
Optimal Markovian Dynamic Control of
Interference-Prone Server Farms

Scott Votke
Stony Brook University

scott.votke@stonybrook.edu

Jazeem Abdul Jaleel
University of Minnesota-Twin Cities

abdul314@umn.edu

Amoghavarsha Suresh
Stony Brook University

amsuresh@cs.stonybrook.edu

Mohammad Delasay
Stony Brook University

mohammad.delasay@stonybrook.edu

Sherwin Doroudi
University of Minnesota-Twin Cities

sdoroudi@umn.edu

Anshul Gandhi
Stony Brook University

anshul@cs.stonybrook.edu

Abstract—Interference is a key performance challenge faced
by cloud users, and can significantly degrade application per-
formance on virtual machines (VMs). For load-balanced cloud
applications, a key question is how to distribute the load
among VMs in the presence of interference. Using a Markov
decision process (MDP) model, we investigate dynamic control
polices to assign jobs among a cluster of VMs that are prone
to interference with the goal of maximizing performance. We
characterize the structural properties of the MDP optimality
equation, and we prove that the optimal control policy in a
system with a central queue and arbitrary number of VMs
is a threshold policy based on the queue length. The optimal
policy is characterized by multiple thresholds depending on the
current condition of the VMs, including the number of busy
under-interference VMs. We discuss the existence of an ordering
among such thresholds, and we prove the ordering for a two-VM
system. Our numerical results show that the optimal dynamic
policy can significantly improve performance compared to the
the commonly employed non-idling policy. For low utilization
systems, we observe improvements on the order of around 20%.
We further implement our policy in a real-world testbed using
the HAProxy load balancer and show that our policy can reduce
web server response times by as much as 40–60%, even for time-
varying request rates.

Index Terms—Markov Decision Process, Markov Chains, Op-
timal Control of Queues, Cloud Computing

I. INTRODUCTION

Cloud computing is widely employed by application own-
ers to access economical and virtually unlimited computing
resources. Many online services and applications, such as
Netflix [12] and Expedia [17], are now provided by cloud-
deployed virtual machines (VMs). Applications are typically
deployed on a cluster of VMs in the cloud, and load bal-
ancers or schedulers are then employed to facilitate scaling
by distributing incoming load among the VMs. Recent studies
estimate that cloud computing, owing to its resource sharing
paradigm, can reduce data center energy consumption and
carbon emissions by as much as 50%, translating to annual
savings of $12.3 billion in energy costs and 85.7 million metric
tons of carbon dioxide [34], [39], [49].

Despite its popularity, however, cloud computing does have
its shortcomings. A key performance challenge faced by

Interference intensity (%)

0 20 40 60 80 100T
h
ro

u
g
h
p
u
t
(q

u
e

ri
e

s
/s

e
c
)

1000

1200

1400

1600

In
s
tr

u
c
ti
o
n
s
/c

y
c
le

 (
IP

C
)

1

1.1

1.2

1.3

Fig. 1: Empirical results for decrease in throughput and IPC
as a function of interference intensity.

cloud users (or tenants) is interference, which is caused by
contention for shared physical resources of the underlying
host server, such as CPU, network, or last-level cache, among
colocated VMs. Prior studies have shown that application
performance on VMs can degrade significantly, by as much
5× due to interference [8], [48], [51]. Our own experimen-
tal results, illustrated in Figure 1, show the degradation in
throughput for the Cassandra database as a function of the
colocated CPU-intensive VM load; see Section VI for details
on our experimental setup. Despite the significant body of prior
work on alleviating interference [15], [22], [30], [50], this
continues to be a notoriously hard problem [32], especially
because resource contention among independent colocated
VMs is often dynamic and unpredictable [33].

This paper takes a complementary approach to interference
and poses the following question “in the presence of dynamic
interference, how can we schedule jobs among a cluster of
VMs to minimize the impact of interference on application
performance?” Specifically, we focus on the scheduling com-
ponent of the application that is responsible for queueing
and dispatching jobs to back-end VMs. Our goal is to derive
the optimal control policy for the scheduler as a function of
various system and workload parameters, including request
rate, interference intensity, interference duration, etc.

As such scheduling decisions are made dynamically, and
each decision affects the system evolution over time, we take a
dynamic view to the problem. We consider a Markov queueing
model of a multi-VM homogeneous system where any of the
VMs can be independently under interference for some time.

The scheduler (or the controller) needs to decide whether Jobs
should be routed to an idle under-interference VM or should be
queued upon a system state change (a job arrival or a service
completion); see Section III for our model formulation. We
formalize the model as a Markov decision process (MDP) that
can be solved to find the scheduler’s optimal control policy to
minimize the expected total number of job in the system; the
MDP formulation is detailed in Section III-A.

After characterizing the structural properties of the MDP
optimality equation, we prove the optimal scheduling policy
in a system with any number of VMs is a queue length based
threshold policy; that is, depending on the number of busy
under-interference VMs, it is optimal to not utilize the under-
interference VMs if the queue length is below a threshold, and
but, it is optimal to utilize the under-interference VMs as the
queue length exceeds the threshold. We show that a threshold
policy is characterized by multiple thresholds, which depend
on the state of the VMS (how many are under interference and
how many are free/busy). For a two-VM system, we show the
existence of three thresholds, and we prove the ordering among
them (Section IV).

We evaluate the performance of our threshold policy via
extensive numerical experiments (Section V). Our results show
that, for a wide range of workload and system parameter
values, the threshold policy results in much better performance
compared to a non-idling policy (i.e., a threshold of essentially
zero). Our results also highlight the non-trivial impact of
model parameters on performance improvement. Specifically,
we find that the greatest benefits from using an optimal policy
(as compared to the non-idling policy) arise in settings with a
modest (relatively light) level of traffic and intermediate inter-
ference event rates; implementing the optimal policy matters
most in the cases far from the “extremes.” We also use our
numerical results to investigate the performance improvement
afforded by our threshold policy for different numbers of VMs.
We find that in settings with more than two VMs, the potential
for improvement is greater than in settings with only two VMs.

Finally, to validate the practical applicability of our work,
we also implement and experimentally evaluate our threshold
policy for a cluster of web server VMs (Section VI). Our
experimental results allow us to evaluate the efficacy of our
policy under realistic processor sharing, and also allow us
to compare against existing interference-mitigation strategies.
We implement our policy using the open-source HAProxy [3],
that is employed as a load balancer in front of Apache web
server VMs (using KVM [25] in Linux) serving dynamic web
user traffic and under processor interference from colocated
CPU- and cache-intensive VMs. Our implementation results
show that our theoretically inspired threshold policy provides
substantial benefits, to the tune of 40–60%, over other dynamic
baseline policies that are employed in web services.

To summarize, this paper makes the following contributions:

• We present the formulation of VM interference in clouds as
a Makovian model, and the scheduling problem that arises

in this setting as an MDP.
• We prove the optimality of a threshold policy and establish

the ordering of the thresholds for different VM states.
• We present numerical results to illustrate the performance

of our policy and to compare it against a non-idling policy.
• We implement our policy using HAProxy and experimen-

tally evaluate its performance for a web serving cluster of
VMs. We show that, even under time-varying request rates,
our threshold policy reduces mean response time by 40–60%
compared to other dynamic baseline scheduling policies.
The improvements are even more pronounced (about 70%)
at higher percentiles of response time.

II. PRIOR WORK

The model we consider in this paper is a multi-server (or
multi-VM) system where the service rate for any server
independently switches between fast (interference-free) and
slow (under interference). The key problem that we aim to
address for this model is the decision for an incoming job or
a queued job when the only available (idle) server is under
interference. The problem and model we study is similar to
the “slow server problem”, which is an M/M/2 system where
the first server has a higher service rate than the second
server and both are completely reliable. Unlike our problem,
however, the servers in the slow server problem have fixed
service rates. Several extensions of the slow server problem
have been proposed and analyzed, including the investigation
of the optimal threshold policy. We now discuss these works
in detail, starting from the slow server problem.

In 1981, R. L. Larsen proposed, but did not prove, in his
Ph.D. thesis that a threshold policy exists for when to utilize
the slow server in such a system [27]. Three years later, Lin
and Kumar proved the existence of such a threshold policy on
the queue length for the system using policy iteration [29], and
in 1995 Koole presented a more concise proof of the threshold
using value iteration [26].

