
Towards Automated Patch Management in a
Hybrid Cloud

Ubaid Ullah Hafeez1, Alexei Karve2, Braulio Dumba2, Anshul Gandhi1, and
Sai Zeng2

1 PACE Lab @ Stony Brook University, Stony Brook NY 11794, USA
2 IBM Thomas J. Watson Research Center, Yorktown Heights NY 10598, USA

Abstract. Software patching is routinely employed for enterprise on-
line applications to guard against ever-increasing security risks and to
keep up with customer requirements. However, in a hybrid cloud setting,
where an application deployment can span across diverse cloud environ-
ments, patching becomes challenging, especially since application com-
ponents may be deployed as containers or VMs or bare-metal machines.
Further, application tiers may have dependencies, which need to be re-
spected. Worse, to minimize application downtime, selected patches need
to be applied in a finite time period. This paper presents an automated
patching strategy for hybrid-cloud-deployed applications that leverages
a greedy algorithm design to optimally patch applications. Our imple-
mentation and evaluation results highlight the efficacy of our strategy
and its superiority over alternative patching strategies.

1 Introduction
Online enterprise applications today are often deployed in a hybrid cloud — a
computing environment that combines the benefits of public and private clouds
by sharing data and application deployment between them. A hybrid cloud is
cost-effective and elastic as the public cloud portion of the application follows a
pay-as-you-go model. On the other hand, the private cloud portion can be kept
behind a firewall, on compliant machines, to ensure data security and privacy.

To avoid security breaches and keep the application updated according to
customer requirements, most online applications employ software patching. Ap-
plying a security patch as soon as it is available can prevent 57% of the security
breaches [2]. In addition to security patches, application update patches are also
important. For example, an online application launched a time ticker sidebar
which was regarded as “spambar” by users and decreased the popularity of the
application among desktop users; this sidebar was taken down shortly to avoid
any further customer disappointment [6]. Thus, timely patching is one of the key
requirements for secure and performant functioning of online applications [2].

Patch management of applications deployed in a hybrid cloud environment
is complicated and tedious. Applications in hybrid cloud often span multiple
components, also referred to as services or tiers. There may be numerous pend-
ing patches, with different priorities, including those that are critical. Typically,
there is only a limited time period, referred to as maintenance window, during
which the application can be brought down and patched in an offline manner.
Also, while patching, application components should be turned off in a specific
order to avoid violating dependencies and to prevent the application from crash-
ing. This makes manual patching for different tiers across different types of clouds



2 U. Hafeez et al.

and deployment types expensive (and possibly infeasible) and prone to human
error. Clearly, an automated patch management system would be invaluable for
applications deployed in a hybrid cloud.

There are some existing application management tools, e.g., Puppet [12],
RCP [11] which are used for automating application patching. However, these
tools do not allow application owners to limit downtime for patching by spec-
ifying a maintenance window. Enterprise applications cannot be taken offline
for arbitrarily long time periods, making existing tools ineffective for automated
patching of enterprise applications. There is another prior work on patching
which focus on applications deployed in just a single cloud [10]. While there are
some works that discuss patch management in a hybrid cloud [8], they assume
that all components of the application have replicas and can be patched online.

This paper presents Hybrid Cloud Patch Manager (HCPM), a framework
for automated patch management for applications deployed in a hybrid cloud.
HCPM applies the optimal subset of patches in any given maintenance window
and patches tiers that can be patched online whenever possible. For patch se-
lection in a given window, HCPM employs PatchSelect, a greedy yet optimal
algorithm. While patching, HCPM takes application dependencies into account,
by constructing a dependency graph, thus ensuring that the application is al-
ways healthy and does not crash. Experiments confirm that HCPM effectively
patches hybrid-cloud–deployed multi-tier applications within the given offline
window. We further evaluate HCPM using simulations, and compare against
other patching strategies, for a complex, 11-tier application. Our results, in vari-
ous patching scenarios, show that HCPM outperforms other strategies by 2-29%,
on average, and by as much as 2×. To make HCPM easily deployable in practice,
we implement it as a plug-in that can be integrated with existing applications.

To the best of our knowledge, this is the first work on automated patch
management for enterprise applications, deployed across containers and VMs
in a hybrid cloud, that considers the length of the maintenance window and
dependencies across application tiers.

2 Automated Patch Management

HCPM automates patch management for applications deployed in a hybrid cloud
and ensures that critical patches are applied as early as possible while complying
with application dependencies. HCPM’s architecture is shown in Figure 1(a).
HCPM consists of a DependencyMapper , a PatchMonitor , a few PatchAgents
and a PatchManager . The PatchMonitor and DependencyMapper provide inputs
to PatchManager to enable automated patching, whenever feasible.

