Project #1: Easily extending smartphone apps to wearable devices

Problem: Writing wearable apps is tedious

Opportunity: Most wearable apps simply mirror the smartphone app

UIWear: Write once, extend to many

Idea: Decouple app design from app management.

Architecture: Developer writes simple metaprogram specifying app design

UIWear creates wearable app

Implementation: On Android OS, AndroidWear, Sony SmartGlass

Evaluation: Created 20 wearable apps with fraction of dev effort (some examples Lines-of-Code (LoC))

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Lines of Code (LoC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AndroidWear</td>
<td>716</td>
</tr>
<tr>
<td>Wearable App</td>
<td>2,163</td>
</tr>
<tr>
<td>Bookstore</td>
<td>1,802</td>
</tr>
<tr>
<td>Facebook</td>
<td>6,522</td>
</tr>
</tbody>
</table>

UIWear published at ACM MobiCom 2017

Wearable Sensor Virtualization (Ongoing)

Problem: Wearable sensors are not fully utilized by phone apps.

Idea: Design a sensor virtualization platform for phone apps to seamlessly access wearable sensors

Project #2: Enabling Deep Learning on Phones for privacy and performance

Background: Recurrent Neural Networks (RNNs) improve activity recognition, machine translation, and other tasks

Problem: Optimizations to run deep learning on phones focus on Convolutional Neural Networks (CNNs); Don’t work for RNNs.

E.g. GPU offloading harder on RNNs due to dependencies

MobiRNN: Offloading RNN models to GPU

MobiRNN idea: a mobile specific optimization for RNNs that parallelize within a cell rather than across the cells.

MobiRNN performs coarse-grained parallelization where a row of computation is offloaded to a GPU core

Implementation: On TensorFlow, using RenderScript framework

Evaluation: RNN models run 3-9 times faster on GPU, using MobiRNN

Project #3: Private Intelligent Assistant (PrIA)

Problem: Personalized intelligent assistance costs privacy

PrIA Idea: Enable intelligent assistance services completely locally from users personal devices

PrIA News Recommendation

Key idea: Decouple news aggregation from personalization

Architecture: PrIA downloads all news articles from an aggregation service, builds a local user profile, and provides recommendations, all on the users personal device

PrIA App

User Study: 6 users for an average of 10 days. Users rate recommendations from PrIA and Google News

PrIA performs poorer than Google News, but not significantly so

PrIA News Recommendation

<table>
<thead>
<tr>
<th>Recommendation system</th>
<th>Precision @10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google</td>
<td>0.45</td>
</tr>
<tr>
<td>PrIA</td>
<td>0.38</td>
</tr>
</tbody>
</table>

PrIA published at HotMobile 2017

Ongoing work

- In-depth study of privacy leakage in intelligent home assistants such as Alexa and Google Home
- Designing techniques to reduce these privacy leakages by leveraging ideas from NLP and privacy research.

Project Website: pria.cs.stonybrook.edu

Overview of the Mobile Systems research at NetSys Lab

Jian Xu, Qingqing Cao, Aruna Balasubramanian (In collaboration with HexLab, LUNR lab, OSCAR lab, HI Lab, and Nokia)