Rubinovitch explored the slow server problem analytically
using several models to obtain explicit results on the utilization
of the slow server [40]. Specifically, the author explored
whether it was beneficial to utilize the slow server at all or
not. Under different scheduling policies (random, fast-server–
first, etc.), traffic intensity thresholds are established, using
generating functions, under which the slow server should be
avoided. Rubinovitch later extended his analysis to consider
the case where incoming customers decide whether to join the
queue for the fast server or to go to the idle slow server [41],
similar to the decision we investigate in this paper for our prob-
lem. Rubinovitch first conducted a stochastic analysis of the
system and derived the steady state probabilities. Then, using
these probabilities, the author derived the optimal queueing
threshold values below which customers should wait in the
queue for the fast server and beyond which customers should
skip the queue and utilize the idle slow server.

Luh and Viniotis study an M/M/k server system with het-

2

erogeneous servers [31]. Each server has a lower service rate
than the previous one, or in other words, µ1 > µ2 > . . . > µk.
For this system, the paper proved the optimality of a threshold
policy with multiple thresholds whereby if server i is currently
being utilized, server (i+ 1) will be utilized only if the queue
length is greater than or equal to some threshold, ni. Because
of the complexity of the model, they used Linear Programming
to prove the optimality of such a policy. We also consider a
multi-server system, but each server in our model may be fast
or slow, depending on interference.

More recently, Rykov and Efrosinin proposed an M/M/k
version of the slow server problem with a finite queue [42].
The authors proved, using value iteration, that a threshold
policy is optimal in this setting. Furthermore, they showed
that by considering the minimum average service time at each
server, the most efficient server to utilize can be chosen.

Efrosinin later considered an M/M/2 system subject to com-
plete and partial breakdowns [16]. The author assumed that
only one of the servers is subject to breakdown and the other
is completely reliable. Furthermore, he allows for different
levels of service based on the intensity of the breakdown. The
optimal threshold policy is proved through policy iteration,
along with some structural properties of the policy.

Özkan and Kharoufeh extended the slow server problem to a
failure-prone server system wherein the faster server is subject
to random breakdown [37]. The authors proved the existence
of two thresholds for when to queue jobs for this system,
one for when the fast server is operational and the other for
when the fast server is unavailable due to a failure. The system
is modeled as a discounted MDP and the threshold policies
are proved using structural properties of the operators through
the value iteration algorithm. The authors then extended the
analysis to an average cost problem. Our model can be viewed
as an extension of the slow server problem with failures
analyzed by Özkan and Kharoufeh but with the key variation
that any server can experience interference, and that under
interference, the service rate decreases to a non-zero value.

Votke et al. [47] analyzed the performance of a multi-server
system under interference. Specifically, the authors considered
non-idling policies, including random routing and interference-
free–first routing, and solved the associated Markov chain
using Matrix Analytic Methods [28]. While similar to our
model, the above referenced paper does not focus on the
existence or analysis of optimal policies. Our goal in this paper
is to specifically focus on the development of optimal policies.
In addition to proving the optimality of the threshold policy
for our multi-server problem, we also prove the ordering of
the various thresholds that exist for our problem. Further, we
establish structural properties for the optimal policy, which are
critical for proving the optimality of the threshold policy.

Casale et al. also recently modeled the variability and
transient behavior of interference in cloud deployments [10],
[11]. In their model, the authors view interference as a separate
process and model the overall phenomenon as a two-stage

Job arrival
𝜆

VM 1
𝜇ு or 𝜇

VM k
𝜇ு or 𝜇

Job
completion

Queue

Interference
𝛼ு𝛼

𝛼𝛼ு

.

.

.

.

.

.

Fig. 2: Schematic system representation

process with transitions between the stages. Furthermore, they
model a cloud deployment as a closed queueing network with
a specified number of servers at each station. Due to the
intractability of exact solutions for the transient behavior of the
queueing network, the authors come up with approximations
of the stationary distribution.

III. MODEL AND MDP FORMULATION

To analyze optimal scheduling policies that mitigate the impact
of interference, we first develop a performance model for VMs
under interference. We consider a cluster of VMs that together
host an application, and model the number of outstanding jobs
or tasks for this application as a Markov chain, making the
required Markovian assumptions. We consider the VMs to be
fed by a central queue, representing the application scheduler
or load balancer, as is the case for online services [13],
[21], [44]. The scheduler’s job is to decide on the routing
of requests from the central queue to idle VMs. Consider
a k-VM deployment, with homogeneous VMs, with average
service rate of µH jobs/s when there is no interference.
Under interference, we assume that the average service rate
drops to µL < µH . We can also consider multiple levels
of interference, resulting in a range of lower service rates,
say µL1 < µL2 < . . . < µH . However, this substantially
complicates the state space and the decision process; we thus
only consider a single level of interference in this paper.
While VMs may be colocated on the same physical host and
subject to correlated interference, for analytical tractability, we
consider interference as an independent process that strikes
a VM with rate αH and leaves a VM with rate αL. The
independence assumption can be justified in today’s large-scale
public clouds as VMs are often distributed across thousands of
physical hosts [1], [4]. We assume that arrivals to the system
follow a Poisson process with mean arrival rate (across all
VMs) of λ req/s. This assumption of Poisson arrivals mirrors
prior work on leveraging queueing theory to model cloud
computing [45], [47]. Fig. 2 illustrates the system of interest.

Based on the above, we consider a continuous-time Markov
chain (CTMC) on the state space S in which a state s is a
four-tuple of the form (s1, s2, s3, s4), where:

• s1 ∈ {0, 1, . . . } represents the number of jobs in the system
(system size),

3

• s2 ∈ {0, 1, . . . } represents the number of jobs in the queue
(queue size),

• s3 ∈ {0, . . . , k} represents the number of VMs under
interference, and

• s4 ∈ {0, . . . , s3} represents the number of busy VMs under
interference.

These four state variables fully define the state of the
system. We define the following auxiliary state variables based
on the above main state variables:

• Number of idle VMs: a1 = k − s1 + s2,
• Number of idle VMs under interference: a2 = s3 − s4,
• Number of idle, interference-free VMs: a3 = a1 − a2,

and
• Number of busy, interference-free VMs: a4 = s1−s2−s4.

We use the terms VM and server interchangeably in the rest
of the paper as VMs are the servers in our queueing system.

A. MDP formulation

We model the system as a Markov decision process with two
decision epochs: (1) when a job arrives and there is at least
one idle under-interference server, and (2) a service completion
from an under-interference server when the queue size is not
empty. The actions available to the controller in each decision
epoch are whether to utilize an under-interference server by
routing one of the jobs in the queue (or the arriving job to the
system) to that server, or not utilize the server (not route any
job from the queue to the server).

Let IE be an indicator function for condition E; i.e.,
IE = 1 if E holds, and IE = 0 otherwise, Also, let
Λ = λ + k(µH + µL + αH + αL) be the maximum output
rate of any state; i.e., 1/Λ is the minimum expected time for
a possible event occurrence (job arrival, job departure, and
interference occurrence or departure) in the system. We define
(s± ei) to show an increase or decease by one in the ith

variable of state s = (s1, s2, s3, s4). We consider the objective
function of minimizing the expected total number of jobs in the
system. We employ the Uniformization method to convert the
continuous-time model to its equivalent discrete-time version,
and we express the MDP optimality equation as follows1:

ν(s) =
r(s)

Λ
+ Tν(s), (1)

where the reward in state s is s1 (r(s) = s1), and we define
the operator T and the minimization operators Ta and Ts as

1For the objective function of minimizing the discounted expected total
number of jobs in the system, Λ should be replaced with Λ + β, where
β > 0 denotes the discount parameter.

follows:

Tν(s) =
1

Λ

(
λ (Ia1=0ν(s + e1 + e2) + Ia3>0ν(s + e1) + Ia3=0Ia2>0Taν(s))

+ a4µHν(s− e1 − e2Is2>0)

+ s4µL (Is2=0ν(s− e1 − e4) + Is2>0Tsν(s))

+ αH (a3ν(s + e3) + a4ν(s + e3 + e4))

+ αL (a2ν(s− e3 − e2Is2>0) + s4ν(s− e3 − e4)) + δ(s)ν(s)
)
.

(2)
Taν(s) = min{ν(s + e1 + e2), ν(s + e1 + e4)}, (3)
Tsν(s) = min{ν(s− e1 − e4), ν(s− e1 − e2)}, (4)

and we define δ(s) as the rate to remain in state s:

δ(s) = Λ− λ− a2αH − a3αL − a4 (µH + αH)− s4 (µL + αL) .

The minimization operators Ta and Ts (Eq. (3) and Eq. (4))
represent the controllers’ decisions at the job arrival and
service completion decision epochs, respectively. The first
argument inside the minimization function in both Ta and
Ts corresponds to the decision of not utilizing an idle under-
interference server in state s, and the second argument corre-
sponds to the decision of utilizing an idle under-interference
server in state s. In Eq. (1), all the main and auxiliary state
variables are related to state s.