The PatchAgent (per-cloud or per-tier) monitors the state of the application
and OS patches for each node, and maintains a list of pending patches along with
their importance. Whenever there is a new pending patch, the PatchAgent com-
municates this list to the PatchMonitor . The PatchMonitor aggregates pending
patches, along with their importance scores, across all PatchAgents. When re-
quired, PatchMonitor communicates the pending patches to PatchManager .

The DependencyMapper constructs the dependency graph of the application
using tools for automatic discovery as well as direct input from the application.



Towards Automated Patch Management in a Hybrid Cloud 3

Patch 
Agent

Patch
Monitor

Service
Dependencies

Patch 
Agent

Patch 
Agent

Application Services

Dependency
Mapper

Patch 
Agent

Patch 
Manager

Pending Patches

(a) HCPM’s architecture

҉Service Proxies
҉VM
҉Container

Trader
UI

Portfolio
(Server)

Stocks
(Service)

Twitter
(Service)

Loyalty
(Service)

Slack
(Service)

DB2
(DB)

(b) Topology

Fig. 1. Stock-trader application deployment in our hybrid cloud environment. The
direction of the edges represents the dependence relationship between each component
of the application: trader → portfolio → Db2; Stocks; Twitter; Slack; Loyalty.

DependencyMapper keeps updating the topology in real time as it discovers
more information about the application. The PatchManager communicates with
DependencyMapper and PatchMonitor to perform the actual patching.

For selection of offline patches, PatchManager employs our PatchSelect al-
gorithm. For a given maintenance window of size, say, W minutes, PatchSelect
finds optimal subset of patches for each tier separately as multiple tiers can
be patched simultaneously in the offline window. For a given tier, let the esti-
mated time to reboot its node be R and that to reboot all its dependent tiers
be R′; then, we have Wactual = W − R − R′ minutes left to apply patches to
the tier. PatchSelect partitions all patches according to their importance level
and then sorts the patches, for each level, in ascending order of their patching
time. Starting from the most important level (level i = 1), PatchSelect greedily
selects as many patches as possible, in sorted order, such that the sum of their
patching time is less than Wactual. If the time to apply patches of level i = 1
is W1 < Wactual, and either all patches of level i = 1 have been applied or no
more patches of level i = 1 can be applied without exceeding Wactual, then the
algorithm proceeds similarly to the next priority levels, in order, with remaining
time Wactual = Wactual −W1. Given an application with S tiers and N number
of pending patches, the time complexity of PatchSelect is O(S2 + N log(N)).

To minimize the time for applying patching, PatchManager is implemented
as a multi-process agent which brings down tiers in order of dependencies and
starts applying patches to offline tiers simultaneously. Once the patching of a
subset of patches is successful, PatchManager informs PatchMonitor , which in
turn removes the applied patches from the pending list. If some of the patches
fail, PatchManager logs the specific cause of failure and reverts the patches so
that the application stays healthy.

3 Experimental Evaluation

This section evaluates the performance of HCPM for stock-trader [5], a multi-
tier microservice-based application deployed in our hybrid cloud environment as
shown in Figure 1(b). Our hybrid cloud environment is composed of a 2-core,
8GB memory VM on AWS public cloud, and 4 4-core, 16GB memory VMs on our
private cloud. All VMs on our private cloud are connected as a cluster using the



4 U. Hafeez et al.

open-source ICP — a Kubernetes-based private cloud. To simulate real workload
of multiple users (create new portfolios, buying stocks, etc.), we use jmeter [4].

HCPM Deployment: We implement HCPM as follows: the PatchAgent mod-
ule is implemented using the publicly available Vulnerability Advisor (VA) [3]
and BigFix [1]. We use REST APIs of VA and BigFix to communicate with
PatchManager . The PatchMonitor and PatchManager are implemented in Python.
The DependencyMapper module is implemented using WeaveScope [7].

Evaluation: In our deployment of HCPM, the PatchAgent module periodically
scans for services that are missing critical security patches. HCPM extracts the
dependency (see Figure 1(b)) among the components of the stock-trader using its
DependencyMapper module. Then, it uses the PatchSelect algorithm to find and
apply the optimal subset of patches from the list of pending patches (see Table 1)
for the given maintenance window, which is set to 2 minutes, and restarts the
containers within the maintenance window. While restarting, HCPM makes sure
that dependency constraints are not violated. Given a short maintenance window
of 2 minutes, HCPM identifies that the patches for the Db2 VM cannot be
applied, and these are thus omitted by PatchSelect; the remaining patches are
applied in 54 seconds.

