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Figure 1: Gaze plots and neural network visualization to illustrate interpretability challenges for machine learning. The four
columns show example sequences of four different classes of tasks performed by participants. Top: Plot of x and y coordi-
nates of scanpaths (sequences of fixations). Bottom: PCA projection of the hidden states produced by an LSTM layer for these
sequences. While we can qualitatively see differences both in the gaze plots and LSTM visualizations, it is still challenging to
fully understand the difference between the machine learning models.

ABSTRACT
Many applications in eye tracking have been increasingly employ-
ing neural networks to solve machine learning tasks. In general,
neural networks have achieved impressive results in many prob-
lems over the past few years, but they still suffer from the lack of
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interpretability due to their black-box behavior. While previous
research on explainable AI has been able to provide high levels of
interpretability for models in image classification and natural lan-
guage processing tasks, little effort has been put into interpreting
and understanding networks trained with eye movement datasets.
This paper discusses the importance of developing interpretability
methods specifically for these models. We characterize the main
problems for interpreting neural networks with this type of data,
how they differ from the problems faced in other domains, and
why existing techniques are not sufficient to address all of these is-
sues. We present preliminary experiments showing the limitations
that current techniques have and how we can improve upon them.
Finally, based on the evaluation of our experiments, we suggest
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future research directions that might lead to more interpretable and
explainable neural networks for eye tracking.
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1 INTRODUCTION
Deep neural networks are one of the most effective ways to achieve
good performances on difficult pattern recognition tasks [LeCun
et al. 2015]. Over the past few years, they have been used in a
vast number of applications, such as computer vision and natural
language processing (NLP) [LeCun et al. 2015]. It also proved to be
an efficient way to perform machine learning (ML) for eye tracking,
such as event detection [Zemblys et al. 2019, 2018], classification
of eye movement data [Dalrymple et al. 2019; Komogortsev and
Karpov 2013; Kumar et al. 2019; Startsev et al. 2019; Tafaj et al. 2013],
encoding of gaze data [Fuhl et al. 2019], and pupil detection [Fuhl
et al. 2017].

However, despite their outstanding performance, neural net-
works are essentially black-box models, which impairs the user’s
ability to interpret the model and understand the reasoning behind
the predictions. This lack of interpretability leads to trust issues—
where the user is not confident about whether the reasoning learned
by the model makes sense or not—and makes it much more diffi-
cult to identify and fix problems in the development of the model.
When not properly addressed, such issues can severely hinder the
usability of the model.

To address this problem, the ML community has focused on
building visualization tools to provide more interpretability to neu-
ral networks, giving insights into the model’s learned features and
reasoning process [Choo and Liu 2018; Garcia et al. 2018; Liu et al.
2017]. However, most approaches are restricted to models trained
for a specific application, such as computer vision or NLP. None
of the existing contributions can, to the best of our knowledge,
address the specific issues faced when modeling eye movement
datasets.

Existing interpretability techniques resort in the analysis of the
input data and how the input affects the features and output pro-
duced by the model. However, eye movement datasets are essen-
tially spatio-temporal and often contain attributes from multiple
data domains. For this reason, they are not straightforward to in-
terpret when compared to image or text datasets. Consequently,
techniques developedwith the latter kind of datasets inmind cannot
be directly applied to eye tracking models.

In this paper, we address this problem by discussing the charac-
teristics of eye movement datasets, how neural networks transform

their features to perform classification, which interpretability is-
sues appear in the analysis of such models, and how visualization
techniques can open these black boxes to improve interpretability
for the field of eye tracking.

We also present an example case that illustrates the potential
and challenges of intepretable ML for eye tracking. Figure 1 shows
a screenshot from this example.

2 BACKGROUND AND RELATEDWORK
One of the first approaches to achieve interpretability was to mea-
sure and visualize the importance each input feature has in the
prediction output. This approach was successfully employed in
models trained for image classification [Kahng et al. 2017; Yosinski
et al. 2015] and natural language processing [Strobelt et al. 2017].
However, while effective in giving insights into which features were
used in the classification process, it does not allow the analyst to
visualize the model’s reasoning process and thus answer questions
such as whether the model is correctly learning distinguishable
features or how following layers use their input data to build more
abstract features.

Such problems can be addressed by exploring internal feature
vectors and hidden states produced by the network. These internal
representations contain all the information extracted from the orig-
inal input by the model, and thus, they have to contain information
meaningful to the prediction task. Rauber et al. [2016] address this
problem by employing dimensionality reduction techniques to vi-
sualize the separability of feature vectors in different hidden layers
of a neural network. By doing so, the user can find out whether the
model learned distinguishable features for each class.

LSTMVis [Strobelt et al. 2017] employs temporal visualization
to identify sequences of input producing similar hidden states, thus
giving insights into how recurrent networks learn to represent sen-
tences with similar meaning in NLP. In a related approach, Giurgiu
and Schumann [2019] explain the prediction of RNN classifiers by
returning the key events that significantly modified the model’s
hidden states. A more comprehensive list of papers on the topic
can be found in survey articles by Garcia et al. [2018] and Hohman
et al. [2018].