Given that the system size at the beginning of a period
is s1, the value function at the end of the period (of length
1/Λ) is evaluated as the value contributed by the s1 jobs
over the duration of the period (s1/Λ) plus the optimal value
function evaluated at the end of the previous period (Tν(s)).
We have structured the expressions for Tν(s) in (2) based on
the possible events occurring in each time interval (period)
with length 1/Λ of the discrete-time MDP; each line in (1)
corresponds to an event in a period as we explain below:

• A job arrives with probability λ/Λ: (1) If a1 = 0, the
controller has to queue the job (transition to s + e1 + e2);
(2) If a3 > 0, the controller sends the job to an idle
interference-free server (transition to s + e1); (3) If a3 = 0
and a2 > 0, the controller decides whether to not utilize
an idle under-interference server and queue the job (transi-
tion to s + e1 + e2) or utilize an under-interference server
(transition to s + e1 + e4).

• A job departs an interference-free server with probability
a4µH/Λ: (1) If s2 = 0, the interference-free server that
has recently completed service remains idle (transition to
s− e1); (2) If s2 > 0, the controller sends the job to the
idle interference-free server (transition to s− e1 − e2).

• A job departs an under-interference server with probability
s4µL/Λ: (1) If s2 = 0, no follow-up event or decision
is available (transition to s− e1 − e4); If s2 > 0, the
controller decides whether to not utilize the idle under-
interference server (transition to s− e1 − e4) or utilize the
under-interference server by routing one of the jobs in the
queue to the server (transition to s− e1 − e2).

• Interference occurrence: (1) To an idle interference-free
server with probability a3αH/Λ (transition to s + e3); (2)

4

To a busy interference-free server with probability a4αH/Λ
(transition to s + e3 + e4).

• Interference departure: (1) From an idle under-interference
server with probability a2αL/Λ: if s2 = 0, no follow-up
event or decision is available (transition to s− e3), and
if s2 > 0, the controller routes a job from the queue to
the new interference-free server (transition to s− e2 − e3)2;
(2) From a busy under-interference server with probability
s2αL/Λ, in which case no follow-up event or decision is
available (transition to s− e3 − e4).

• No event occurs and the state remains in s with probability
δ(s)/Λ.

IV. THE OPTIMAL POLICY AND STRUCTURAL PROPERTIES

In this section, we first prove several structural properties of
the value function. Then, we employ the structural properties
to prove that the optimal policy for utilizing the under-
interference servers is threshold-based, defined on the queue
length. We show that for each system we can realize different
thresholds on the queue length depending on the number of
idle under-interference VMs beyond which utilizing the idle
under-interference VMs is optimal. We prove the thresholds
ordering for a two-server system.

A. Structural properties of the optimal policy

Let’s define the first difference operator Dijν(s) =
ν(s + ei + ej) − ν(s), and the second difference operators
D2
ijν(s) = Dijν(s + ei + ej) − Dijν(s) and DijDik =

DikDij . The first difference operators measure the marginal
increase/decrease in the value function, compared to its value
in state s, if an under-interfere server is not utilized (D12ν(s))
or utilized (D14ν(s)). The second difference operators mea-
sure the marginal increase/decrease in the value function
due to the utilize/not utilize decisions in two different states
(s + e1 + e2 vs. s, or s + e1 + e4 vs. s).

Let Θ be the set of functions ν defined on the state space
S that have the following properties:

P1. Non-decreasing in e1 and e2: D12ν ≥ 0.
P2. Non-decreasing in e1 and e4: D14ν ≥ 0.
P3. Supermodularity: D12D14ν ≥ 0.
P4. Diagonal dominance: D2

12ν ≥ D14D12ν.
P5. Convexity in e1 and e2: D2

12ν ≥ 0.
P6. Convexity in e1 and e4: D2

14ν ≥ 0.

Lemma IV.1 shows that properties P1-P6 are preserved
under the operators Ta (defined in Eq. (3)), Ts (defined in Eq.
(4)), and T (defined in Eq. (2)), and the optimal value function
ν. Before presenting the Lemma, we first explain properties
P1-P6 below.

The first two properties state that queueing an arriving job
(P1) and routing it to an idle under-interference server (P2)
both weakly increase the value function; in total, P1 and P2

2This means we are considering non-idling policies for interference-free
servers in our model. Non-idling policies are proved to be optimal in many
systems, and it is natural to focus on such policies in our model as we focus
on minimizing the number of jobs in the system.

state that the value function is weakly increasing in the system
size. Property P3 states that the marginal impact of queueing
(not utilizing an idle under-interference server) on the value
function weakly increases with the number of busy under-
interference servers, or the marginal impact of utilizing an
idle under-interference server weakly increases with the queue
length. Property P4 states that given that an under-interference
server is not utilized upon a decision epoch, the marginal
impact of not utilizing the under-interference server in the next
decision epoch is weakly greater than the impact of utilizing
it; i.e., as the queue length increases, the benefit of utilizing
eventually outweighs the benefit of queueing. Property P5
states that the impact of queueing an arriving job on the
value function increases convexly with the queue length, and
Property P6 states that the impact of routing an arriving job to
an idle under-interference server increases with more servers
being utilized; in total, P5 and P6 state that the value function
is convex in the system size.

Lemma IV.1. Let τ be a real valued function defined on state
S. If τ ∈ Θ, then (a) Taτ ∈ Θ, (b) Tsτ ∈ θ, and (c) Tτ ∈ Θ.
Furthermore, (d) the optimal value function ν ∈ Θ.

Our proof strategy for Lemma IV.1 is similar to the proof
strategy in [14]. We omit the proofs for Lemmas IV.1.a-IV.1.b
(available online [46]) and present the proof for Lemmas
IV.1.c-IV.1.d below.

Proof for Lemma IV.1.c. It is easy to verify that Θ is
closed under convex combinations; if τ1, τ2 ∈ Θ, then ατ1 +
(1− α)τ2 ∈ Θ. It is obvious that T is a convex combination
of τ , Ta, and Ts, as the summation of the coefficients in (2)
equals one. By the assumption in Lemma IV.1, τ ∈ Θ, and
by parts (a) and (b) of Lemma IV.1, Ta ∈ Θ and Ts ∈ Θ.
Therefore, we can conclude T ∈ Θ.

Proof for Lemma IV.1.d. The proof is by induction and the
direct application of the value iteration algorithm. Initializing
the algorithm with ν0(s) = 0, it is clear that ν0(s) ∈ Θ. For the
induction assumption in period t, let’s assume that νt(s) ∈ Θ.
By the definition of T , νt+1(s) = r(s)/Λ+Tνt(s). By Lemma
IV.1.c, Tνt(s) ∈ Θ as by the induction assumption νt(s) ∈ Θ.
The term s1/Λ, which is added to νt(s) to evaluate νt+1(s),
does not violate P1-P6, and therefore νt+1(s) preserves P1-
P6. Furthermore, νt+1(s) = r(s)/Λ + T t+1ν0(s); as t → ∞
by the value iteration νt(s) → ν(s); thus, the optimal value
function is in Θ.

Lemma IV.1 enables us to characterize the optimal policy
in the next section.

B. Characterizing the optimal policy

Proposition IV.2. The optimal policy is a threshold-based
policy on the queue length; i.e:

- If it is optimal to utilize an idle under-interference server
in state s, then it is optimal to utilize an idle under-
interference server in state s + e1 + e2.

- If it is optimal to not utilize an idle under-interference

5

server in state s, then it is optimal to not utilize an
idle under-interference server in state s− e1 − e2 (when
s2 > 1).

Proof. We use the structural properties P1-P6 to prove the
proposition separately for the two decision epochs: job arrival
and service completion.

Job arrival epoch. We need to prove if it is optimal to utilize
in s upon an arrival, it is also optimal to utilize in s + e1 + e2:

ν(s + e1 + e4) ≤ ν(s + e1 + e2) =⇒
ν(s + 2e1 + e2 + e4) ≤ ν(s + 2e1 + 2e2),

or in terms of the difference operators:

D14ν(s)−D12ν(s) ≤ 0 =⇒
D14ν(s + e1 + e2)−D12ν(s + e1 + e2) ≤ 0. (5)

Beginning with the consequent, we have

D14ν(s + e1 + e2)−D12ν(s + e1 + e2)

= D14ν(s + e1 + e2)−D12ν(s + e1 + e2)

+D14ν(s)−D14ν(s) +D12ν(s)−D12ν(s)

= D12D14ν(s)−D2
12ν(s) +D14ν(s)−D12ν(s) ≤ 0,

because D12D14νt(s) ≤ D2
12νt(s), due to the diagonal dom-

inance property of ν, and D14νt(s) ≤ D12νt(s), because of
the antecedent in (5); thus, D14νt(s)−D12νt(s) ≤ 0.

