
Realizing an Elastic Memcached via Cached Data Migration
Ubaid Ullah Hafeez, Deepthi Male, Sharath Kumar Naeni, Muhammad Wajahat, Anshul Gandhi

Department of Computer Science, Stony Brook University
{uhafeez,dmale,snaeni,mwajahat,anshul}@cs.stonybrook.edu

CCS Concepts • Computing methodologies → Distributed
computing methodologies; • Computer systems organization
→ Cloud computing; • Software and its engineering → Cloud
computing;
ACM Reference format:
Ubaid Ullah Hafeez, Deepthi Male, Sharath Kumar Naeni, Muham-
mad Wajahat, Anshul Gandhi. 2017. Realizing an Elastic Mem-
cached via Cached Data Migration. In Proceedings of Middleware
Posters and Demos ’17: Proceedings of the Posters and Demos
Session of the 18th International Middleware Conference, Las
Vegas, NV, USA, December 11–15, 2017 (Middleware Posters and
Demos ’17), 2 pages.
DOI: 10.1145/3155016.3155023

1 Introduction
Cloud computing has enabled economical resources, such as
storage and VMs, that allow applications to be hosted online
at low cost. The pay-as-you-go model in the cloud also enables
elasticity – the ability to quickly add and remove VMs from
an application in response to changes in workload demand.
However, not all applications are amenable to elasticity, e.g.,
stateful services such as memory caches. Designing such
services to be elastic requires careful consideration of the
data saved on each VM since the data will no longer be
available if the VM is terminated when scaling in.

Load Generator
(httperf)

Memcached servers

Database
(ardb + RocksDB)

Web Server
(Apache + PHP)

Figure 1. Our multi-tier Memcached-backed application.

We consider a multi-tier web deployment consisting of
a Memcached tier comprised of several VMs, as shown in
Figure 1. Memcached [3] is a distributed in-memory caching
system. In Figure 1, a typical data request at a web server
is first tried at the Memcached; if the data is in the Mem-
cached (hit), then it is served from the faster DRAM of
the Memcached nodes. If the data is not in the Memcached
(miss), then the web server fetches the data from the slower
disk-based back-end database.

To save on rental costs, the application owner may choose
to scale in the Memcached tier by terminating some Mem-
cached VMs in response to low load, resulting in increased
Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Middleware Posters and Demos ’17, Las Vegas, NV, USA
© 2017 Copyright held by the owner/author(s). 978-1-4503-5201-
7/17/12. . . $15.00
DOI: 10.1145/3155016.3155023

Time (mins) !
0 5 10 15 2095

%
ile

 R
es

po
ns

e
Ti

m
e

(s
)

0

0.5

1

1.5

2

2.5
baseline
smart (SM)
brute-force (BF)

peak
RT

restoration
time

Figure 2. Performance loss following Memcached scaling.

load on the database; this increased load further adds to the
request response time (RT). The blue solid line (baseline) in
Figure 2 shows the steep increase in 95%ile RT when Mem-
cached is scaled in from 4 VMs to 2 VMs (see Section 2 for
details on our experimental setup). The peak RT, as shown
in the figure, can hurt performance SLAs and the restoration
time (time to revert to stable RTs), also shown in the figure,
dictates the duration of performance degradation.

Our goal in this work is to analyze the potential reduction
in peak RT and restoration time by proactive cached data
migration. We also investigate the impact of size of the
Memcached tier on peak RT and restoration time.

2 Experimental Setup
Our experimental setup consists of a custom Memcached-
backed web application composed of several VMs (Ubuntu
14.04.3 OS) deployed on a Private OpenStack cloud, as il-
lustrated in Figure 1. We use httperf [5] to generate load
for our application in the form of PHP web requests; the
requests are directed to an Apache web server. Each request,
once parsed, queries 100 random key-value (KV) pairs, whose
popularity distribution can be controlled. Our Memcached
(version 1.4.31) deployment consists of 4 VMs, each with
2-vCPUs and 4GB memory, mimicking a cost-efficient config-
uration. The database in our case is ardb [1] (version 0.9.3)
that leverages RocksDB [6] as the backend.

In terms of the KV data set, the key size is fixed at 11
bytes and the value sizes range from 1 byte to 19 bytes such
that all KVs belong to the same slab. The popularity of value
sizes is distributed geometrically such that smaller KV pairs
are more popular, as observed by Facebook [2]. The data set
contains 19 Million KV pairs.

We define response time (RT) for each web request to
be the weighted average (over the 100 KV fetches) of the
latencies of the get requests that hit in the Memcached and
the remaining requests that are served by the database. We
report tail RTs (95%ile RTs) when evaluating performance.

