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Abstract—This paper proposes a new interpolation approach
for obtaining high resolution (HR) images from its low resolution
(LR) images. We are using the Least Squared based block by
block prediction scheme to estimate the predictors using Jacobian
iteration method. In spite of Jacobian’s Iterative property of
convergence for diagonally dominant matrices only, our proposed
method uses this property effectively for all types of matrices,
and found a set of prediction coefficients using a small number
of iterative steps. Due to its lesser computational cost it can be
used in real time applications too. Use of iterative methods like
Jacobi gives an advantage of its application over images which
gives singular matrices during operation. Experimental results
indicates that the proposed algorithm gives better quantitative
performance as compared to other conventional interpolation
techniques.
Keywords: Convergence, Interpolation, Iteration, Jacobian, Pa-
rameters.

I. INTRODUCTION

Interpolation is a technique that pervades many applications.
It enables us to get a high resolution image from its low resolu-
tion version. Image interpolation is practiced in improved defi-
nition television (IDTV) receiver design, photograph zooming
and remote sensing. Besides this, it is also applied in medical
imaging, computer graphics, satellite imagery and in various
other fields.

Conventional interpolation methods use Nearest Neighbor,
Bilinear, Bicubic, Spline etc. interpolation algorithms. In case
of Nearest Neighbor method, the value of a new pixel is taken
as the translated value nearest to it. In bilinear method, the
interpolated value is the weighted average (0.25 in case of 4
neighboring pixels used for interpolation) of the one translated
values on either side. Whereas, Bicubic method uses the
interpolated values as the weighted average of two translated
values on either side. But, they fail to work properly near edge
structures. However, they are used in many applications due
to their less computational complexity.

In order to preserve the edge structures in an image, various
interpolation algorithms have been developed so far. These
entire Edge Preserved algorithms are highly complex as it
requires estimation of covariance matrix with involvement
of matrix inversion. Li and Orchard [4] suggested the edge
directed interpolation algorithm, in which the missing pixels
are interpolated based on the estimated covariance of the
HR image from the covariance of LR image (NEDI) which
involves lot of computational power. Ketan and Oscar[6]

also suggested an autoregressive method using Gauss-Seidel
optimization relying on both LR and HR pixels. Jaiswal and
Jakhetiya [7] have suggested an algorithm based on down sam-
pling of image and then using least square estimation which
consumes high computational power. Jaiswal and Kumar[5]
have also suggested an algorithm which is less complex and
uses fixed set of predictors but these predictors being fixed
dont adapt so well on all set of images. Oscar and Chan[2]
suggested a content adaptive interpolation scheme which is
also computationally simple but again fails to gives good
quality result.

The main contribution of this work is to develop a low
complex image interpolation technique with a better quality
compared to competitive interpolation algorithms reported in
literature. For this purpose, we divide the Low Resolution(LR)
image into a set of non-overlapping blocks. For each block,
we found a set of prediction coefficients using a small number
of Jacobian iterations. Each non-overlapping block has a set
of prediction coefficients which results in good quality besides
the method being computationally simple.

Remaining part of the paper is organized in sections and
subsections as follows. Section II gives an overview of Jaco-
bian Iteration Scheme [7]. Section III discusses proposed al-
gorithm which includes the division of images in various non-
overlapping blocks to get covariance matrix and estimation
of prediction coefficients. Simulation results and concluding
remarks are made in section IV and V respectively.

II. OVERVIEW OF JACOBIAN ITERATION METHOD

Consider a linear system Ax = B



A1,1 A1,2 A1,3... ...A1,n

A2,1 A2,2 A2,3... ...A2,n

A3,1 A3,2 A3,3... ...A3,n

. . . .

. . . .

. . . .
An,1 An,2 An,3... ...An,n
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where Ai,j , xi, Bi ∈ R, (i, j = 1, ..., n).

The Jacobi method is the simplest method to solve a linear
system [9].
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For every equation, Ai,1x1 +Ai,2x2 + ...+Ai,nxn = Bi of
Ax = B,
A = Dz +Rz where,

Dz =



A1,1 0 0... ...0
0 A2,2 0... ...0
0 0 A3,3... ...0
. . . .
. . . .
. . . .
0 0 0... ...An,n


and

Rz =



0 A1,2 A1,3... ...A1,n

A2,1 0 A2,3... ...A2,n

A3,1 A3,2 0... ...A3,n

. . . .

. . . .