Service completion epoch. We need to prove if it is optimal
to utilize in s upon a service completion from an under-
interference server, it is also optimal to utilize in s + e1 + e2:

ν(s− e1 − e2) ≤ ν(s− e1 − e4) =⇒ ν(s) ≤ ν(s + e2 − e4),

or in terms of the difference operators:

D14ν(s− 2e1 − e2 − e4)−D12ν(s− 2e1 − e2 − e4) ≤ 0

=⇒ D14ν(s− e1 − e4)−D12ν(s− e1 − e4) ≤ 0. (6)

Note that (6) is the same implication as (5) just evaluated at a
different state. Thus, the implication holds, which means that
the threshold is the same upon an arrival and upon a service
completion.

For a specific system, there are multiple optimal thresholds
on the queue length depending on the number of under-
interference servers and whether they are idle or busy. To
specify the values of the thresholds, one can solve the optimal-
ity equation using, for example, the value iteration algorithm.
Though the value iteration algorithm is computationally ex-
pensive, especially for larger systems, the model needs to be
solved only once for a specific set of system parameters to
obtain the optimal thresholds. After obtaining the thresholds,
implementing the optimal policy requires minimum effort. For
a two-server system, three thresholds exist:

• Qi: Optimal queue length threshold for when there is one
busy interference-free server and one idle under-interference
server.

• Qib: Optimal queue length threshold for when there is
one busy under-interference server and one idle under-
interference server.

• Qii: Optimal queue length threshold for when there are two
idle under-interference servers.

Once reached from below, the above queue length thresholds
suggest utilizing an idle under-interference server, and once
passed over from above, they suggest not utilizing. For exam-
ple, Qii = 5 indicates that we should queue incoming jobs
(and not send to any idle under-interference server) when the
number in queue is less than 5, but should utilize the under-
interference server once queue length reaches 5. It also implies
that if the queue length drops below 5, we should stop utilizing
idle under-interference servers and instead queue the jobs.

The above thresholds can be mapped to the thresholds on
the system size, N , as Ni = Qi + 1, Nib = Qib + 1, and
Nii = Qii. Proposition IV.3 shows the ordering of the three
thresholds; the proof of the proposition is omitted (available
online [46]).

Proposition IV.3. The order of the system size based thresh-
olds follow Ni ≥ Nib ≥ Nii.

It is intuitive that Ni could be larger than the other two
thresholds especially when µH >> µL and µH >> αL;
the controller would be better off not utilizing an idle under-
interference server for some time, and let the queue build up
in the anticipation that the interference-free server could serve
all current jobs in the queue sooner than the time it takes for
interference to leave the under-interference server.

When both servers are under interference, the threshold
depends on the status of the servers. If none of the under-
interference servers are being utilized, then the system size is
increasing at rate λ. If one of the under-interference servers is
busy and the other is idle, then system size is (only) increasing
at rate (λ − µL). This suggests that in the latter case, the
penalty of waiting for interference to leave one of the servers
is smaller, and so the controller may risk a larger threshold
(Nib ≥ Nii).

Note that the Nii implies that it is better to wait for
interference to leave an under-interference server than to
utilize an under-interference server, but only while the queue
length is shorter than Qii = Nii. Thus, once the system size
reaches Nii, when the next arrival occurs we utilize one of the
under-interference servers, resulting in the same queue length,
Nii. At this point, if a new job arrives, the controller will face
the same decision of whether to route to an under-interference
server or to wait for interference to leave an under-interference
server, thus resulting in the same optimal threshold on the
queue length but with one more job in the system. Therefore,
Nii and Nib differ by at most one.

V. NUMERICAL RESULTS

In this section we examine a variety of problem settings—
exploring a range of arrival (λ), service (µH , µL), and in-

6

terference rate (αH , αL) parameters—in both the two-VM
and multiple VM settings. In particular, for each setting, we
use numerical techniques to determine the optimal decision
policy and we report the performance of the optimal policy. To
facilitate the reporting of the results, we use the term offered
load, ρ, to refer to the quantity λ/

(
k · µH/αH+µL/αL

1/αH+1/αL

)
. In

many cases, we also measure the percentage improvement
of the optimal policy over the non-idling policy (described
below), which serves as a benchmark. The numerical results
presented in this section allow us to extract insights regarding
what the optimal policies “look like” across a variety of pa-
rameter settings, and identify which settings offer the greatest
opportunities for improvement when one adopts a policy more
sophisticated than our benchmark policy. As not all parameters
are practical, in Section V-E, we describe problem parameters
that are expected to appear in real-world systems. Our key
findings in this section include:

• An intermediate traffic intensity allows for the greatest im-
provements upon the non-idling policy, as in this range the
optimal policy will make less use of VMs under interference
(see Section V-C).

• In time-scales where VMs alternate between the
interference-free and interference states at an intermediate
rate, there is substantial room for improvement over the
non-idling policy; there is not much room for improvement
when a VM is likely to switch between the two states
several times while serving a job, or on the other extreme
where the VM will persist in interference for many job
services (see Section V-D).

• In the “sweet spot” where the two intermediate cases men-
tioned above overlap, one can achieve improvements of up
to 20% over the non-idling policy in the two-VM setting
(see Section V-E).

• The potential for improvement is even higher when there
are more than two VMs (see Section V-F).

A. Determining the optimal policy

In order to compute optimal decision policies we use the value
iteration procedure on the MDP model corresponding to the
given parameters (see Sections III and IV for details). The
value iteration procedure, which is outlined in [38], requires
truncating the MDP model’s underlying state space order to
examine a finite state space, and iterative computing value
functions over this state space until a convergence criterion
is satisfied (e.g., the value function changed less than a
specified small amount in the most recent iteration). With
the convergence criteria reached, the actual value function
is known (modulo a small approximation error), enabling
one to extract the optimal decision policy (and evaluate its
performance), so long as a sufficiently large state-space and a
sufficiently strict convergence criterion was considered.

The value iteration technique is powerful, and can in theory
accommodate an arbitrary number of VMs, k. However, some
parameter sets allow for the extraction of the correct optimal
policy only when a very large state space is considered. That is,

λ µH µL αH αL k
{1,2,3,. . . ,50} 50 1 0.3 0.3 2

TABLE I: Parameters for Environment 1.

for these parameter sets, one must choose a “truncation point”
that is “far” into the chain’s state space in order to compute
the optimal policy correctly. In our computational experiments,
such issues arose primarily in 2-VM settings with a heavy
load and low rates of entering and leaving interference (i.e.,
ρ ≈ 1 and αH , αL ≈ 0). In these settings, the value iteration
approach would require very long computation runtimes, so
we opted to use an alternative approach in these settings.
Specifically, we used matrix analytic methods (MAM)—as
detailed in [28] and Chapter 21 of [20]—to evaluate the
performance of threshold policies for an expansive range of
thresholds, and selected the best-performing of these as the
optimal policy. We validated our MAM-driven approach by
comparing the optimal policies it found with those found by
value iteration approach across a number of parameter settings.
In all cases where the value-iteration approach converged, the
two approaches agreed on the same optimal policy. While the
MAM-driven approach is particularly computationally efficient
in the two-VM setting, we found the value-iteration approach
to be less sensitive to the curse of dimensionality in terms of
computational efficiency.

B. The non-idling policy, a benchmark

In order to measure the benefit of using a sophisticated MDP
framework to extract and implement the optimal policy, we
compare the performance of said optimal policy to a very sim-
ple benchmark: the non-idling policy. The non-idling policy
utilizes any available idle under-interference server when there
are no idle interference free servers regardless of the current
queue length. For a system with 2 VMs this corresponds to
using the thresholds (Qi, Qib, Qii = (0, 0, 0) (or equivalently,
the system occupancy thresholds (Ni, Nib, Nii) = (1, 1, 0)).
Such thresholds imply that as long as there is even a single
unassigned job in the system and there is an idle server
available, we assign the job to the idle server (of course we
make use of idle servers that are interference-free over those
under interference, when possible). In the subsections that
follow, we will be measuring the improvement (with respect
to average number in system, or equivalently mean response
time) for our optimal policies by comparing them to the non-
idling policy.

C. The impact of the arrival rate, λ

We first study the impact of the arrival rate, λ, on both the
structure of the optimal policy and on the benefit offered by
the optimal policy over the benchmark non-idling policy. In
this study, we restrict attention to the parameter settings in
Environment 1, detailed in Table I. In this environment, there
are two VMs alternating between service rates of µH = 50
and µL = 1, spending equal amounts of time free from and
under interference. We allow λ to take any integer value from
1 to 50 inclusive, which in this case corresponds to a range

7

Fig. 3: Optimal thresholds for parameters of Environment 1 as
a function of the arrival rate.

