Thus, an equal sign in the recurrence might double count
one memory transfer.
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Roundoff Error Is Small

We next show that as x increases, the difference between F(x) and G(x) can be bounded. To quantify the
difference between F(x) and G(x) — see Theorem 5.4 — we use functions β(x) and δ(x) defined recursively
below:

Definition 5.1 Let a < min{1/2, 1− 2/ lgB}. Define the recursive function β(x) and δ(x) as follows:

β(x) =

{

0, x ≤ lgB;
β(ax + 1) + 1, x > lgB.

δ(x) =

{

1, x ≤ lgB;
δ(ax+ 1)(1 + 2aβ(x)−2/ lgB), x > lgB.

The following lemma gives upper and lower bounds of β(x).

Lemma 5.2 For all x > lgB, the function β(x) satisfies

2

a2x
≥ aβ(x)−2

lgB
≥ 1

2ax
. (4)

Proof: For parameter n, define the nth interval In to be

In =

[

lgB

2an−1
+

1

1− a
,
lgB − 1− a− · · · − an−1

an

]

.

We now prove the following inequality for all x > lgB:

1

2
lgB

(

1

a

)β(x)−1

≤ x− 1

1− a
≤ lgB

(

1

a

)β(x)

. (5)

We establish (5) in two parts.

1. We first show that the inequality holds for all n and all x ∈ In.

2. We then explain that the interval I0 ∪ I1 ∪ I2 ∪ · · · covers the interval [ lgB,∞ ).

We now prove the first part, showing by induction on n that (5) holds for all n and all x ∈ In.
Base Case: The base case is when

x ∈ I0 =

[

a

2
lgB +

1

1− a
, lgB

]

.

Because a < 1/2,
1

1− a
> 0.

Therefore, because x ∈ I0,
a

2
lgB ≤ x− 1

1− a
≤ lgB. (6)

Because x ≤ lgB and from Definition 5.1, β(x) = 0. Observe that (6) is equivalent to (5) when β(x) = 0.
Therefore, (5) holds in the base case.

Induction step: Assume that (5) holds for the nth interval In. We will show that (5) also holds for the
(n+ 1)st interval In+1, i.e., when

x ∈ In+1 =

[

lgB

2an
+

1

1− a
,
lgB − 1− a− · · · − an

an+1

]

,
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or equivalently when
lgB

2an
+

1

1− a
≤ x ≤ lgB − 1− a− · · · − an

an+1
. (7)

Multiplying by a and adding 1 to both sides of (7), we see that (7) is equivalent to

lgB

2an−1
+

1

1− a
≤ ax+ 1 ≤ lgB − 1− a− · · · − an−1

an
,

i.e.,
ax+ 1 ∈ In.

Thus, by induction (plugging ax+ 1 for x in (5)), we obtain

1

2
lgB

(

1

a

)β(ax+1)−1

≤ ax+ 1− 1

1− a
≤ lgB

(

1

a

)β(ax+1)

.

Noticing that β(ax + 1) = β(x) − 1 by Definition 5.1 and

(ax+ 1)− 1

1− a
= a

(

x− 1

1− a

)

,

we establish
1

2
lgB

(

1

a

)β(x)−2

≤ a

(

x− 1

1− a

)

≤ lgB

(

1

a

)β(x)−1

,

which is equivalent to (5) for x ∈ In+1.
We now prove the second part, that

⋃∞
n=0 In covers the interval [ lgB,∞). This claim follows when

a < 1 − 2/ lgB, which is guaranteed when B > 16. The claim follows because intervals overlap, i.e., the
right endpoint of the In is between the left and right endpoints of the In+1, that is,

lgB

2an
+

1

1− a
≤ lgB − 1− a− · · · − an−1

an
≤ lgB − 1− a− · · · − an

an+1
.

We have now established that (5) holds for all x > lgB.
We next show that (5) is equivalent to the lemma statement, i.e., (4). Taking inverses on both sides

of (5), we have

2
aβ(x)−1

lgB
≥ 1

x− 1

1− a

≥ aβ(x)

lgB

i.e.,
1

a2x− a2

1− a

≥ aβ(x)−2

lgB
≥ 1

2ax− 2a

1− a

.

Because x > lgB and a < 1−2/ lgB, we have x > 2/(1−a), i.e., a2x/2 > a2/(1−a). Therefore, the left side
of the above inequality is less than 2/(a2x). The right side is greater than 1/(2ax) because 2a/(1− a) > 0.
Thus, we prove the following

2

a2x
≥ aβ(x)−2

lgB
≥ 1

2ax

for all x > lgB as claimed. �

The following lemma gives the properties and the upper bound of δ(x).

Lemma 5.3 The function δ(x) has the following properties:
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(1) If β(x) = β(y), then δ(x) = δ(y).

(2) For all x > lgB,
(ax+ 1)δ(ax+ 1) ≤ axδ(x).

(3) For all x > lgB,

δ(x) ≤ exp

[

2

a(1− a) lgB

]

,

which is

1 +O

(

2

a(1− a) lgB

)

= 1 +O

(

1

lgB

)

.

Proof: (1) This claim follows from Definition 5.1.
(2) This claim follows from Definition 5.1 of δ(x) and Lemma 5.2

aβ(x)−2

lgB
≥ 1

2ax
.

(3) Recall that from Definition 5.1, we have

δ(x)

δ(ax+ 1)
= 1 + 2

aβ(x)−2

lgB

for all x > lgB. Furthermore, because 1+ y < ey is true for any y > 0, we bound the function δ(·) as follows

δ(x)

δ(ax+ 1)
≤ exp

[

2
aβ(x)−2

lgB

]

. (8)

For simplification, we define Pi be the polynomial aix + ai−1 + · · ·+ 1. In the following, we show there
exists some big integer n such that Pn+1 = an+1x + an + · · · + 1 < lgB. First of all, because a < 1, an is
arbitrary small when n goes to infinity. Thus, if n is big enough, then

an+1x <
lgB

2
(9)

for fixed number x. Second, for big B > 16, we have 1/(1− a) < (lgB)/2. Thus,

an + · · ·+ a+ 1 <
1

1− a
<

lgB

2
(10)

is true for all integer n. Therefore, combining both (9) and (10), we obtain that there exists some big
integer n such that

Pn+1 = an+1x+ an + · · ·+ 1 < lgB,

which means, by Definition 5.1 of δ(x), δ(Pn+1) = δ(an+1x + an + · · · + 1) = 1. Therefore, δ(x) can be
expressed as the multiplication of n+ 1 items, i.e.,

δ(x) =
δ(x)

δ(ax+ 1)

δ(ax+ 1)

δ(a2x+ ax+ 1)
· · · δ(a

nx+ an−1 + · · ·+ 1)

δ(an+1x+ an + · · ·+ 1)

Using the term Pi in the above equation, we get the simplified version

δ(x) =

n
∏

i=0

δ(Pi)

δ(Pi+1)
. (11)
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To bound δ(x), we give the upper bound for δ(Pi)/δ(Pi+1) first. Notice that Pi+1 = aPi + 1, Replacing
x by Pi in (8), we have the upper bound

δ(Pi)

δ(Pi+1)
≤ exp

[

2
aβ(Pi)−2

lgB

]

.