. . . .
An,1 An,2 An,3... ...0


The solution is then obtained iteratively by

x(k+1) = D−1
z (B − ΣRzx

(k)) (1 ≤ i ≤ n).
The component-wise form of the Jacobi method is :

xi
(k+1) = (Bi − ΣAi,jxj

(k))/Ai,i. i 6= j (1)

The computation of x
(k+1)
i requires each element in x(k)

except itself. In case of Jacobi iteration, the iterative steps
first leads to inexact result and subsequently refines its result
at each iteration step with residual converging at higher
rate. But this happens only when the matrix A is diagonally
dominant i.e.

|Ai,i| ≥ Σ|Ai,j |, (2)

where i 6= j. Otherwise with each iterative steps the residual
diverges.

Since the set of matrices encountered during processing of
various kind of images don’t follow the property of diagonally
dominance, thus the iterative methods like Jacobi or Gauss-
Seidel can’t be used effectively as they get diverged .

III. PROPOSED ALGORITHM

In this section, we outline the overall interpolation algorithm
based on Jacobian Iteration. The algorithm is basically divided
into two phases although the unknown pixels are categorized
in three categories based on their spatial location. In this
algorithm, source image S (LR) of size M×N is expanded to
interpolated image I (HR) of size 2M × 2N . The expansion
from source image to interpolated image follows the mapping:

M : S → I
according to the equation

M(S(i, j)) = I(2i− 1, 2j − 1). (3)

After this mapping, the remaining ( 3
4 )th pixels of I, are pre-

dicted in two phases. The remaining pixels are located at even-
even, odd-even and even-odd spatial positions represented in
gray and white dots respectively.

Fig. 1. First stage expansion of an image from Low Resolution to High
Resolution (Black dots in image I are original pixels from LR image).

A. Phase-I

In this phase, we predict the missing pixels lying at even-
even position of spatial coordinates of Image I of size 512×
512. The unfilled pixels at even-even position can be filled as
follows:

1) We divide the image I in non-overlapping blocks of size
32× 32.

2) Prediction parameters are estimated using Jacobian It-
eration method for each non-overlapping block and
prediction of unfilled pixels at even-even positions are
done using estimated prediction parameters.

3) Estimation of Jacobian prediction parameters (α1, α2,
α3, and α4) is explained in two steps which is as follows.

Fig. 2. Neighboring pixels (A,B,C,D and P,Q,R,S) used for interpolation in
First and Second Phase respectively.

1) Estimation of Covariance matrix for each block of LR
image: In this step, we divide the source image S into
non-overlapping blocks of size 16 X 16. Learning the local
characteristics of each block gives the optimized prediction
coefficients to be used in prediction of missing pixels of HR
image.
Suppose α1, α2, α3 and α4 are the optimal unknown prediction
coefficients to predict pixel XLR(n) using neighboring pixels
A,B,C and D respectively. Then the predicted pixel X̃LR(n)
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can be written as:

X̃LR(n) = α1A+ α2B + α3C + α4D (4)

where X̃LR(n) is predicted LR pixels. Thus the error square
found in the prediction is

e2(i, j) = {XLR(n)− X̃LR(n)}2. (5)

The Square Error of each pixel of a block in LR images
are accumulated and minimization of error is done which
give rise to covariance matrix [12].


ΣA2 ΣAB ΣAC ΣAD
ΣAB ΣB2 ΣBC ΣBD
ΣAC ΣBC ΣC2 ΣCD
ΣAD ΣBD ΣCD ΣD2



α1

α2

α3

α4

 =


ΣXA
ΣXB
ΣXC
ΣXD


We can see that the above covariance matrix is a kind of
linear equation of the form Ax = B.

Conventional methods for solving these equations involve
matrix inversion resulting in higher computational cost which
withdraws it from the race of real time application. Moreover,
they don’t work in situations where the matrix A comes out
to be singular which is generally observed in the medical
images or some dark shade natural images like Fish1,Fish2,
Fish3 as shown in Fig. 4. Thus, Jacobi Iteration method is
used to solve the above mentioned problem and is follows.

2) Application of Jacobi iteration method to get optimal
prediction coefficients:

1) We use the Jacobi iteration method to get the predictors
(α1, α2, α3, and α4) with the help of equation (1).

2) Pseudo code for the calculation of predictors is also
given in the Fig. 3.

3) Keeping the value of predictors α(k)
i (for k = 0 only ,

1 ≤ i ≤ 4) as 0.25, initially acting as feedback helps
us to get the desired result in less number of iteration
as it is witnessed that Jacobi starts diverging in case of
matrices other than diagonally dominant.

4) Using coefficients of bilinear (α1 = α2 = α3 = α4

= 0.25, for k=0) as feedback results in reducing the
computational cost to larger extent by decreasing the
iteration steps.

5) Involvement of lesser number of iteration steps enables
the use of Jacobian Iteration method in spite of its
diverging properties for general set of matrices.