Fig. 4: Improvement in the average system size over the non-
idling policy for Environment 1 parameters.

of offered loads, ρ, from approximately 2–98%.
Fig. 3 shows the thresholds (Ni, Nib, Nii) associated with

the optimal policy as a function of the arrival rate, λ ∈
{1, 2, 3, . . . , 50}. A cursory examination reveals that the
thresholds Nib = 1 and Nii = 0 for all values of λ examined.
Hence, these thresholds attain their minimum possible value,
implying that in Environment 1 it is optimal to assign jobs
to idle VMs whenever both VMs are under interference. This
result can be explained as follows: the service rate of each
VM in this setting is µL = 1, while the rate at which one
of the two VMs becomes interference-free is 2αL = 0.6, so
we are better off making use of our idle servers—rather than
waiting for one to become interference-free—as it is more
likely than we can finish serving a job (even with the speed
reduction) before either VM becomes interference-free. On the
other hand, in the presence of an interference-free VM, we
should be more conservative in making use of a server under
interference, as µF = 50 � µS = 1, so we will often be
better off relying on our interference-free VM to eventually
serve our entire queue, in the hopes that this server will remain
interference-free. Specifically, when exactly one VM is under
interference, we will only make use of this VM when the
system occupancy is at least Ni, where as λ increases the
optimal value of Ni rises to a peak of 31 at λ ∈ {4, 5}, and
steadily drops thereafter.

The most intriguing feature of the results in Fig. 3 is that
the optimal threshold value of Ni is highest at an intermediate

λ µH µL αH=αL k
{1, 2, 3, . . . , 50} 50 1 {0.3, 3, 30} 2
TABLE II: Parameters for Environment 2.

value of λ, rather than at either extreme. This observation
suggests the presence of a tradeoff. As λ grows we are
simultaneously encouraged to be more aggressive with using
our slower VM, because the expected waiting time externality
imposed on future arrivals due to maintaining a longer queue
grows with λ. On the other hand there must be a more subtle
counteracting effect where as λ grows, we are encouraged to
be more conservative with using our slower VM; for higher
values of λ this second effect is weaker than the first, hence
the eventual decline in the optimal threshold.

The above discussion concerns the structure of the optimal
policy in Environment 1, but we would also like to know
how optimal policies perform in comparison to our non-idling
benchmark policy. We address this line of inquiry in Fig. 4,
where it is evident that the optimal policy outperforms the
benchmark by about 3% at λ = 1, with this edge increasing
to a peak of over 6% when λ = 5, after which the edge
declines down to about 1% at λ = 50. A modest improvement
in light-traffic (ρ, λ ≈ 0) is to be expected because when the
arrival rate vanishes, the improvement should also vanish. This
is because there will very rarely ever be more than one job in
the system when the arrival rare is essentially zero, and thus
(under these parameter settings) all policies perform like the
non-idling policy in this setting; even if the non-idling policy
is structurally very different from the non-idling policy, the
disagreements between these two policies are occur only at
states which seldom arise. On the other side, we also expect
the improvement to vanish under heavy traffic (ρ ≈ 1), as in
such a setting a policy that maintains system stability can very
rarely afford to be idle, so any such policy—and the optimal
policy in particular—will be making the same decisions as the
non-idling policy the vast majority of the time.

D. The impact of interference rates, αH and αL
Next, we study the impact of the rates at which a VM enters
and leaves interference, αH and αL, respectively. We initiate
this study by focusing on Environment 2, with exact parameter
details given in Table II. As in the previous environment, here
we again assume that αH = αL, but this time we allow these
parameters to take on different values, namely 0.3, 3, and 30.
In fact Environment 1 is a special case of Environment 2 where
αH = αL = 0.3, as we again consider a 2-VM setting with
µH = 50 and µL = 1, and still vary λ from 1 to 50.
The performance of the optimal threshold policy relative to
that of the non-idling benchmark policy is plotted in Fig. 5.
The thick dashed curve corresponds to the same curve seen
in Fig. 4. Notice that unlike thick dashed curve, the solid and
thin dashed curves (corresponding to the more extreme α-
values) do not vanish at light traffic, this is because in both
of these cases the α-values are sufficiently high enough, that
even when one anticipates no future jobs, when one is dealing
with two VMs both under interference, it is best to suspend

8

Fig. 5: Improvement in the average system size over the non-
idling policy for parameters of Environment 2 as a function of
λ under three different values of αH = αL.

the decision of where to send the job until one of the VMs
leaves interference.

Intriguingly, we find that for all values of λ examined
the percentage improvement in the setting where setting with
intermediate α-values (αH = αL = 3) dominates the per-
centage improvement in the other two cases. To investigate
this phenomenon further, we fix the value of λ to 10 and
let αH = αL vary across a wider spectrum from 0.03–300,
giving rise to Environment 3, in which αH = αL ∈ 0.03 ·10x,
where x is an index parameter taking on values in the set
{0, 0.1, 0.2, . . . , 4} (see Table III).

The improvements associated with the optimal threshold
policy (again, relative to the non-idling benchmark) are pre-
sented as a “lin-log” plot in Fig. 6. From this plot, we see
that improvements are modest for values of αH = αL on the
low and high end of the plotted range, but are considerable
for intermediate values in this range, peaking at around 14%
when αH = αL ≈ 4.75 (corresponding to x = 2.2). Let us
first address the lackluster performance improvements when
the α-values are very large. In such a setting, each VM is
rapidly changing between two speed states, and essentially
performs like a VM with service rate (µH + µL)/2 = 25.5;
since it is not unlikely for a VM to go in and out of interference
multiple times while serving the same job, routing decisions
become increasingly inconsequential as the α-values grow
large. The case of modest improvements under very low α-
values is more subtle. To better understand this regime, it is
helpful to examine the thresholds, which are plotted in Fig. 7.
With low α-values, when both VMs are under interference,
we make use of these slow VMs liberally (i.e., Nib = 1 and
Nii = 0), because a VM is not likely to leave interference
anytime soon; this is similar to an observation we made
regarding optimal policies in Environment 1. While the optimal
policy is more reserved in making use of a slow VM when
one VM is interference-free (as exhibited by the high optimal
Ni values), it turns out making suboptimal decisions in such
cases are fairly inconsequential, as it typically only hurts the
prematurely assigned job, which then occupies the VM under

λ µH µL αH = αL k
10 50 1 0.03× 10x 2

TABLE III: Parameters for Environment 3;
x ∈ {0, 0.1, 0.2, . . . , 4}.

Fig. 6: Improvement in the average system size over the non-
idling policy for the parameters of Environment 3 as a function
of the interference rates.

Fig. 7: Optimal thresholds for the parameters of Environment 3
as a function of the index parameter x where αH = αL = 10x.

interference for a long time. In other words, performance is
not very sensitive to the choice of Ni in this setting, and the
non-idling policy performs quite well. Moreover, we observe
that under low α-values the system will be under temporary
overload for long periods of time when both VMs are under
interference, leading to a very large backlog of jobs that
will persist for a substantial duration of time even after one
VM comes out of interference, potentially exacerbating the
aforementioned issue. See Fig. 8, which demonstrates how the
average number in system is very large under low α-values.

We also note that Fig. 7 shows that the optimal Nb and Ni
values are nontrivial for higher α-values. This further explains
why the curves associated with higher α-values in Fig. 5 do
not vanish in light traffic.

E. Additional observations on two-server systems

We experimented with numerous parameter settings to analyze
the threshold values of the optimal dispatching policy and
its improvement upon the non-idling policy for a two-server
system. This analysis yielded several interesting observations,
which we present in brief in this section; in the interest of
brevity, we omit the full set of results (these are available in
the online Appendix [46]).

9

Fig. 8: Average system size for the parameters of Environment
3 as a function of x where αH = αL = 10x.

Parameter set ρ µH µL k αL αH/αL

1 .25 100 2 2 .01 {.01,.02,.03... 1}
2 .1 100 1 2 1 {.01,.02,.03... 1}
3 .1 100 1 2 10 {.01,.02,.03... 1}
4 .75 100 1 2 10 {.01,.02,.03... 1}
TABLE IV: Parameters for Environment 4

By fixing the problem parameters µH , µL, αH and αL
and increasing load ρ (essentially increasing λ), we find
that the thresholds Ni, Nib and Nii and the improvement
percentage with respect to the non-idling policy are non-
increasing. Intuitively, as the load increases it would be best to
decrease number of idling servers, which moves the optimal
threshold toward that of the non-idling policy. This intuition
also holds when we fix problem parameters (µH , αH , αL, ρ)
and vary only µL — the thresholds are non-increasing with
increases in µL. Specifically, as µL increases, there is a decline
in the benefit associated with idling a server under interference
and waiting for an interference free server. With the same
reasoning we also expect that thresholds are monotonically
decreasing with increasing µL keeping λ fixed (instead of ρ).