3 Evaluation Results
To evaluate the potential benefits of cached data migration,
we focus on scenarios where the application scaled in from
4 to 2 Memcached VMs; we refer to the 2 VMs that will be

terminated as retiring VMs and the remaining two as retained
VMs. Our high-level idea is to migrate hot KV pairs from
retiring VMs to retained VMs so we can minimize post-scaling
cache misses. We investigate different migration schemes and
evaluate their performance benefits and overhead.
3.1 Migration Schemes
We present two different migration schemes:
Brute Force (BF) works by comparing the hotness, based
on the timestamp of the last access, of keys on the retiring
VMs with keys on the retained VMs; consistent hashing is
used to determine the target retained VM for each key on
the retiring VM. Based on this comparison, colder KVs on
retained VMs are replaced with hotter KVs from retiring VMs.
Smart Migration (SM) approximates BF by only moving a
subset of the hottest KV pairs from retiring VMs to retained
VMs. Rather than comparing all KV pairs, SM only compares
every 100𝑡ℎ pair (in LRU order) to estimate, for each retained
VM, the subset of KV pairs from retiring VMs that are hotter
than its existing KV pairs. We then determine the size of
the smallest subset, say 𝑁 , and move the hottest 𝑁 KV
pairs from among all retiring VMs to the retained VMs via
multi-set; this ensures that no KV pair on retained VMs is
replaced by a colder one from retiring VMs. SM also reduces
the hashing overhead by computing the hash for only 𝑁 KV
pairs instead of all KV pairs on retiring VMs, as in BF.
3.2 Comparison of Schemes
Figure 2 shows a typical Memcached scaling experiment
where we initially have very low RTs; at about the 4-min
mark, we decide to scale in from 4 to 2 Memcached VMs. The
baseline (in blue) represents naive scaling, resulting in poor
performance for almost 16 minutes (restoration time). By
comparison, we see that both BF (in green) and SM (in red)
substantially improve performance in terms of restoration
time, reducing it to about 7 and 10 minutes, respectively.
Note that we do not immediately scale in the retiring VMs for
BF and SM, instead allowing for migration of hot KV pairs
before scaling. For BF, the migration of hot KV pairs takes
a significant amount of time (7 mins); only after this time do
we terminate the retiring VMs, thus losing out on significant
cost savings. However, after migration, performance is almost
optimal, thus resulting in the low RTs seen in Figure 2.
For SM, the migration takes only about 3 minutes, after
which the retiring VMs are terminated, thus allowing for
moderate cost savings. However, since SM is not as aggressive
as BF in terms of hot data migration, the performance after
migration still takes some time to converge to the BF levels.
In summary, while both BF and SM provide substantially
lower RTs compared to the baseline, they do have some
migration overhead which lowers the cost savings potential
of elasticity.
3.3 Sensitivity Analysis for Smart Migration
We now further evaluate the benefits of SM over the baseline
as a function of the Memcached size. Figures 3 and 4 show
the restoration time and peak RT, respectively, as a function
of relative Memcached size (relative to total database size)
for baseline and SM. We see that SM significantly reduces
both restoration time and peak RT. As the Memcached size
decreases, the absolute hit rate decreases, resulting in higher

Memcached size (% of total dataset) !
23 24 25 30

R
es

to
ra

tio
n

tim
e

(m
in

s)

0

20

40

60

-60%
-33% -44% -38%

baseline
smart

Figure 3. Restoration time versus Memcached size.

Memcached size (% of total dataset) !
23 24 25 30Pe

ak
 9

5%
ile

 R
T

(s
)

0

1

2

3

-24%
-28% -36% -38%

baseline
smart

Figure 4. Peak 95%ile RT versus Memcached size.

load on the database. Thus, the restoration time and (to some
extent) peak RT increase with a decrease in Memcached size.

4 Related Work
Hwang et al. [4] propose an adaptive partitioning algorithm
that adds or removes Memcached nodes and migrates data to
balance the load created by hot items. The authors suggest
that the data migration be performed in the background,
but do not discuss this further. CacheScale [7] proposes
horizontal scaling of Memcached tiers by passively migrating
data between Memcached nodes based on incoming requests.
While effective, the restoration time of CacheScale critically
depends on the arrival rate and popularity distribution, and
can thus be arbitrarily high. By contrast, our data migration
is independent of the arrival rate and popularity skew and
can be tuned to regulate the network overhead of migration.

5 Conclusion and Future Work
This work focuses on the transient yet severe performance
loss that immediately follows a Memcached scaling action.
Our preliminary results highlight the potential reduction
in peak RT and restoration time that can be realized by
proactively migrating hot Memcached data. As next steps,
we will (i) investigate techniques to minimize the overhead of
our smart migration policy, and (ii) evaluate the impact of
system parameters, such as database configuration, request
popularity skew, and dataset size, on reduction in peak RT
and restoration time.

References
[1] “ardb,” https://github.com/yinqiwen/ardb.
[2] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,

“Workload Analysis of a Large-scale Key-value Store,” in SIGMET-
RICS, London, England, UK, 2012, pp. 53–64.

[3] B. Fitzpatrick, “Distributed Caching with Memcached,” Linux
Journal, vol. 2004, no. 124, pp. 5–5, Aug. 2004.

[4] J. Hwang and T. Wood, “Adaptive performance-aware distributed
memory caching.” in ICAC, vol. 13, 2013, pp. 33–43.

[5] D. Mosberger and T. Jin, “httperf—A Tool for Measuring Web
Server Performance,” ACM Sigmetrics: Performance Evaluation
Review, vol. 26, no. 3, pp. 31–37, 1998.

[6] “RocksDB | A persistent key-value store,” http://rocksdb.org/.
[7] T. Zhu, A. Gandhi, M. Harchol-Balter, and M. A. Kozuch, “Saving

cash by using less cache.” in HotCloud, 2012.

https://github.com/yinqiwen/ardb
http://rocksdb.org/

	1 Introduction
	2 Experimental Setup
	3 Evaluation Results
	3.1 Migration Schemes
	3.2 Comparison of Schemes
	3.3 Sensitivity Analysis for Smart Migration

	4 Related Work
	5 Conclusion and Future Work
	References