We claim that β(Pi) = n + 1 − i for all 0 ≤ i ≤ n+ 1. We prove this claim by induction. The base case is
for Pn+1. From Definition 5.1 and Pn+1 < lgB, we have β(Pn+1) = 0. Assume the claim holds for some Pi.
We prove the claim holds for Pi−1. Because Pi = aPi−1+1, we have β(Pi−1) = β(Pi)+1 from Definition 5.1
of β(x). Therefore, by induction, we obtain β(Pi−1) = β(Pi)+ 1 = n+1− i+1 = n+1− (i− 1) as claimed.
Thus, each of those items δ(Pi)/δ(Pi+1) has the upper bound

exp

[

2
an−i−1

lgB

]

.

Therefore, we obtain

δ(x) ≤ exp

[

2

n
∑

i=0

an−i−1

lgB

]

= exp

[

2

lgB

n
∑

i=0

ai−1

]

.

Because
n
∑

i=0

ai−1 <
∞
∑

i=0

ai−1 =
1

a(1− a)
,

we prove that

δ(x) ≤ exp

[

2

a(1− a) lgB

]

,

as claimed. �

Theorem 5.4 (Roundoff Error) Let F(x) = F(⌈ax⌉) + F(⌊bx⌋) and G(x) = G(ax) + G(bx) for 0 < a ≤
b < 1 and a+ b = 1. Then for B > 8, all x > 1, and constant c,

F(x) ≤ G(x δ(x)) ≤ c

[

1 +O

(

1

lgB

)]

x+O(1).

Proof: First recall that F(x) and G(x) are monotonically increasing. Thus, from ⌈ax⌉ ≤ ax + 1 and
⌊bx⌋ ≤ bx, we have

F(x) ≤ F(ax+ 1) + F(bx). (12)

We prove F(x) ≤ G(x δ(x)) inductively. The base case is when 1 < x ≤ lgB, where δ(x) = 1 from
Definition 5.1 and F(x) = G(x). Thus, F(x) ≤ G(x δ(x)) is true when 1 < x ≤ lgB.

Assuming F(x) ≤ G(xδ(x)) is true for 1 < x ≤ t, we prove it is true for 1 < x ≤ (t− 1)/b. Noticing that
(t − 1)/b ≤ min{t/b, (t − 1)/a} (because b ≥ a), we have ax + 1 ≤ t and bx ≤ t for all 1 < x ≤ (t − 1)/b.
Thus, by assumption and (12), we obtain

F(x) ≤ G((ax + 1)δ(ax+ 1)) + G(bxδ(bx)), 1 < x ≤ (t− 1)/b. (13)

From Condition (2) in Lemma 5.3 and δ(bx) ≤ δ(x), we obtain

G((ax+ 1)δ(ax+ 1)) ≤ G(axδ(x)) and G(bxδ(bx)) ≤ G(bxδ(x)). (14)

Plugging (14) into (13), we derive that

F(x) ≤ G(axδ(x)) + G(bxδ(x)) = G(xδ(x)), 1 < x ≤ (t− 1)/b.
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Therefore, after two inductive steps, it is true for

1 < x ≤ t− 1− b

b2
,

and after n inductive steps, it is true for all

1 < x ≤ t− 1− b− · · · − bn−1

bn
=

t− (1− bn)/(1− b)

bn
.

Therefore, as long as t > 1/(1− b) = 1/a, we have F(x) ≤ G(xδ(x)) for all x > 1. Thus, we need lgB > 1/a,
which holds when B > 8 and a > 1/3.

Furthermore, if G(x) ≤ c x+O(1), then by Condition (3) in Lemma 5.3, we obtain the following:

F(x) ≤ G(xδ(x)) ≤ c x δ(x) +O(1) ≤ c[ 1 +O(1/ lgB) ]x +O(1).

�

Bounding the Path-Length Function

We now determine the constant in the search cost O(logB N), for given values of a and b. To do so, we
assume

a =
1

qk
and b =

1

qm
, (15)

for positive real number q > 1 and relatively prime integers m and k. Plugging (15) into a+b = 1, we obtain
1/qk + 1/qm = 1. Define

n = k −m. (16)

Observe that because k > m (since a < b), n is positive. We now have the simplified formula

qk = qn + 1 . (17)

The rationale behind this assumption is that this additional structure helps us in the analysis while still
being dense; that is, for any given a and b satisfying a+ b = 1, we can find a′ and b′ defined as (15) that are
arbitrary close to a and b. Because there exits a real number r such that a = br, we choose rational number
k/m, (k,m) = 1 as close as desired to r. Let q = b−1/m. Then a′ = 1/qk and b′ = 1/qm. We call such an
(a, b) pair a twin power pair.

As before we analyze V(x) first. We ignore the roundoff based on Theorem 5.4. Furthermore, we normalize
the range for which V(x) = 1 by introducing a function

H(x) =

{

H(ax) +H(bx) , x > 1;
1 , 0 < x ≤ 1.

(18)

Note that V(x lgB) ≤ H(xδ(x lgB)) by Theorem 5.4.
First we state a primary lemma of the subsection, which we prove later.

Lemma 5.5 Let (1/qk, 1/qm) be a twin power pair, and let n = k −m. Then for any constant ε > 0 and

c1 =

(

n
∑

i=1

q−i +

k
∑

i=n+1

qk−i

)

/
(

kqk−1 − nqn−1
)

,

when x ≥ O(k/ε) we have
H(x) ≤ (c1 + ε)qkx+O(1).

17



Corollary 5.6 For any constant ε > 0, the number V(x) of recursive subtrees on a root-to-leaf path is
bounded by

(c1 + ε)qk logB N +O(1),

when N ≥ BO(k/ε).