Although such contributions can handle many interpretability
problems, they do not address particular issues found in eye tracking
tasks. Due to the temporal nature of eye movement data, many of
the visualization techniques employed in NLP can be generalized to
handle eye tracking to some extent. However, there are important
differences as well. First, eye movement data also has a spatial
component. Second, text-based inputs do not have any kind of time
span between the elements of the input sequence. Eye movement
data are time series in which the time between two events in the
sequence carries important information that may be a required
feature for the classification task.

To the best of our knowledge, no previous work addresses issues
involving such spatio-temporal—and particularly eye movement
—data. The paper closest to our discussion is by Giurgiu and Schu-
mann [2019]. They explain the predictions of a long short-term
memory (LSTM) model by converting time series into events based
on a threshold and identifying which events led to the prediction
output. However, the event-based analysis employed by them and
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the lack of spatial component creates a limitation on how it can
support models trained with eye movement datasets.

3 PROBLEM CHARACTERIZATION
Interpretability of neural networks is by itself a recent and highly
relevant topic, with most papers dating back from the last six
years [Garcia et al. 2018]. In this section, we characterize the speci-
ficities of interpretable neural networks for eye tracking.

3.1 Data Model
We assume that the eye tracking data can be described as a temporal
sequence of data tuples di , where i describes the temporal index
and di is a vector of data attributes. Typically, the data attributes
contain at least x and y coordinates of gaze. However, there might
be other attributes like pupil diameter or information about the
stimulus (background image or video) around the gaze position, or
many more. Furthermore, the temporal index i may correspond to
a regular, equidistant sampling of time (for example, in the form of
the typical output of an eye tracker), but it could also relate to an
ordered list of events (for example, a sequence of fixations produced
from applying a fixation filter to raw gaze data). Therefore, our
data model applies to a wide range of eye tracking data, including
the raw data from eye tracking devices all the way to processed
scanpaths. However, we do not consider typical image analysis
problems that, for example, play a critical role in gaze estimation
from video [Zhang et al. 2019].

Therefore, we have to address datasets that are spatio-temporal
(to include gaze positions and temporal sequence information)
along with potentially further data attributes.

3.2 Relationship to Other Domains
Therefore, existing approaches to interpretability of neural net-
works in computer vision and NLP do not necessarily carry over
to eye tracking without adaptation. However, there are some im-
portant commonalities shared with NLP. Machine learning for eye
tracking typically uses recurrent networks; for example, LSTMs
[Hochreiter and Schmidhuber 1997] are a popular choice. These
network are particularly suited to handle temporal datasets, as
the network’s layers maintain an internal memory—called hidden
state—that are updated every time a new input element is fed into
the network. NLP also employs this type of neural networks, which
makes visualization tools such as LSTMVis [Strobelt et al. 2017]—
which aims to visualize patterns in the hidden state sequences that
can explain the reasoning learned by the model—a good starting
point to build effective tools for eye tracking tasks.

However, in contrast to text-based datasets, a sequence of eye
movement data points contains a temporal component in between
two data points that, depending on the application, might be impor-
tant for the classification tasks. For instance, two data points located
in the same spatial position may represent different meaning if the
time passed from the previous gazing position is different. Text
datasets do not have such characteristics, as there is no temporal
relationship between the words—only their order matters. Existing
tools for interpretability of recurrent networks do not address this
problem and, thus, are not fully suited to eye tracking.

Therefore, some aspects of interpretability for computer vision
networks have to be considered too. For instance, in image clas-
sification, a single pixel value only has information value when
aggregated with the values of neighboring pixels. Such a behavior
also appears in eye movement datasets, e.g., an individual gaze
location may only produce useful information for the classification
tasks when combined with subsequent gaze locations.

Many existing tools in computer vision use heatmaps to display
which pixels in the input image impacted prediction the most, and
thus give better insights into what features the model is looking
for to classify the input as belonging to a particular class. A similar
approach can be used in eye tracking models to identify which
gazing points impacted classification the most. However, it does
not answer questions such as if that gaze point is important for the
classification due to its spatial location, or to the temporal aspect of
it, or some other component of data which could be combination
of both spatial and temporal.

Interpretability for neural networks for eye movement data will
likely draw from existing work in NLP and computer vision but will
also have to merge currently separated approaches from those areas
and include further adaptations specific to eye tracking. The next
section describes an example case that targets interpretability for a
typical eye movement problem, where some existing approaches
are adopted.

4 EXAMPLE CASE
To give an example on how interpretability is important for the
training of neural networks employed in eye tracking applications,
we developed an experiment using an LSTM trainedwith the dataset
used by Greene et al. [2012]. This dataset comprises a classification
task with four classes. Each class represents the action performed by
the person at the moment of the eye movement sequence capture:
Class1 represents the action of determining the Decade in which
an image was taken; Class2 represents the action of memorizing a
picture; Class3 represents the action of determining how well you
know the people on a picture; and Class4 represents the action of
determining the wealth of the people on a picture.

