
Persistent Memory Research in the Post-Optane Era
Peter Desnoyers

Northeastern University
p.desnoyers@northeastern.edu

Ian Adams
Intel Corporation
ian.f.adams@intel.com

Tyler Estro
Stony Brook University
testro@cs.stonybrook.edu

Anshul Gandhi
Stony Brook University
anshul@cs.stonybrook.edu

Geoff Kuenning
Harvey Mudd College

geoff@cs.hmc.edu

Mike Mesnier
Intel Corporation

michael.mesnier@intel.com

Carl Waldspurger
Carl Waldspurger Consulting

carl@waldspurger.org

Avani Wildani
Emory University and Cloudflare

agadani@gmail.com

Erez Zadok
Stony Brook University

ezk@fsl.cs.sunysb.edu

ABSTRACT
After over a decade of researcher anticipation for the arrival
of persistent memory (PMem), the first shipments of 3D
XPoint-based Intel Optane Memory in 2019 were quickly
followed by its cancellation in 2022. Was this another case of
an idea quickly fading from future to past tense, relegating
work in this area to the graveyard of failed technologies?

The recently introduced Compute Express Link (CXL) may
offer a path forward, with its persistent memory profile offer-
ing a universal PMem attachment point. Yet new technolo-
gies for memory-speed persistence seem years off, and may
never become competitive with evolving DRAM and flash
speeds. Without persistent memory itself, is future PMem
research doomed? We offer two arguments for why reports
of the death of PMem research are greatly exaggerated.
First, the bulk of persistent-memory research has not in

fact addressed memory persistence, but rather in-memory
crash consistency, which was never an issue in prior sys-
tems where CPUs could not observe post-crash memory
states. CXL memory pooling allows multiple hosts to share
a single memory, all in different failure domains, raising
crash-consistency issues even with volatile memory.

Second, we believe CXL necessitates a “disaggregation” of
PMem research. Most work to date assumed a single tech-
nology and set of features, i.e., speed, byte addressability,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
DIMES ’23, October 23, 2023, Koblenz, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0300-3/23/10. . . $15.00
https://doi.org/10.1145/3609308.3625268

and CPU load/store access. With an open interface allowing
new topologies and diverse PMem technologies, we argue
for the need to examine these features individually and in
combination.
While one form of PMem may have been canceled, we

argue that the research problems it raised not only remain
relevant but have expanded in a CXL-based future.

CCS CONCEPTS
• Information systems→ Storage class memory.

KEYWORDS
Persistent memory, PMem, 3D XPoint, Optane, CXL.

ACM Reference Format:
Peter Desnoyers, Ian Adams, Tyler Estro, Anshul Gandhi, Geoff
Kuenning,MikeMesnier, CarlWaldspurger, AvaniWildani, and Erez
Zadok. 2023. Persistent Memory Research in the Post-Optane Era.
In 1st Workshop on Disruptive Memory Systems (DIMES ’23), October
23, 2023, Koblenz, Germany. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3609308.3625268

1 INTRODUCTION
As CPU processing speeds and core counts continue to grow,
so too do the I/O speeds needed to feed data to ever-faster
CPUs, with some workloads (e.g., indexes, Bloom filters)
being particularly sensitive to I/O latency. Yet as storage
latencies drop into the 10s of microseconds, improvements
in device speed begin to be overshadowed by software de-
lays and overheads in the OS storage stack. While various
strategies have been used to reduce these overheads [54],
persistent memory allows them to be bypassed entirely for
most accesses.
In recent years, the availability of persistent memory

(PMem) has spurred a flurry of research [5, 12, 18, 22,
25, 26, 28, 29, 37, 47, 53]. PMem’s unique properties en-
couraged research in the storage community and beyond:

https://doi.org/10.1145/3609308.3625268
https://doi.org/10.1145/3609308.3625268

DIMES ’23, October 23, 2023, Koblenz, Germany P. Desnoyers et al.

algorithms [6, 10, 12], compilers [23, 32, 33], data struc-
tures [18, 28, 29, 37], file systems [25, 31, 48], key-value
stores [5, 26, 55], operating systems [3, 27, 40, 50], and even
non-systems areas have been affected. Industry efforts pro-
duced the Storage Networking Industry Association (SNIA)
programming model [46] and the PMDK [21] library.

When Intel canceled its 3D XPoint-based Optane product
line [20], researchers were suddenly left wondering whether
persistent-memory technologies had any future. Yet behind
the headlines, both Micron [36] and Intel [19] embraced
the industry Compute Express Link (CXL) [8] standard as
their future direction for persistent and hierarchical memory.
Others have also begun to discuss the lessons learned and
outline future prospects for PMem [2, 15, 24, 45].

Persistent memory has in effect taken one step backwards,
losing a storage technology, and one tentative step forwards,
gaining an alternate, arguably superior interface. This new
interface is not only vendor-independent but multipurpose,
with use cases (e.g., cache-coherent GPU-to-host access, CXL
memory pooling) that are likely to ensure its viability inde-
pendent of market demands for persistent memory. Before
CXL, only CPU vendors could consider integrating persistent
memory into a system; with CXL, even academic researchers
can design and deploy FPGA-based PMem prototypes. But
should they?