We obtain the main upper-bound result of the paper by showing that c1q
k ≈ lg e for some twin power

pair.

Theorem 5.7 (Path-Length Cost) For any constant ε > 0, the number of recursive subtrees on a root-
to-leaf path is

(lg e+ ε) logB N +O(1) ≈ 1.443 logB N +O(1),

as the split factor a = 1/2− ξ approaches 1/2.

Proof: Choose the twin power pair a = 1/qk and b = 1/qk−1 such that

1

qk
+

1

qk−1
= 1,

which is equivalent to
qk = q + 1.

The approximate solution for the above equation is

q ≈ 1 +
ln 2

k
,

for k → ∞. Therefore, we have

a =
1

1 + q
≈ 1

2 + ln 2/k
. (19)

From Lemma 5.5, for m = k − 1 (and therefore n = 1), we have

c1 =

(

q−1 +

k
∑

i=2

qk−i

)

/
(

kqk−1 − 1
)

=
qk − 1

(q − 1)(kqk − q)
.

Thus, for large k, we obtain

c1q
k =

qk − 1

q − 1

1

k − 1

qk−1

k→∞−−−−→ 1

ln 2
= lg e.

That is, for a given ε/2 > 0, we can choose a big constant kε such that

c1q
k ≤ lg e+ ε/2, (20)

for all k ≥ kε.
From Corollary 5.6, for a given ε/8 > 0 and the above constant kε, we can choose big constant Nε,k such

that
V(x) ≤ (c1 + ε/8)qk logB N +O(1), (21)

for all N ≥ Nε,k. Plugging (20) into (21) and noticing that qk = 1/a < 4, we obtain

V(x) ≤ (lg e+ ε) logB N +O(1) ≈ 1.443 logB N +O(1)

as claimed.
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Noticing that for big k ≥ kε, we see that the split factor a approaches 1/2 by (19). In particular, as long
as

ξ ≤ 1

2
− 1

2 + ln 2/kε
=

ln 2

4kε + ln 4
,

it suffices that the split factor a = 1/2− ξ. �

To complete the proof of Lemma 5.5, we establish some properties of H(x). Since H(x) is monotonically
increasing, we can bound the value H(x)/x for qi ≤ x ≤ qi+1 as follows:

H(qi)

qi+1
≤ H(x)

x
≤ H(qi+1)

qi
. (22)

Let Hmin be the lower bound and Hmax be the upper bound of H(qi)/qi, when i is larger than a given
integer j. Noticing that the left part in Inequality (22) is H(qi)/qi+1 ≥ Hmin/q and the right part in
Inequality (22) is H(qi+1)/qi ≤ qHmax, we obtain

Hmin

q
≤ H(x)

x
≤ qHmax,

when x is bigger than qj .
We give the recurrence of H(·). From (18), we have that for i ≥ 0,

H(qi+1) = H(aqi+1) +H(bqi+1). (23)

Plugging (15) into (23) and since n = k −m, we obtain

H(qi+1) = H(qi−k+1) +H(qi+n−k+1). (24)

For the sake of notational simplicity, we denote αi = H(qi−k+1). Therefore, (24) is equivalent to

αi+k = αi+n + αi . (25)

We define the characteristic polynomial function of Recurrence (25) as w(x) = xk −xn− 1. Let r1, r2, . . . , rk
be the (possibly complex) roots of w(x). We claim below that these roots are all unique.

The following four lemmas supply basic mathematical knowledge behind the proof of Lemma 5.5.

Lemma 5.8 The k roots of w(x) = xk − xn − 1 are unique, when k and n are relatively prime integers such
that 1 ≤ n < k.

Proof: We prove this lemma by contradiction. If a root r of w(x) is not unique, then (x − r)2 is a factor
of w(x), and x − r is a factor of w′(x) = kxn−1(xk−n − n/k). Thus, r is either 0 or a root of xk−n − n/k.
But 0 is not a root of w(x). Therefore,

rk−n = n/k, (26)

which means |r| < 1 (because n < k).
On the other hand, because r is a root of w(x), w(r) = rn(rk−n−1)−1 = 0. Plugging (26) into w(r) = 0,

we obtain rn = k/(n− k), which means |r| > 1 (because |k| > |k−n|). This is the contradiction. Therefore,
every root of w(x) is unique. �

Because w′(x) = kxk−1−nxn−1 > 0 when x > 1 and q is a root of w(x) greater than 1 (see Equation (17)),
there is one unique real root q > 1 of w(x). Without loss of generality, let r1 = q.

We now show that if the k roots of the characteristic polynomial function of a series are unique, then the
series in question is a linear combination of power series {rij} of the roots.
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Lemma 5.9 Consider a series {αi} satisfying αk+s =
∑k−1

i=0 diαi+s for complex numbers di and any integer

s, and let r1, r2, . . . , rk be the k unique roots of the characteristic function g(x) = xk −∑k−1
i=0 dix

i for the
series {αi}. Then there exists complex numbers c1, c2, . . . , ck such that for all i,

αi =

k
∑

j=1

cjr
i
j . (27)

Proof: First we show that we can find c1, c2, . . . , ck such that for the base values of αi, αi =
∑k

j=1 cjr
i
j for

all i = 0, . . . , k − 1. This can be derived by observing that the determinant of the Vandermonde matrix

V =









1 r1 · · · rk−1
1

1 r2 · · · rk−1
2

· · · · · · · · · · · ·
1 rk · · · rk−1

k









is nonzero, and that c1, c2, . . . , ck are the solution of the system of linear equations

(α0, α1, . . . , αk−1) = (c1, c2, . . . , ck)V.

Now we show that for all i ≥ 0,

αi =

k
∑

j=1

cjr
i
j .

Define

βi =

k
∑

j=1

cjr
i
j .

We show that {αi} and {βi} are the same recursive series. We know that βi = αi when 0 ≤ i ≤ k − 1.
Because r1, r2, . . . , rk are the k unique roots of the characteristic function g(x), we know that the power
series {rij} satisfies the same recursive formula as {αi}. Thus {βi} satisfies the same recursive formula (for

all s ≥ 0, bk+s =
∑k−1

i=0 dibi+s) by linearity. Now observe that the k base values together with the inductive
formula uniquely determine the series and hence αi = βi for all i ≥ 0. �

Hence we can solve Recurrence (25) by finding ci that satisfy αi =
∑k

j=1 cjr
i
j for i = 0, . . . , k − 1. The

base cases of {αi}k−1
i=0 are determined by the original definition of αi = H(qi−k+1). Because 0 < qi−k+1 < 1

for i = 0, . . . , k − 1, we obtain H(qi−k+1) = αi = 1.