To model the task, we developed a small LSTM model with a
single hidden layer. We chose this architecture because our goal is
to visualize how the model learns to represent the features from
the input data in its hidden state. Since the hidden states learned
by the model represent the features of the input sequences, these
hidden states are supposed to contain significant information for
the model’s decision making. Visualizing hidden states that are
high-dimensional in nature can be challenging, as humans can
only imagine up to three dimensions with ease. To ease the under-
standing of hidden states, we project high-dimensional states into a
lower-dimensional representation while preserving its underlying
structure as much as possible using principal component analysis
(PCA) [Wold et al. 1987].

Figure 1 displays the gaze sequence of four inputs (top)—one for
each class—and the PCA projection of the hidden state sequence
produced by the model for the respective input (bottom). A similar
approach is used to analyze convolutional networks in work by
Rauber et al. [2016] and Kahng et al. [2017]. However, it is not easy
to distinguish what is learnt and how it is learnt, mostly because
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Figure 2: PCA projection of the hidden states produced by
the network’s LSTM layer for all inputs in the test set. Col-
ored by the predicted class.

such an approach is unable to give all the insights needed to build
hypotheses regarding spatio-temporal datasets.

The insights above are corroborated by Figure 2. Here, we adapt
the strategy used by Rauber et al. [2016] to LSTMs. For each test set
sequence, we extract the hidden states produced by the network at
every time step. We then join all hidden state vectors in a single
dataset and project them to a 2D space using PCA. Data points
are colored by the model’s final output, i.e., the label produced
by the model if that hidden state were the last one produced by
the sequence. Ideally, we would expect to see the data points of
each class converging toward distinguishable regions, as this would
mean that the model learned to create different representations
for each class. This is not the case for this model, as there is a
significant overlap between elements of different classes. This is
expected, as the model only reaches a 75% accuracy on the test set.
Nonetheless, it showcases how such visualizations can be useful
to identify issues in the modeling process and guide the user in
making possible changes.

The hidden states that are learnt for a classification model are
expected to be distinguishable in the feature space, on the basis
of their classes. But in most of the classification models, there is
the possibility of interactivity among the features learnt for the
different classes [Wold et al. 1987]. Explainable system can be used
for greater understanding of the accuracy of the deep network,
based on the events that caused a specific classification. It can also
be used to see any overlap in the events, between the different
classes, this can augur a new set of research on the intersecting
events and also class distinctive events.

5 RESEARCH CHALLENGES
Based on literature on interpretable machine learning in NLP and
computer vision, and our previous experience with the analysis of
eye movement data, and own experiments with interpretability for
concrete examples from eye tracking, we have identified challenges
that can be better solved using explainability.

Explain the correlation between the data points (with their features)
and the hidden states or feature vectors produced by the network at
their hidden layers. Interpretability tools should focus on under-
standing the dynamics of the hidden states, allowing the user to
inspect how these vectors learn to abstract the input’s features.

Explainability beyond events. Recurrent networks often interpret
temporal data as events. However, in eye movement datasets, there
is not always a clear definition of what an event is. For instance, if
we define attention on a gaze point in spatial aspect as an event, we
may end up losing the significance of the order in which the point
was achieved as well as the temporal aspect associated with it.

Interactive exploration. Complex neural networks often have
dozens of hidden layers and are trained with datasets having mil-
lions of data points. To interpret such a model, existing interaction
approaches need to be extended to allow for better scalability with
network complexity.

Apart from generic challenges associated with interpretability,
we also found that there are challenges associated with eye tracking
dataset too in general.

Interpret which data point components (spatial, temporal, etc.) the
model is taking into account. Tools aiming to explain what features
impacted classification should be able to effectively measure which
components (spatial, temporal or both) of the data influenced the
prediction and to what extent they did so.

Performance analysis for spatio-temporal data. One of the main
issues when training neural networks is to identify the reasons why
the training process did not achieved the expected performance.
This is even harder when dealing with spatio-temporal data as
recurrent networks are very prone to problems such as vanishing
gradient.

Annotation support. Eye movement data often lacks sufficient
labeled data, which is the prerequisite to exploit deep learning.
Therefore, there is need for visual and interactive tools that allow
users to quickly annotate data for learning [Kumar et al. 2020].

6 CONCLUSION
Both eye tracking and machine learning are growing research fields
that are constantly opening the doors to novel and interesting topics.
As neural networks become more and more popular in both fields,
it is important to invest time into finding new ways to interpret
and analyze these models. That said, we argue for an increase in
the collaboration between the eye tracking, machine learning, and
visualization community in order to develop more tools able to
address the issues raised in this paper. With such collaboration,
advances in eye tracking applications involving complex machine
learning tasks will occur more often, and will spread faster both to
scientific and industrial applications.
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