Our experiments show that there does not exist any con-
sistent monotone increasing or decreasing structure of the
thresholds when fixing ρ, µH , µL, αL and varying αH . For
a better picture, consider Environment 4 given in Table IV.
Fig. 9 plots the threshold values of the optimal dispatching
policy with increase in αH for the different parameter sets of
Environment 4. We observe that for two parameter sets the
threshold values increase monotonically with αH and for the
other two sets the threshold values decrease with αH .

As stated in Proposition IV.3, we observe in all our numer-
ical examples that Ni ≥ Nib ≥ Nii and that the difference
between Nib and Nii is at most one.

Finally, the biggest takeaway from our examination of two-
VM settings is that improvements tend to be greatest when
traffic is not extremely heavy, and when interference is neither
extremely frequent nor infrequent. It is in these intermediate
regimes where the greatest improvement potentials lie. Our
experiments show that in these regimes improvements on the
order of 5–20% are not atypical.

It should be noted that the settings discussed above are not
necessarily in line with those found in practice [23], [24].
In reality, (i) servers only occasionally experience relatively

short sojourns of interference (e.g., αH/αL ≤ 0.3), (ii) servers
under interference generally function at less than half of their
normal speed (e.g., µL/µH ≤ 0.5), and (iii) interference
sojourns are considerably longer than processing times (e.g.,
αL/µH ≤ 0.01). Nevertheless, these realistic settings still
frequently allow for the aforementioned improvements that are
on the order of 5–20%.

F. Systems with more than two VMs

Just as the optimal policy for two-VM systems is defined by
three threshold values, that of a k-VM system is given by
k(k+1)/2 thresholds. Therefore, the MAM solution technique
is computationally inefficient under large VM counts. In many-
VM settings, the MDP value-iteration approach is superior as
it automatically recognizes different thresholds without prior
definitions. That said, even with the MDP approach, the time
to convergence grows with the number of VMs.

Our numerical experiments show that for systems with more
than two VMs, there is greater potential for improvement as
compared to the two-VM case. This is illustrated in Fig. 10.
One possible explanation for this phenomenon is that the
number of thresholds required to define a policy increases with
the VM count, allowing for greater sophisticated decision-
making opportunities as compared to the non-idling policy.

VI. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

To evaluate our threshold policy in a realistic setting, we
consider an experimental testbed with multiple (KVM) VMs
hosting a web application and under interference with colo-
cated CPU-intensive microbenchmarks. We implement our
threshold policy at the HAProxy [3] load balancer that dis-
tributes incoming requests among the web server VMs. The
implementation experiments, despite the simplistic workload,
allow us to evaluate our policy under realistic processor
sharing at the VMs and under realistic interference intensity
induced by CPU-intensive workloads.

A. Experimental setup

Testbed: We employ two 1-core VMs as web servers (we use
VM and server interchangeably). The VMs run Ubuntu Linux
14.04 and use Apache web server (version 2.4.18) [43]. The
web server is configured to serve a web page which encrypts
15 KB of data for each request.

We employ the httperf [35] load generator to drive our
workload using exponential inter-arrival times with different
means. httperf outputs the mean and tail response times at the
end of each experiment, which we report as our performance
metrics. Each of our experiments is run for 2 minutes; we
report average results based on 3 runs of each experiment.

We use the HAProxy load balancer to distribute incoming
web requests between the VMs using the default round robin
policy. The HAProxy load balancer uses a maxconn feature,
which restricts the number of requests sent to a server to avoid
overwhelming the server [5]. In our experiments, a maxconn
setting of 5 works well to provide a timely response without
overloading the VM CPU. Note that while our MDP model as-

10

(a) Parameter set 1 (b) Parameter set 2 (c) Parameter set 3 (d) Parameter set 4
Fig. 9: Numerical results showing how threshold values vary as we increase αH .

(a) µL = 1 (b) µL = 2 (c) µL = 10 (d) µL = 20

Fig. 10: Improvement over non-idling policy for 2, 3, and 5-VM systems; µH = 100, αL = 1/10, αH = 1, µL ∈ {1, 2, 10, 20}.

sumes a first-come-first-serve setting, most real-world servers
exhibit a processor sharing or limited processor sharing [36],
[52] type of service policy.
Interference: We use the last level cache (LLC) microbench-
mark, dcopy [2], to create interference for the VMs. dcopy
copies vectors repeatedly to stress the cache; to control the
induced cache load, we add a sleep timer to the dcopy
microbenchmark. In our experiments, we pin both web server
VMs to a physical core on different sockets. We run the dcopy
process outside the VMs but on the same core and socket as
one of the VMs, thus creating CPU and LLC interference.

B. Implementation of the threshold policy

We implement our threshold policy on the HAProxy load
balancer. HAProxy allows us to remotely enable or disable,
for load dispatching, any of the back-end VMs. We use this
feature to restrict the VMs that serve incoming requests.

HAProxy also provides detailed logging about the number
of requests at different stages – accepted, at front-end (load
balancer), at back-end (all the VMs), and at a particular server.
The maximum number of requests that are simultaneously sent
to a server is restricted by the maxconn (= 5) parameter. If the
number of requests received by the load balancer is more than
number-of-active-servers × maxconn, the additional requests
are queued at the load balancer; note that requests at the
back-end VM are also counted as being on the load balancer,
per HAProxy. By periodically (1ms) monitoring the HAProxy
logs, we determine the queue length. Note that HAProxy is a
scalable load balancer (used by popular, high-traffic websites
such as Instagram, Twitter, Alibaba [19]), and hence queue
length monitoring at the HAProxy load balancer is an effective
and scalable solution.

When interference is detected at the VMs, we monitor the
queue length to determine when to utilize the VM under
interference, as suggested by the threshold of our policy;
we use the numerical results for the queue thresholds from

Section V to obtain our thresholds. Interference detection
has been investigated by prior works [9], [32], [33], and is
orthogonal to the focus of this work. For our experiments, we
assume that the load balancer is aware of interference.

C. Experimental evaluation results

In our experiments, we set a deterministic αL = αH =
1/30 s−1. For deriving the service rates, we stress a single
VM under different levels of interference, corresponding to
the load induced by the dcopy benchmark, and find the peak
throughput. Without interference, we find that µH = 125 req/s.
Under different levels of interference, we find that µL = 50
req/s (low intensity), µL = 30 req/s (medium intensity), and
µL = 15 req/s (high intensity). For this set of results, we only
consider 1 VM under interference, and employ the numerically
optimal Qi thresholds given by our MDP model. Note that the
thresholds, or even the threshold policy, need not be optimal
under our realistic experiments since we have deterministic
αL, αH , µL, and µH , in addition to allowing multiple requests
to execute simultaneously at a VM. However, we anticipate
that the benefits of the threshold policy still hold for real-
world settings, as we evaluate next.

Fig. 11 shows the mean response time for the web server
application for different request rate and interference intensity
settings. The request rate range was chosen to maintain the
VM CPU utilization in the realistic 30–80% regime [7], [18].
We compare three policies in all cases:

• The “Threshold policy” employs the theoretically optimal
queueing thresholds obtained from our MDP model.

• The “Avoid interference” policy always ignores a VM if it
is under interference; this is equivalent to setting a threshold
of ∞. Under high interference, such a policy is known to
perform well [32].

• The “Round robin” policy is similar to the non-idling policy
from Section V, and can be thought of as an interference-
oblivious policy.

11

100 125 150 175

Request rate (reqs/sec)

0

10

20

30

40

50

60
M

e
a

n
 r

e
s
p

o
n

s
e

 t
im

e
 (

m
s
)

Threshold policy

Avoid interference

Round robin

(a) Low interference intensity.

100 125 150 175

Request rate (reqs/sec)

0

10

20

30

40

50

60

M
e

a
n

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Threshold policy

Avoid interference

Round robin

(b) Medium interference intensity.

100 125 150 175

Request rate (reqs/sec)

0

10

20

30

40

50

60

M
e

a
n

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Threshold policy

Avoid interference

Round robin

(c) High interference intensity.

Fig. 11: Experimental results showing application mean response time under different policies for various settings.

Across all twelve settings, our threshold policy lowers mean
response time by about 24%, on average, compared to the
Avoid interference policy, and by as much 58%. Likewise,
compared to Round robin, our threshold policy lowers mean
response time by about 30%, on average, and by as much 63%.