Lemma 5.10 The dominant root (i.e., the root with the largest absolute value) for w(x) = xk − xn − 1 is
r1 = q. All other roots r2,. . .rk have absolute value less than q.

Proof: We first show that all other roots have magnitude less than q. Suppose that the magnitude of a
root rj (other than r1) is |rj | = d. We show that d ≤ q. Since rj is a root we have

1 = |(rk−n
j − 1) rnj | = |rk−n

j − 1||rnj | ≥ (|rk−n
j | − 1) dn = dk − dn, (28)

which means w(d) = dk − dn − 1 ≤ 0. Because w(q) = 0 and w′(x) = kxk−1 − nxn−1 > 0 when x ≥ q > 1,
we obtain w(x) > 0 for all real x > q. Therefore, d ≤ q, i.e., no root has magnitude strictly greater than q.

Now we prove by contradiction that d 6= q. Assume that d = q. Then, (28) becomes an equation, since
1 = dk − dn by (17). Thus,

|rmj − 1| = |rmj | − 1.

From the triangle inequality it follows that rmj is a real number. Therefore, we have rmj = qm. Thus, for
some integer 1 ≤ s ≤ m− 1, we have

rj = qe2πs
√
−1/m.
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However, because m and n are relatively prime,

rnj = qne2πsn
√
−1/m 6= qn.

Therefore, rnj (r
m
j − 1) 6= qn(qm − 1) = 1, i.e., w(rj) 6= 0. This is contradiction because rj is a root of w(x).

�

In the following lemma, we calculate the coefficient c1 for the dominant root r1 = q using the inverse of
a Vandermonde matrix.

Lemma 5.11 The coefficient c1 in Lemma 5.9 is

(

n
∑

i=1

q−i +
k
∑

i=n+1

qk−i

)

/(kqk−1 − nqn−1).

Proof: We first give more notation. Let t and s be positive integers such that 1 ≤ t, s ≤ k. We define St,s

as the sum of the products of t different roots not including rs, that is,

St,s =
∑

i1<i2<...<it∈{1,2,...,k}−{s}
ri1ri2 . . . rit . (29)

We define
S0,1 = 1 , (30)

and
Sk,1 = 0 . (31)

We first give and solve the recurrence for St,1 . We denote the coefficient of xt−1 in w(x) = xk −xn− 1 =
∏k

i=1(x− ri) as [[x
t−1]]w(x). Thus, we have the well known equation:

∑

i1<i2<...<it∈{1,2,...,k}
ri1ri2 . . . rit = (−1)t[[xk−t]]w(x). (32)

Each product of roots in the summation in (32) either includes r1 (= q) or it does not, i.e.,

∑

i1<i2<...<it∈{1,2,...,k}
ri1ri2 . . . rit = St,1 + qSt−1,1. (33)

Thus, from (32) and (33) we obtain the recurrence

St,1 + qSt−1,1 = (−1)t[[xk−t]]w(x). (34)

Because coefficients in w(x) are 0 except for [[xk]]w(x) = 1 and [[xn]]w(x) = [[x0]]w(x) = −1, we divide Recur-

rence (34) into two parts and solve each separately. Recall from (16) that m = k−n. The first part is when
t ∈ [1,m− 1] and the second part is when t ∈ [m, k − 1]. (Thus, when t = m, we need to confirm that the
solution in the first part matches that in the second part.)

We solve the first part when t ∈ [1,m− 1]. The base case is t = 1, that is,

S1,1 + qS0,1 = [[xk−1]]w(x) = 0 . (35)

Observe that by (29) and (33), we have

∑

1≤i≤k

ri = S1,1 + qS0,1 and
∑

2≤i≤k

ri = S1,1. (36)
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Thus, from (36), we confirm that S0,1 = 1, and therefore from (35), we obtain

S1,1 = −q. (37)

Because from (34),
St,1 + qSt−1,1 = 0 (1 ≤ t ≤ m− 1) , (38)

we also obtain, from (37) and (38),
St,1 = (−q)t. (39)

We now solve the second part when t ∈ [m, k − 1]. We start from k, that is,

Sk,1 + qSk−1,1 = (−1)k[[x0]]w(x) = (−1)k−1 . (40)

Observe that by (29) and (33), we have

r1r2 . . . rk = Sk,1 + qSk−1,1 and r2r3 . . . rk = Sk−1,1. (41)

From (41), we confirm that Sk,1 = 0, and therefore from (40), we obtain Sk−1,1 = (−1)k−1/q. Because by
(34),

St+1,1 + qSt,1 = 0 (m ≤ t ≤ k − 1),

we obtain
St,1 = (−1)tqt−k. (42)

We now examine the special case where t = m and [[xn]]w(x) = −1, that is,

Sm,1 + qSm−1,1 = (−1)m[[xn]]w(x)

= (−1)m+1 . (43)

We solved for all St,1 without using (43). We now confirm that our solution is consistent with (43).
Notice that we get the solution in the first part, Sm−1,1 = (−q)m−1, and the solution in the second part,
Sm,1 = (−1)mq−n. In the following, we verify the solutions of Sm−1,1 and Sm,1 satisfy (43). Plugging

Sm−1,1 = (−q)m−1 and Sm,1 = (−1)mq−n

into (43), we obtain

Sm,1 + qSm−1,1 = (−1)mq−n + q(−q)m−1

= (−1)m
1− qn+m

qn

Because q is a root of w(x), i.e.,
qk = qm+n = qn + 1 ,

we confirm (43).
In summary, for all 1 ≤ t ≤ k − 1, we have

St,1 =

{

(−q)t, if 1 ≤ t ≤ m− 1;
(−1)tqt−k, if m ≤ t ≤ k − 1.

(44)

We now give even more notation. Define

g(x) =
k
∏

i=2

(x− ri). (45)
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We have g(r1) = g(q) = w′(q), because

w′(x) =
d

dx

[

k
∏

i=1

(x− ri)

]

=

k
∑

j=1

k
∏

i=1,i6=j

(x− ri)

is a sum of k terms, but k − 1 of these are 0 when x = r1 = q. Thus, we obtain

(−1)k−1g(r1) = (−1)k−1(krk−1
1 − nrn−1

1 ) =

k
∏

i=2

(ri − r1). (46)

Now we are ready to calculate the value of c1. To do so, we define the Vandermonde matrix V :

V =











1 r1 · · · rk−1
1

1 r2 · · · rk−1
2

...
...