Tier Pending vulnerable packages
Portfolio libgcrypt20, procps, gpgv, libssl1.0.0, gnupg, libprocps4
Trader gnupg, libgcrypt20, libssl1.0.0, libprocps4, gpgv, procps
Db2 java (RHSA-2018:0349-01), wget (RHSA-2018:3052)

Table 1. Pending packages for the images of stock-trader.

4 Simulation Results
For simulations (written in Python), we consider a large, multi-tier data stream-
ing application, as in VScope [9], which has 11 tiers. We use details of pending
patches based on the statistics of OS patches from last year [3] . To assign im-
portance scores to patches, we consider three different scenarios using scores of
1 (high), 2 (med), and 3 (low) as shown in Figure 2.

Figure 2 compares the performance of PatchSelect with two other strategies
i.e. Knapsack, which models patch selection as a knapsack problem and uses
a dynamic programming algorithm and Random, which is a simple strategy
of randomly selecting patches until the maintenance window is exhausted. In
Figure 2, we use geometric scores when computing the accumulated score for
a subset because typically, it is more important to apply a single high priority
patch as compared to numerous low priority patches. Let N be the total number
of pending patches. Consider a subset s with mi number of patches of importance
i, for i ∈ Z+. We define the accumulated geometric score for a subset s as:

score(s) =
∑
i≥1

mi∑
j=1

1

N i
=

∑
i≥1

mi

N i
(1)

In all three scenarios in Figure 2, PatchSelect improve the performance over
random by about 18-29%, on average, with a maximum improvement of 53-
101%. Against knapsack, we improve performance by about 2-3%, on average,



Towards Automated Patch Management in a Hybrid Cloud 5

0 50 100

Window size as precentage of time

required to apply all patches

0

10

20

30

40

S
c
o

re
 o

f 
th

e
 s

e
le

c
te

d
 s

u
b

s
e

t

PatchSelect

Knapsack

Random

(a) Uniformly distributed
patch importance levels i.e.
33% hi, 33% med., 33% low.

0 50 100

Window size as precentage of time

required to apply all patches

0

15

30

45

60

S
c
o

re
 o

f 
th

e
 s

e
le

c
te

d
 s

u
b

s
e

t

PatchSelect

Knapsack

Random

(b) Skewed distribution of
patch importance levels i.e.
50% hi, 30% med., 20% low.

0 50 100

Window size as precentage of time

required to apply all patches

0

5

10

15

20

S
c
o

re
 o

f 
th

e
 s

e
le

c
te

d
 s

u
b

s
e

t

PatchSelect

Knapsack

Random

(c) Empirically distributed
patch importance levels i.e.
12% hi, 48% med., 40% low.

Fig. 2. Simulation results showing the performance of PatchSelect, knapsack, and ran-
dom patch selection under different patch importance levels.

with a maximum improvement of 6-13%. While the knapsack score is often close
to that of PatchSelect, we find that the running time of knapsack is about 100×
that of PatchSelect in almost all cases.

5 Conclusion
The emergence of hybrid cloud computing has made it easier for businesses to
leverage the elasticity of economical public clouds while safeguarding sensitive
data in their private clusters. However, this distributed deployment makes it
difficult to patch hybrid-cloud–deployed applications, especially when the ap-
plication has to be taken down to apply critical patches. Our solution, HCPM,
automatically patches application components across clouds within the allotted
offline time period while respecting tier dependencies. Importantly, HCPM does
so while providing optimality guarantees and bounds on running time.

References
1. BigFix. ”https://www.ibm.com/security/endpoint-security/bigfix”
2. How to shut the window of (unpatched) opportunity.

https://www.welivesecurity.com/2018/04/19/patching-shut-window-unpatched
3. IBM Vulnerability Advisor. ”https://github.com/IBM-Bluemix-Docs/va”
4. Jmeter. https://jmeter.apache.org
5. Stock-trader application. https://github.com/IBMStockTrader
6. Time’s up for the Ticker? Facebook appears to axe feed for tracking your friends’

activity. ”https://techcrunch.com/2017/12/10/times-up-for-facebook-ticker/”
7. Weavescope. https://github.com/weaveworks/scope
8. A. Hopmann et al.: High availability of machines during patching
9. C. Wang et al.: VScope: Middleware for Troubleshooting Time-sensitive Data

Center Applications. In: Middleware 2012. pp. 121–141. Montreal, Canada
10. Dake, S.C.: Containerized upgrade in operating system level virtualization
11. K. Kloeckner et al.: Building a cognitive platform for the managed it services

lifecycle. IBM Journal of Research and Development 62(1), 8–11 (jan 2018)
12. Plummer, S., Warden, D.: Puppet: Introduction, implementation & the inevitable

refactoring. In: Proceedings of the 2016 ACM SIGUCCS Annual Conference