In general, compared to the Avoid interference policy, our
threshold policy’s benefits increase with request rate, since the
Avoid interference policy utilizes only 1 VM at all loads; the
average improvement in mean response time afforded by our
threshold policy over the Avoid interference policy increases
from 7.7% at 100 req/s to 51.2% at 175 req/s. Further, com-
pared to the Avoid interference policy, our benefits decrease
with interference intensity, since it is increasingly better to
avoid the under-interference VM at higher intensities; the
average improvement in response time afforded by our policy
over the Avoid interference policy decreases from 26.8% at
low intensity to 16.2% at high intensity.

By contrast, compared to the Round robin policy, our thresh-
old policy’s benefits decrease with request rate since at high
request rates the optimal threshold is lower, resulting in both
VMs being utilized and our policy more closely resembling
Round robin; the average improvement in mean response
time afforded by our threshold policy over the Round robin
policy decreases from 49.4% at 100 req/s to 12.3% at 175
req/s. Further, compared to Round-robin, our benefits increase
with interference intensity, since Round robin will suffer
more under increased interference; the average improvement
afforded by our policy over Round robin increases from 24.8%
at low intensity to 33.9% at high intensity.

We also experiment with time-varying request rates, to
assess the applicability of our threshold policy for real-world
workloads. We use two digitized traces from Facebook [6],
appropriately scaled for our setup. The APP trace has a steep
rise, followed by a relatively constant request rate, and ends
with a steep drop. The ETC trace is similar to APP, but is more
bursty. The peak-to-min request rate ratio in both is about 2.

Each experiment (and arrival trace) is run for 2 minutes, and
results are reported as averages based on 3 runs. As before,
we set a deterministic αL = αH = 1/30 s−1. We experiment
with medium interference intensity, with µL = 30 req/s, and
µH = 125 req/s. For the APP trace, our threshold policy
(using dynamically generated request-rate–specific thresholds)
provides a moderate 9% improvement over the Avoid interfer-
ence policy, but a more substantial 45% improvement over the

Round robin policy. For the ETC trace, we see greater benefits,
owing to the bursty nature of the trace. Our threshold policy
lowers mean response time by 48% and 55% compared to the
Avoid interference and Round robin policies, respectively.

The improvement is more pronounced for tail response
times. Compared to the Avoid interference policy, our thresh-
old policy reduces the 95%ile response time by about 40% and
73% for the APP and ETC traces, respectively. Compared to
the Round robin policy, the corresponding improvements are
about 78% and 79%, respectively, for APP and ETC traces.

VII. CONCLUSION

We considered the dynamic control of jobs in a queueing
system with a central queue and a controller in which servers
(VMs in the cloud) could temporarily experience interference
independent of each other. The interference downgrades the
service rate of the servers, and leaves the servers after an
exponential time. The question we answered is when to utilize
the under-interference servers. We proved the optimality of a
threshold control policy based on the number of jobs in the
central queue; to minimize the expected total number of jobs
in the system, the controller should route a job to an under-
interfere server only when the queue size exceeds a threshold.
This threshold increases with the number of busy interference-
free servers and the number of busy under-interference servers.

Our numerical experiments enable us to extract several in-
sights regarding the nature of optimal policies and the settings
with the greatest potential for improvement over the non-idling
benchmark policy. We find improvements tend to be greatest
under intermediate traffic and interference rates, particularly
when traffic is relatively (but not extremely light). Moreover,
systems with more than two VMs allow for greater potential
improvements. Under relatively light traffic, improvements on
the order of 5–20% over the non-idling policy are not atypical.

We also implemented our threshold policy on a testbed
with two Web server VMs subjected to real-world interference
under different request rates, including time-varying request
rates. While our theoretical optimality results need not hold in
such complex, real-world scenarios, our experimental results
show substantial performance improvement, as much as 40–
60%, compared to other baseline scheduling policies.

ACKNOWLEDGMENT
This work was supported by NSF CNS grants 1617046,
1717588, and 1750109.

12

REFERENCES

[1] A Rare Peek Into The Massive Scale of AWS. https://www.
enterprisetech.com/2014/11/14/rare-peek-massive-scale-aws, 2014.

[2] DCOPY (part of BLAS). http://www.netlib.org/blas, 2017.
[3] The Reliable, High Performance TCP/HTTP Load Balancer. http://www.

haproxy.org, 2018.
[4] ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D., KATZ,

R. H., KONWINSKI, A., LEE, G., PATTERSON, D. A., RABKIN, A.,
STOICA, I., AND ZAHARIA, M. Above the clouds: A Berkeley view of
cloud computing. Tech. Rep. UCB/EECS-2009-28, EECS Department,
University of California, Berkeley, 2009.

[5] ASSMANN, B. How to play with maxconn to avoid server slowness
or crash. https://www.haproxy.com/blog/play with maxconn avoid
server slowness or crash, 2011.

[6] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S., AND
PALECZNY, M. Workload Analysis of a Large-scale Key-value Store.
In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and Modeling of Computer
Systems (London, England, UK, 2012), SIGMETRICS ’12, pp. 53–64.

[7] BARROSO, L. A., AND HÖLZLE, U. The Case for Energy-Proportional
Computing. IEEE Computer 40, 12 (2007), 33–37.

[8] BU, X., RAO, J., AND XU, C.-Z. Interference and Locality-Aware
Task Scheduling for MapReduce Applications in Virtual Clusters. In
Proceedings of the 22nd International Symposium on High-performance
Parallel and Distributed Computing (New York, NY, USA, 2013), HPDC
’13, pp. 227–238.

[9] CASALE, G., RAGUSA, C., AND PARPAS, P. A Feasibility Study
of Host-level Contention Detection by Guest Virtual Machines. In
Cloud Computing Technology and Science (CloudCom), 2013 IEEE 5th
International Conference on (2013), vol. 2, IEEE, pp. 152–157.

[10] CASALE, G., AND TRIBASTONE, M. Modelling exogenous variability
in cloud deployments. 73 – 82.

[11] CASALE, G., TRIBASTONE, M., AND HARRISON, P. Blending random-
ness in closed queueing network models. 15–38.

[12] CIANCUTTI, J. 5 Lessons We’ve Learned Using AWS. http://techblog.
netflix.com/2010/12/5-lessons-weve-learned-using-aws.html, 2010.

[13] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI, G.,
LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S., VOSSHALL,
P., AND VOGELS, W. Dynamo: Amazon’s Highly Available Key-value
Store. In Proceedings of Twenty-first ACM SIGOPS Symposium on
Operating Systems Principles (Stevenson, Washington, USA, 2007),
SOSP ’07, pp. 205–220.

[14] DELASAY, M., KOLFAL, B., AND INGOLFSSON, A. Maximizing
throughput in finite-source parallel queue systems. European Journal
of Operational Research 217, 3 (2012), 554–559.

[15] DELIMITROU, C., AND KOZYRAKIS, C. Paragon: QoS-aware Schedul-
ing for Heterogeneous Datacenters. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems (Houston, TX, USA, 2013), ASPLOS
’13, pp. 77–88.

[16] EFROSININ, D. Queueing model of a hybrid channel with faster link
subject to partial and complete failures. Annals of Operations Research
202, 1 (2013), 75–102.

[17] AWS Case Study: Expedia. https://aws.amazon.com/solutions/
case-studies/expedia, 2017.

[18] FAN, X., WEBER, W.-D., AND BARROSO, L. A. Power provisioning
for a warehouse-sized computer. In Proceedings of the 34th Annual
International Symposium on Computer Architecture (San Diego, CA,
USA, 2007), ISCA ’07, pp. 13–23.

[19] HAPROXY. They use it! https://www.haproxy.org/they-use-it.html,
2019.

[20] HARCHOL-BALTER, M. Performance modeling and design of computer
systems : queueing theory in action. Cambridge University Press, New
York, 2013.

[21] IM, J.-F., GOPALAKRISHNA, K., SUBRAMANIAM, S., SHRIVASTAVA,
M., TUMBDE, A., JIANG, X., DAI, J., LEE, S., PAWAR, N., LI, J., AND
ARINGUNRAM, R. Pinot: Realtime OLAP for 530 Million Users. In
Proceedings of the 2018 International Conference on Management of
Data (Houston, TX, USA, 2018), SIGMOD ’18, pp. 583–594.

[22] IORGULESCU, C., AZIMI, R., KWON, Y., ELNIKETY, S., SYAMALA,
M., NARASAYYA, V., HERODOTOU, H., TOMITA, P., CHEN, A.,
ZHANG, J., AND WANG, J. PerfIso: Performance Isolation for Com-

mercial Latency-Sensitive Services. In Proceedings of the 2018 USENIX
Annual Technical Conference (Boston, MA, USA, 2018), pp. 519–532.