. . .
...

1 rk · · · rk−1
k











.

Recall that (27) can be expressed as

(c1, c2, . . . , ck)V = (α0, α1, . . . , αk−1) .

Recall also that
αi = H(qi−k+1) = 1 (0 ≤ i ≤ k − 1)

(because qi−k+1 < 1). Thus,
(c1, . . . , ck) = (1, 1, . . . , 1)V −1, (47)

i.e., c1 can be calculated from the inverse matrix V −1.
In order to calculate V −1, we first present the well known result on how to calculate the determinant |V |

of Vandermonde matrix V .

|V | =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 r1 · · · rk−1
1

1 r2 · · · rk−1
2

...
...

. . .
...

1 rk · · · rk−1
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∏

1≤s<t≤k

(rt − rs) . (48)

We now give the inverse of V . Let Ai,j be the submatrix of the transpose of the Vandermonde matrix V
with the ith column and jth row removed, that is,

Ai,j =





























1 1 · · · 1 1 · · · 1
r1 r2 · · · ri−1 ri+1 · · · rk
...

...
. . .

...
...

. . .
...

rj−1
1 rj−1

2 · · · rj−1
i−1 rj−1

i+1 · · · rj−1
k

rj+1
1 rj+1

2 · · · rj+1
i−1 rj+1

i+1 · · · rj+1
k

...
...

. . .
...

...
. . .

...

rk−1
1 rk−1

2 · · · rk−1
i−1 rk−1

i+1 · · · rk−1
k





























.
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Thus, V −1 can be represented by the determinants of Ai,j and V , i.e.,

V −1 =
1

|V |











(−1)1+1|A1,1| · · · (−1)k+1|Ak,1|
(−1)1+2|A1,2| · · · (−1)k+2|Ak,2|

...
. . .

...
(−1)1+k|A1,k| · · · (−1)k+k|Ak,k|











=





∏

1≤s<t≤k

1

rt − rs





{

(−1)i+j |Ai,j |
}

i,j
.

Thus, from (47), c1 is the sum of the first column of inverse matrix V −1, that is,

c1 =





∏

1≤s<t≤k

1

rt − rs









k
∑

j=1

(−1)1+j |A1,j |



 . (49)

To calculate c1, we first find |A1,j |, which is given by the following claim:

Claim 5.12
|A1,j | = Sk−j,1

∏

2≤s<t≤k

(rt − rs).

Proof: When j = 1,

|A1,1| =

∣

∣

∣

∣

∣

∣

∣

r2 · · · rk
...

. . .
...

rk−1
2 · · · rk−1

k

∣

∣

∣

∣

∣

∣

∣

.

By moving the common factors r2, . . . , rk out, we obtain

|A1,1| = r2 · · · rk

∣

∣

∣

∣

∣

∣

∣

1 · · · 1
...

. . .
...

rk−2
2 · · · rk−2

k

∣

∣

∣

∣

∣

∣

∣

,

where the matrix is the transpose of Vandermonde matrix of size k− 1. Thus, from (29) and (48), we obtain

|A1,1| = r2 · · · rk
∏

2≤s<t≤k

(rt − rs) = Sk−1,1

∏

2≤s<t≤k

(rt − rs).

The case when j ≥ 2 is more complicated than that j = 1. In the following, we only consider j = 2
because the other cases are analogous.

To solve |A1,2|, we first perform matrix operations so that the first column becomes











1
0
...
0











. Recall that

|A1,2| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1
r22 r23 · · · r2k
...

...
. . .

...

rk−1
2 rk−1

3 · · · rk−1
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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Beginning from the second row, we multiply each row by −r2 and add it to the next row.

|A1,2| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 · · · 1
r22 r23 r24 · · · r2k
0 r23(r3 − r2) r24(r4 − r2) · · · r2k(rk − r2)
...

...
...

. . .
...

0 rk−2
3 (r3 − r2) rk−2

4 (r4 − r2) · · · rk−2
k (rk − r2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

For the second row, we multiply the first row by −r22 and add it to the second row.

|A1,2| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 · · · 1
0 r23 − r22 r24 − r22 · · · r2k − r22
0 r23(r3 − r2) r24(r4 − r2) · · · r2k(rk − r2)
...

...
...

. . .
...

0 rk−2
3 (r3 − r2) rk−2

4 (r4 − r2) · · · rk−2
k (rk − r2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

In this way, we reduce the dimension of |A1,2| to k − 2, i.e.,

|A1,2| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

r23 − r22 r24 − r22 · · · r2k − r22
r23(r3 − r2) r24(r4 − r2) · · · r2k(rk − r2)

...
...

. . .
...

rk−2
3 (r3 − r2) rk−2

4 (r4 − r2) · · · rk−2
k (rk − r2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

By moving out the common factors r3 − r2, . . . , rk − r2 in each column, we obtain:

|A1,2| =
k
∏

i=3

(ri − r2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

r3 + r2 r4 + r2 · · · rk + r2
r23 r24 · · · r2k
...

...
. . .

...

rk−2
3 rk−2

4 · · · rk−2
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Now by splitting the first row, we obtain:

|A1,2| =
k
∏

i=3

(ri − r2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

r3 r4 · · · rk
r23 r24 · · · r2k
...

...
. . .

...

rk−2
3 rk−2

3 · · · rk−2
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

+
k
∏

i=3

(ri − r2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

r2 r2 · · · r2
r23 r24 · · · r2k
...

...
. . .

...

rk−2
3 rk−2

4 · · · rk−2
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (50)

After moving out the common factors r3, . . . , rk, the first term in (50) is a Vandermonde matrix of size k−2.
For the second term in (50), we move out the common factor r2 in the top row. Thus, using (48) we have

|A1,2| =

k
∏

i=3

(ri − r2)r3 · · · rk
∏

3≤s<t≤k

(rt − rs) +

k
∏

i=3

(ri − r2)r2

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1
r23 r24 · · · r2k
...

...
. . .

...

rk−2
3 rk−2

4 · · · rk−2
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

= r3 · · · rk
∏

2≤s<t≤k

(rt − rs) + r2

k
∏

i=3

(ri − r2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1
r23 r24 · · · r2k
...