6) Thus from the prediction coefficients for each block
generated by Jacobian iteration method all the missing
pixels of HR image categorized in phase I are calculated
using the equation.

X̃HR(n) = α1A+ α2B + α3C + α4D. (6)

Fig. 3. Pseudo Code explaining the the estimation of predictor coefficients.

B. Phase-II

The prediction of missing pixels in the second phase with
at least one odd spatial coordinate requires the same steps as
in phase I but the neighboring pixels involved in prediction
get changed according to availability.

1) Estimation of covariance matrix using Least Square
Estimation.

2) Solving covariance matrix using Jacobi Iteration method.
3) Thus rest of the missing pixels in phase II are predicted

with the help of Jacobian parameters (β1, β2, β3, and
β4) using the equation

ỸHR(n) = β1P + β2Q+ β3R+ β4S. (7)

In this way all the missing pixels of High resolution images
are predicted using the Least Square error based Jacobian
parameters (α1, α2, α3,α4 , β1, β2, β3, and β4).

IV. SIMULATION RESULTS

In order to validate the performance of our proposed
algorithm, several comparisons have been made with the
existing interpolation methods like bilinear interpolation,
Content adaptive interpolation [2] and Context based image
independent interpolation [5] scheme. Although [4],[6] and [7]
gives better results than our algorithm, however we are giving
detailed analysis of competitive methods (Computationally as
simple as ours) in Table I. Results for bilinear interpolation
have been obtained using mat lab code in [11].

PSNR of all the test images[10] in Fig. 4 are calculated from
the above mentioned methods which are tabulated in Table I.
Our proposed algorithm on an average gives 0.24, 0.54 and
0.16 db better PSNR than Bilinear, CAI and CBII respectively.
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TABLE I
PSNR COMPARISON OF INTERPOLATED IMAGES BY DIFFERENT METHODS.

Images Bilinear CAI [2] CBII Proposed
Cycle 20.356 20.03 20.4181 20.537
Fish1 27.258 26.858 27.528 27.690
Fish2 25.528 25.387 25.571 25.786
Fish3 27.367 27.238 27.369 27.496
Girl 33.303 33.380 33.437 33.535

Barbara 25.015 24.366 24.81 25.101
Fruits 21.002 20.691 21.05 21.196
Island 24.962 24.362 25.07 25.20
Home 24.351 24.118 24.499 24.604
Forest 26.709 26.41 26.914 27.054
Avg 25.58 25.284 25.66 25.82

Another approach for the validation of the performance of
our proposed algorithm is the comparison of the Correlation
Coefficients C (8) of the HR images tabulated in table II. The
Correlation Coefficient C gives value between 0 and 1. If C is
more closer to 1, then the interpolated image is more similar
to the original high-resolution image. Although the CBII
and proposed method in Table II gives similar Correlation
Coefficient in case of test image “Girl” but it could be seen
in Table I that the proposed algorithm obtain the better PSNR
result than CBII.

C = | ΣO(i, j)I(i, j)−WHUV√
(ΣO2(i, j)−WHUV )(ΣI2(i, j)−WHUV )

|

(8)
where U and V are the mean pixel values of the original image
O and the interpolated image I. In (8), H and W are the height
and width of the interpolated image I, whereas O(i,j) and I(i,j)
are the pixels values of original image and interpolated image
I respectively.

Fig. 4. Test Images of size 512× 512
V. CONCLUSION

In this paper, an algorithm with lower computational cost
has been proposed where the prediction scheme using the local
characteristics of images. The use of Jacobian method to solve

TABLE II
CORRELATION COEFFICIENT OF THE HR IMAGES USING THE MENTIONED

INTERPOLATION ALGORITHMS

Images Bilinear CAI [2] CBII Proposed
Cycle 0.9444 0.9391 0.9445 0.9451
Fish1 0.9707 0.9655 0.9711 0.9716
Fish2 0.9800 0.9784 0.9797 0.9803
Fish3 0.9868 0.9864 0.9870 0.9871
Girl 0.9941 0.9931 0.9943 0.9943

Barbara 0.9658 0.9595 0.9638 0.9655
Fruits 0.9340 0.9295 0.9355 0.9365
Island 0.9315 0.9194 0.9315 0.9317
Home 0.9695 0.9675 0.9709 0.9710
Forest 0.9704 0.9670 0.9707 0.9711
Avg 0.9647 0.9605 0.9649 0.9654

the covariance matrix from LR image, reduces the computa-
tional power and gives the optimal predictors on the basis of
the behavior of the neighboring pixels. The experimental data
shows that the proposed algorithm with marginal increment
of the computational cost provides significant improvement in
objective results when compared with classical interpolation
schemes.
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