[23] JAVADI, A., AND GANDHI, A. DIAL: Reducing Tail Latencies for
Cloud Applications via Dynamic Interference-aware Load Balancing.
In Proceedings of the 14th IEEE Internation Conference on Autonomic
Computing (Columbus, OH, USA, 2017), ICAC ’17.

[24] JAVADI, A., MEHRA, S., VANGOOR, B., AND GANDHI, A. UIE: User-
centric Interference Estimation for Cloud Applications. In Proceedings
of the 2016 IEEE Internation Conference on Cloud Engineering (Work-
in-Progress track) (Berlin, Germany, 2016), IC2E ’16.

[25] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND LIGUORI, A.
KVM: the Linux Virtual Machine Monitor. In Proceedings of the 2007
Ottawa Linux Symposium (2007), pp. 225–230.

[26] KOOLE, G. A Simple Proof of the Optimality of a Threshold Policy in a
Two-server Queueing System. Systems & Control Letters 26, 5 (1995),
301–303.

[27] LARSEN, R. L. Control of Multiple Exponential Servers with Applica-
tion to Computer Systems. PhD thesis, College Park, MD, USA, 1981.

[28] LATOUCHE, G., AND RAMASWAMI, V. Introduction to Matrix Analytic
Methods in Stochastic Modeling. ASA-SIAM, Philadelphia, PA, USA,
1999.

[29] LIN, W., AND KUMAR, P. R. Optimal Control of a Queueing System
with Two Heterogeneous Servers. IEEE Transactions on Automatic
Control 29, 8 (1984), 696–703.

[30] LO, D., CHENG, L., GOVINDARAJU, R., RANGANATHAN, P., AND
KOZYRAKIS, C. Heracles: Improving Resource Efficiency at Scale. In
Proceedings of the 42nd Annual International Symposium on Computer
Architecture (Portland, OR, USA, 2015), ISCA ’15, pp. 450–462.

[31] LUH, H. P., AND VINIOTIS, I. Threshold control policies for heteroge-
neous server systems. Mathematical Methods of Operations Research
55, 1 (2002), 121–142.

[32] MAJI, A., MITRA, S., AND BAGCHI, S. ICE: An Integrated Con-
figuration Engine for Interference Mitigation in Cloud Services. In
Proceedings of the 2015 IEEE International Conference on Autonomic
Computing (Grenoble, France, 2015), pp. 91–100.

[33] MAJI, A. K., MITRA, S., ZHOU, B., BAGCHI, S., AND VERMA, A.
Mitigating interference in cloud services by middleware reconfigura-
tion. In Proceedings of the 15th International Middleware Conference
(Bordeaux, France, 2014), Middleware ’14, pp. 277–288.

[34] MOGHADDAM, F. F., CHERIET, M., AND NGUYEN, K. K. Low
Carbon Virtual Private Clouds. In Proceedings of the 2011 IEEE
International Conference on Cloud Computing (Washington, D.C., USA,
2011), pp. 259–266.

[35] MOSBERGER, D., AND JIN, T. httperf—A Tool for Measuring Web
Server Performance. ACM Sigmetrics: Performance Evaluation Review
26, 3 (1998), 31–37.

[36] NAIR, J., WIERMAN, A., AND ZWART, B. Tail-robust scheduling via
limited processor sharing. Performance Evaluation 67, 11 (2010), 978
– 995.

[37] ÖZKAN, E., AND KHAROUFEH, J. P. Optimal Control of a Two-Server
Queueing System with Failures. Probability in the Engineering and
Informational Sciences 28, 4 (2014), 489–527.

[38] PUTERMAN, M. L. Markov decision processes: discrete stochastic
dynamic programming. John Wiley & Sons, 2014.

[39] REEVE, R., AND NEUMANN, S. Cloud Computing – The IT Solution
for the 21st Century. https://www.cdp.net/Documents/archive/2011/
Cloud-Computing-The-IT-Solution-for-the-21st-Century.pdf, 2011.
Carbon Disclosure Project.

[40] RUBINOVITCH, M. The Slow Server Problem. Journal of Applied
Probability 22, 1 (1985), 205–213.

[41] RUBINOVITCH, M. The Slow Server Problem: A Queue with Stalling.
Journal of Applied Probability 22, 4 (1985), 879–892.

[42] RYKOV, V. V., AND EFROSININ, D. V. On the slow server problem.
Automation and Remote Control 70, 12 (2009), 2013–2023.

[43] THE APACHE SOFTWARE FOUNDATION. The Apache HTTP Server
Project. https://httpd.apache.org, 2019.

[44] THERESKA, E., DONNELLY, A., AND NARAYANAN, D. Sierra: practical
power-proportionality for data center storage. In Proceedings of the 6th
European Conference on Computer Systems (Salzburg, Austria, 2011),
EuroSys ’11, pp. 169–182.

[45] VETHA, S., AND DEVI, K. V. Dynamic resource allocation in cloud
using queueing model. Journal of Industrial Pollution Control 33, 2
(2017), 1547–1554.

13

https://www.enterprisetech.com/2014/11/14/rare-peek-massive-scale-aws
https://www.enterprisetech.com/2014/11/14/rare-peek-massive-scale-aws
http://www.haproxy.org
http://www.haproxy.org
https://www.haproxy.com/blog/play_with_maxconn_avoid_server_slowness_or_crash
https://www.haproxy.com/blog/play_with_maxconn_avoid_server_slowness_or_crash
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
https://aws.amazon.com/solutions/case-studies/expedia
https://aws.amazon.com/solutions/case-studies/expedia
https://www.haproxy.org/they-use-it.html
https://www.cdp.net/Documents/archive/2011/Cloud-Computing-The-IT-Solution-for-the-21st-Century.pdf
https://www.cdp.net/Documents/archive/2011/Cloud-Computing-The-IT-Solution-for-the-21st-Century.pdf
https://httpd.apache.org

[46] VOTKE, S., JALEEL, J. A., SURESH, A., DELASAY, M., DOROUDI, S.,
AND GANDHI, A. Online Appendix for the Mascots 2019 publication
titled Optimal Markovian Dynamic Control of Interference-Prone Server
Farms. https://tr.cs.stonybrook.edu/tr/sbcs-tr-2019-10, 2019.

[47] VOTKE, S., JAVADI, S. A., AND GANDHI, A. Modeling and Analysis of
Performance Under Interference in the Cloud. In Proceedings of the 25th
IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (2017), pp. 232–243.

[48] WANG, C., URGAONKAR, B., GUPTA, A., CHEN, L. Y., BIRKE, R.,
AND KESIDIS, G. Effective Capacity Modulation as an Explicit Control
Knob for Public Cloud Profitability. In Proceedings of the 13th
IEEE International Conference on Autonomic Computing (Wurzburg,
Germany, 2016).

[49] WHITNEY, J., AND DELFORGE, P. Data Center Effi-
ciency Assessment. https://www.nrdc.org/sites/default/files/
data-center-efficiency-assessment-IP.pdf, 2014. The Natural Resources
Defense Council (NRDC).

[50] XU, C., RAJAMANI, K., FERREIRA, A., FELTER, W., RUBIO, J., AND
LI, Y. dCat: Dynamic Cache Management for Efficient, Performance-
sensitive Infrastructure-as-a-service. In Proceedings of the 13th EuroSys
Conference (Porto, Portugal, 2018), EuroSys ’18, pp. 14:1–14:13.

[51] XU, Y., BAILEY, M., NOBLE, B., AND JAHANIAN, F. Small is Better:
Avoiding Latency Traps in Virtualized Data Centers. In Proceedings
of the 4th Annual Symposium on Cloud Computing (Santa Clara, CA,
USA, 2013), SOCC ’13.

[52] ZHANG, J., AND ZWART, B. Steady state approximations of limited
processor sharing queues in heavy traffic. Queueing Systems 60, 3
(2008), 227–246.

14

https://tr.cs.stonybrook.edu/tr/sbcs-tr-2019-10
https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IP.pdf
https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IP.pdf

	Introduction
	Prior Work
	Model and MDP Formulation
	MDP formulation

	The Optimal Policy and Structural Properties
	Structural properties of the optimal policy
	Characterizing the optimal policy

	Numerical Results
	Determining the optimal policy
	The non-idling policy, a benchmark
	The impact of the arrival rate,
	The impact of interference rates, H and L
	Additional observations on two-server systems
	Systems with more than two VMs

	Implementation and Experimental Evaluation
	Experimental setup
	Implementation of the threshold policy
	Experimental evaluation results

	Conclusion
	References