...
. . .

...

rk−2
3 rk−2

4 · · · rk−2
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (51)
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Notice that the determinant in (51) is a form of A1,2 of size k− 2. By the same method, we compute the
determinant in (51) as

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1
r23 r24 · · · r2k
...

...
. . .

...

rk−2
3 rk−2

4 · · · rk−2
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

= r4 · · · rk
∏

3≤s<t≤k

(rt − rs) + r3

k
∏

i=4

(ri − r3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 · · · 1
r24 · · · r2k
...

. . .
...

rk−2
4 · · · rk−2

k

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (52)

Thus, by plugging (52) into (51) we obtain

|A1,2| = (r3 · · · rk + r2r4 · · · rk)
∏

2≤s<t≤k

(rt − rs) + r2r3

k
∏

i=3

(ri − r2)
k
∏

i=4

(ri − r3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 · · · 1
r24 · · · r2k
...

. . .
...

rk−2
4 · · · rk−2

k

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

With one more recursion, we obtain

|A1,2| = (r3 · · · rk + r2r4 · · · rk + r2r3r5 · · · rk)
∏

2≤s<t≤k

(rt − rs)

+ r2r3r4

k
∏

i=3

(ri − r2)

k
∏

i=4

(ri − r3)

k
∏

i=5

(ri − r4)

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 · · · 1
r25 · · · r2k
...

. . .
...

rk−2
5 · · · rk−2

k

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Repeating recursive steps and recalling that Sk−2,1 = r3r4 · · · rk + r2r4 · · · rk + · · · + r2r3 · · · rk−1 from the
definition of St,s in (29), we obtain

|A1,2| = Sk−2,1

∏

2≤s<t≤k

(rt − rs) .

We thus establish the claim. �

By combining Claim 5.12 and (49) we obtain

c1 =





∏

1≤i<j≤k

(rj − ri)
−1









k
∑

i=1

(−1)i+1Sk−i,1

∏

2≤s<t≤k

(rt − rs)



 . (53)

Multiplying through and separating two cases of Si,1 in (44), we obtain

c1 =
∏

2≤j≤k

(rj − r1)
−1

(

n
∑

i=1

+
k
∑

i=n+1

)

(−1)i+1Sk−i,1. (54)

Plugging (44) into (54), we have

c1 =
∏

2≤j≤k

(rj − r1)
−1

[

n
∑

i=1

(−1)k+1q−i +

k
∑

i=n+1

(−1)k+1qk−i

]

. (55)

Plugging (46) into (55), we solve for c1:

c1 =

(

n
∑

i=1

q−i +

k
∑

i=n+1

qk−i

)

/(kqk−1 − nqn−1) , (56)

26



which concludes the proof of Lemma 5.11. �

Thus, the value of c1 is as claimed in the hypothesis of Lemma 5.5. After establishing the properties of
H(x), we can now give a proof of Lemma 5.5.
Proof of Lemma 5.5: To complete the proof we only need to show that

H(x) ≤ (c1 + ε)qkx+O(1),

when x ≥ O(k/ε).
Observe that H(x) is monotonically increasing and for each x > 1, we have x ≤ q⌈logq x⌉ ≤ qx. Thus, we

bound H(x) as follows:
H(x) ≤ H(q⌈logq x⌉) = α⌈logq x⌉+k−1, (57)

where the second equality is the definition of αi. We denote ⌈logq x⌉+ k− 1 as i to simplify notation in the

rest of the proof. Recall that αi =
∑k

j=1 cjr
i
j and that r1 = q is the dominant root. Thus, we have

αi

qi
= c1 +

k
∑

j=2

cj

(

rj
q

)i

. (58)

Because r1 is the dominant root and the other roots have absolute value less than 1, we have

k
∑

j=2

cj

(

rj
q

)i

≤ O

(

k

qi

)

.

Because i = ⌈logq x⌉+ k − 1, we have qi > x. Thus, for any ε > 0, we can choose x ≥ O(k/ε) such that the
last term in (58) is arbitrary small, that is,

k
∑

j=2

cj

(

rj
q

)i

≤ O

(

k

x

)

≤ ε.

Therefore, we obtain αi = (c1 + ε)qi. Combining with (57), we have

H(x) ≤ (c1 + ε)q⌈logq x⌉+k−1. (59)

Finally, plugging q⌈logq x⌉ ≤ qx into (59), we obtain, for x ≥ O(k/ε),

H(x) ≤ (c1 + ε)qkx

as claimed. �

Bounding the Block-Boundary Crossing Function

We now give the memory-transfer cost from block-boundary crossings, and we show that it is dominated by
the the memory-transfer cost from the path length. We consider the case when a ≥ 1/4, which includes the
best layouts. Using similar reasoning for computing the path-length cost, we obtain the following theorem:

Theorem 5.13 (Block-Boundary Crossing Cost) The expected number of block-boundary-induced
memory transfers C(x) on a search is at most O(lg lgB/ lgB) logB x when 1/4 ≤ a < 1/2.

Proof: The idea to bound C(x) is the same as that in bounding the path-length cost. That is, we solve the
same Recurrence (25) except for the base case αi (0 ≤ i ≤ k − 1), which from (3) is

2q
i−k+1 lgB − 2

B
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instead of 1.
Thus, we obtain the new value of coefficient c′1 which is similar to (53):

c′1 =





∏

1≤i<j≤k

1

rj − ri









k
∑

i=1

2q
i−k lgB − 2

B
(−1)i+1Sk−i,1

∏

2≤s<t≤k

(rs − rt)



 .

Multiplying through and separating the numerator, we have

c′1 =
∏

2≤j≤k

1

rj − r1

k
∑

i=1

2q
i−k lgB

B
(−1)i+1Sk−i,1 −

2

B

∏

2≤j≤k

1

rj − r1

k
∑

i=1

(−1)i+1Sk−i,1 . (60)

Because the second term in (60) is 2c1/B = O(1/B) by (53), we obtain

c′1 =





∏

2≤j≤k

1

rj − r1





(

k
∑

i=1

2q
i−k lgB

B
(−1)i+1Sk−i,1

)

− O

(

1

B

)

. (61)

In order to bound c′1, we count the number of terms in the summation in (61), i.e., the number of values
of i, such that

2q
i−k lgB

B
>

1

lgB
.

That is, we determine the smallest value of i, such that

qi−k >
lg(B/ lgB)

lgB
= 1− lg lgB

lgB
.

Thus, we solve that

i− k > ln

(

1− lg lgB

lgB

)

lg e

lg q
. (62)

We now estimate the previous expression. Recall that ln(1 − x) > −x for 0 < x < 1. Thus, from (62), we
have

i− k > − lg e lg lgB

lg q lgB
.

If we denote

ν = k − lg e lg lgB

lg q lgB
, (63)

then we have

2q
i−k lgB

B











≤ 1

lgB
, when 1 ≤ i ≤ ν ;

>
1

lgB
, when ν < i ≤ k .

Separating the summation in (61) at ν, we obtain

c′1 ≤
∏

2≤j≤k

1

rj − r1

ν
∑

i=1

1

lgB
(−1)i+1Sk−i,1 +

∏

2≤j≤k

1

rj − r1

k
∑

i=ν

2q
i−k lgB

B
(−1)i+1Sk−i,1 −O

(

1

B

)

. (64)

Again, from (53), the first term in (64) is less than c1/ lgB = O(1/ lgB). Thus, we have

c′1 ≤ O

(

1

lgB

)

+
∏

2≤j≤k

1

rj − r1

k
∑

i=ν

2q
i−k lgB

B
(−1)i+1Sk−i,1. (65)
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Observe that 2q
i−k lgB/B ≤ 1 for 1 ≤ i ≤ k. We separate into the two cases of Si,1 in (65) as we do earlier

in (54), to obtain

c′1 ≤ O

(

1

lgB

)

+ (−1)k+1
∏

2≤j≤k

1

rj − r1





∑

ν<i≤n

q−i +
∑

i≥n+1, i>ν

qk−i



 .

Because both q−i and qk−i are less than qk, we obtain

c′1 ≤ O

(

1

lgB

)

+ (−1)k+1
∏

2≤j≤k

1

rj − r1

∑

ν<i≤k

qk.

Plugging (46) and (63) into the above inequality, we have

c′1 ≤ O

(

1

lgB

)

+
qk

kqk−1 − nqn−1

lg e lg lgB

lg q lgB
. (66)

We now prove the second term in (66) is O(lg lgB/ lgB). Recalling that qk = 1/a from (15), we have

lg q = − lg a

k
(67)

and

qn = qk − 1 =
1

a
− 1 . (68)

Taking logs in (68), we obtain

n =
lg(1/a− 1)

lg q
. (69)

Plugging (67) into (69), we obtain

n = k
lg(1/a− 1)

lg(1/a)
. (70)

Notice that the function f(x) = lg(x−1)/ lg x is increasing for x > 1 because f ′(x) > 0 for x > 1. Therefore,
by the assumption a ≥ 1/4 and (70), we have

n ≤ k
lg 3

lg 4
<

4k

5
. (71)

Thus, observing that qk−1 > qn−1 > 1 and the above (71), we obtain

kqk−1 − nqn−1 > kqk−1 − 4k

5
qk−1 > k/5. (72)

Combining (15), (67), and (72), we have

qk

kqk−1 − nqn−1

lg e

lg q
≤ −1

a

5

k

k lg e

lg a
=

−5 lg e

a lg a
≤ 10 lg e.

Finally, from (66) we obtain

c′1 ≤ O

(

1

lgB

)

+O

(

lg lgB

lgB

)

= O

(

lg lgB

lgB

)

,

as claimed. �

Now we present the main Theorem, which we obtain by combining Theorem 5.7 and 5.13.

Theorem 5.14 (Generalized vEB Layout) The expected cost of a search in the generalized vEB layout
is at most [ lg e+ o(1) ] logB N +O(lg lgB/ lgB) logB N +O(1).
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Figure 1: A multi-layer van Emde Boas tree decomposition. To the left is shown a tree decomposed into
layers, and within each layer, the second recursive decomposition is indicated. Thinnest lines indicate tree
levels; medium thin lines demarcate the first recursion layers; dashed lines indicate the height of the second
recursive decomposition. To the right, the decomposition within a single layer i is shown for four additional
recursive steps. The black circles on the left indicate tree levels, and the rest of the vertical lines each
indicates a recursive level in the decomposition, with the recursive level increasing from left to right. The
remainder part is shown in grey in each recursive level.

6 Multi-Layer van Emde Boas Layout

In this section we propose a somewhat more complex layout than in the previous part, but whose analysis
is, in comparison, less cumbersome. First note that as observed in the proof of Theorem 3.1 if the size of
the tree is a particular unfortunate multiple of the block size this can lead to a factor of two larger number
of block transfers during a search as compared to the non-oblivious layout. Observe that as the block size B
is unknown we cannot avoid this problem so long as we insist in decomposing a tree into equal-size fixed
subtrees. Here we propose a recursive layout in which we select a large number of initial sizes for the second
level of the decomposition.

Theorem 6.1 For any constant ε > 0, there exists a cache-oblivious layout of a complete binary search tree
with N leaves, such that any root-to-leaf traversal requires expected O(1/ε)+(lg e+ε+O(lg lgB/ lgB)) logB N
I/Os, where the expectation is taken over the starting position in memory of the layout.

Proof: Since the tree is a complete binary tree, N is a power of two, and the height is lgN . We group the
nodes in the tree by depth into H = 1 + lgN levels numbered from zero to H − 1, with the root being at
depth zero. The van Emde Boas layout splits the tree by depth at its mid-height level then recursively lays
out of each the subtrees, which are again themselves split by depth into pieces of equal height. In contrast,
in our layout we split the tree into L different layers of equal size and then within each layer aim for different
heights of subtrees created during the recursion. For the second level in the decomposition, we split the layer
in two, with the height of the top tree ranging across the layers from the entire layer down to half the layer.
The further recursion within each layer is then defined by splitting into halves all subtrees at the current
level of recursion, except the lowest subtrees. The latter, which we term the remainder subtrees, are given
special consideration as described below. As an example, see Figure 1, in which the left part shows a tree
decomposed into four equal sized layers, with each of these layers split into two parts at uneven depths. The
right part shows the further recursive decomposition within a single layer.

We now give the full details. To simplify rounding issues in expressions involving levels and heights,
we formulate our splitting strategy using intervals [x, y) ⊆ [0, H), where x, y ∈ R. We define the levels
spanned by an interval [x, y) as the levels numbered ⌊x⌋ . . . ⌊y − 1⌋, and use this definition to transfer the
interval-based decomposition of [0, H) into a decomposition by depth of the H levels of the tree.

Let δ > 0 be a constant given by δ = lg(1 + ε/ lg e). We partition the H levels into L = ⌈1/δ⌉ layers
of consecutive levels of the tree. Layer i ∈ {0, 1, ..., L− 1} starts at level ⌊iK⌋ where K = H/L. In other
words, layer i is the levels spanned by the interval [iK, (i+ 1)K).
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The entire tree is laid out in memory starting at a random memory position. First the nodes in layer
zero are laid out, followed by the nodes in layer one, and so on. The nodes in a layer i are laid out by
independently laying out each subtree of the layer rooted at level ⌊iK⌋ of the tree.

Each such subtree is laid out in a recursive way similar to the standard van Emde Boas layout, except
that the goal is to make the heights of the subtrees of the jth recursion in layer i be

hi,j =
K

2j+i/L
,

for j = 0, 1, 2, . . .. For fixed i (i.e., within a layer), hi,j decreases by a factor of two at each recursion. For
fixed j (i.e., for a given depth of recursion), hi,j decreases by a factor of 21/L when advancing to the next
layer i + 1. Note that this happens in a cyclic fashion if one from the last layer i = L − 1 continues to
the first layer i = 0, but at the next recursive depth: hL−1,j/2

1/L = h0,j+1. More precisely, the heights of
the subtrees are defined by intervals (via the levels spanned by them), and our goal is to find intervals of
length hi,j .

If we for a given layer i and recursive depth j use the lowest (in the root-to-leaf sense in the global tree
we are laying out) interval as a remainder interval, we can achieve a length of exactly hi,j for all the other
intervals. Specifically, for any layer i, consider the first recursion depth j = 0. The interval [iK, (i+1)K) of
the layer, of length K, is divided into a first interval of length hi,0, and a second interval of length K − hi,0.
Note that K/2 < hi,0 ≤ K for all i. The latter interval is the remainder interval at the first recursion
depth. At each further recursive step within the layer, all intervals except the remainder interval are divided
into two halves of equal length. The remainder interval, of length X , is divided if X > hi,j , in which case
it is divided into two intervals of lengths hi,j and X − hi,j , respectively. The latter of these becomes the
remainder interval at the next recursive depth. Note that X/2 < hi,j < X , since hi,j decreases by a factor
of two for each new recursive depth. If X ≤ hi,j , the remainder interval is not divided, and continues as the
remainder interval at the next recursive depth.

The recursion stops at intervals spanning less than two levels. If the remainder interval for this reason
is not recursed on, there will be no remainder interval on larger recursive depths within the layer. It is easy
to see that when halving an interval spanning at least two levels, each of the halves spans at least one level.
This implies that leaf intervals of the recursion span exactly one level (except for the single leaf being the
deepest remainder interval, which may happen to span zero levels).

We now consider a root-to-leaf traversal in a tree with a layout as described above. LetH0 = lgB−lg lgB.
We first count the number of subtrees traversed on the path, for subtrees of the recursive layout defined by
intervals [x, y), where y − x ≤ H0. For each layer we find the smallest j such that hi,j ≤ H0. By the cyclic
progression of hi,j , the L identified values hi,j will form a set

K0

20/L
,

K0

21/L
,

K0

22/L
, . . . ,

K0

2(L−1)/L
,

where H0/2
1/L < K0 ≤ H0. Each hi,j satisfies 1

2H0 < hi,j ≤ H0. Note that the smallest value hi,j in the
above list is not necessarily from layer zero.

The number of subtrees on a path with an interval spanning at most H0 levels is:

L−1
∑

k=0

⌈

K

K0/2k/L

⌉

≤ L+
K

K0

L−1
∑

i=0

2k/L ≤ L+
K

K0
· 1

21/L − 1
.

Observing that 2x − 1 ≥ x ln 2, and substituting above, we get

L+
K

K0
· 1

21/L − 1
≤ L+

K

K0 · (1/L) ln 2
≤ L+

K

K0
· L · lg e ≤ L+

H/L

H0/21/L
· L · lg e = L+

H

H0
21/L · lg e .

Since a recursively laid out subtree with s ≤ B nodes consists of a consecutive sequence of s memory cells,
the probability that the subtree is split over two blocks is (s − 1)/B, when taken over all possible initial
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placements of the tree in memory. An interval [x, y) where y − x ≤ H0 can at most span ⌈H0⌉ levels, i.e.
the corresponding subtrees contain at most 2⌈H0⌉ − 1 nodes. Accessing such a tree can cause two I/Os with
probability at most (2⌈H0⌉ − 2)/B.

We can now bound the total expected number of I/Os by

(

L+
H

H0
· 21/L · lg e

)

·
(

1 +
2⌈H0⌉ − 2

B

)

=

(

⌈1/δ⌉+ 1 + lgN

lgB − lg lgB
· 21/⌈1/δ⌉ · lg e

)

·
(

1 +
2⌈lgB−lg lgB⌉ − 2

B

)

≤
(

⌈1/δ⌉+ 1 + lgN

lgB − lg lgB
· 2δ · lg e

)

·
(

1 +
2

lgB

)

= O(1/ε) + logB N · 1

1− lg lgB/ lgB
· 2δ · lg e ·

(

1 +
2

lgB

)

(73)

≤ O(1/ε) + logB N · (1 + 2 lg lgB/ lgB) · 2δ · lg e ·
(

1 +
2

lgB

)

(74)

= O(1/ε) + logB N · (2δ · lg e+O(lg lgB/ lgB))

= O(1/ε) + logB N · (lg e+ ε+O(lg lgB/ lgB)) ,

where (73) for the first term used lg(1+x) = Θ(x) for x → 0, and (74) for the second term used 1/(1−x) ≤
1 + 2x for x ∈ [0, 1/2] and w.l.o.g. assumed 2 lg lgB ≤ lgB. �

7 Conclusion

This paper gives upper and lower bounds on the cost of cache-oblivious searching; our bounds are tight to
within low-order terms. Specifically, the paper shows a lower bound of lg e logB N memory transfers and an
upper bound of [lg e+ ε+O(lg lgB/ lgB)] logB N +O(1) expected memory transfers in the cache-oblivious
model. In contrast, searching uses only logB N + 1 memory transfers in the DAM model. Interestingly, this
lg e multiplicative slowdown in the cache-oblivious model compared to the DAM model comes about because
the DAM model has only two levels of memory rather then because the memory parameters are unknown
in the cache-oblivious model.
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