Answering this question requires examining the defining
characteristics of PMem in more detail: (a) persistence, (b)
byte addressability, and (c) direct access via CPU load/store
instructions.
Byte addressability reduces the cost of small accesses;

load/store access dramatically accelerates some I/O tasks,
providing direct user-space access without kernel interven-
tion. In addition to those features, Optane provided near-
DRAM speed and better-than-DRAM cost per bit.

Given multiple potential persistent technologies and meth-
ods of access, we believe it is important to consider PMem’s
features—including persistence itself—individually as well
as in various combinations. Is load/store access important,
or would user-space byte-granular access via an RDMA-like
mechanism provide similar performance? Which Optane
performance improvements require near-DRAM speed, vs.
those that are enabled by merely better-than-NVMe per-
formance? What about the non-persistent case with CXL
memory pooling, and does multi-host access across multi-
ple failure domains pose the same challenges as single-host
PMem, or new ones? Finally, how important is price, and in
particular would PMem be viable if it were no cheaper than
DRAM?1

1We note that “cheaper than DRAM” is a vague target, as high-density
DIMMs carry a cost premium of up to 10× over lower densities.

2 WHAT IS PERSISTENT MEMORY?
By persistent Memory or PMem we refer to media with
byte-addressable access (e.g., via hardware access at cache-
line granularity)via CPU load/store instructions, with coher-
ent caching, but with the persistence properties of storage.
PMem supports direct memory access (DMA) by other de-
vices, and is fast enough to warrant waiting for a load in-
struction rather than context-switching to another thread as
is done with slower storage (e.g., NAND Flash) [42]. Software
support (e.g., via libraries conforming to the SNIA NVM Pro-
gramming Model [46]) allows PMem implementations using
natively persistent media (e.g., 3D XPoint) or natively volatile
(e.g., DRAM) devices with hardware support for persistence
in the event of power loss.

Additional higher-level functions supported by the SNIA
model include: (a) PMem-aware file systems—e.g., ext4 with
the DAX option—which provide naming, access control, and
the ability to map persistent data into the virtual address
space. (b) Library APIs that allow applications to discover
whether store instructions are considered persistent as soon
as they are visible to other threads, or if flush operations are
required to guarantee that stores have been committed. (c)
Software mechanisms to detect failures unique to PMem, e.g.,
an incomplete flush on fail execution after a power failure.

A Brief timeline of PMem products. Battery-backed RAM
has a long history of use for RAID stripe buffers [16], and
before that magnetic core memory was persistent across
power loss 2 [39]. However persistent memory as we know
it can be traced to shortly after 2000—both conceptual work
on storage-class memory [11] and products in the form of
NVDIMM-N [49], DRAM DIMMs with energy storage and
flash backup that allowmemory contents to last across power
loss. NVDIMMs used standard memory sockets, but required
platform support for power-loss notification. They were
shipped by several companies for nearly a decade [49], but
because they were much more expensive than conventional
DRAM, they were rarely if ever deployed as entire storage
systems.

Later in that decade, emerging technologies such as Phase
Change Memory [11] resulted in sustained research interest
in persistent memory, accelerated by Intel and Micron’s an-
nouncement of 3D XPoint memory and Intel’s Optane plans.
In 2019, Intel began shipping Optane memory devices, us-
ing the DDR-T variant of standard memory sockets. Optane
had much higher capacity and lower cost per gigabyte than
NVDIMM-Ns, since it leveraged the native persistence of
3D XPoint. However, it had lower performance—around 3×
the latency of DRAM, with bandwidth somewhat lower for
read and much lower for write [22]. Since Optane greatly
2Due to cost, this persistence was rarely used for anything except boot
loaders.

Persistent Memory Research in the Post-Optane Era DIMES ’23, October 23, 2023, Koblenz, Germany

PMem

U
ser

K
ern

el

Standard
File API

PMem driver

Application

File System

 ApplicationApplication

Standard
Raw Device

Access

Load /
Store

Standard
File API

PMem-Aware
File System

MMU
Mappings

DAX

PMem driver

Block I/O

Figure 1: Block and PMem data paths. Direct access
(DAX, upper right) incurs no software overhead.

outperformed NAND Flash, its primary use case was as a
persistent write cache for very large data structures such as
in-memory databases. Due to its high capacity and (arguably)
lower cost per gigabyte, Optane was also considered as a
potential second tier of volatile memory, cached by DRAM.
Micron stopped production of 3D XPoint in 2021, and

in 2022 Intel discontinued their Optane product line. As
of this writing no other high-capacity PMem products are
available commercially, and no future 3D XPoint products
are expected. The number of companies shipping NVDIMM-
Ns has declined recently, although they are still available in
capacities of around 16–32GB.

PMem benefits. Figure 1 illustrates the difference between
the common Block I/O data path and the PMem data path. The
rightmost application in the figure uses standard file APIs to
open andmemory-map a PMemfile; all PMem I/O is then able
to use the standard load/store model. This is made possible
by the DAX (Direct Access) feature in specific file systems,
allowing mmap to directly map underlying address-space-
resident memory, along with hardware persistence support,
e.g., enabled by appropriate PMDK library operations.
These accesses are far more efficient than access via the

block I/O data path. In the PMem case individual instruc-
tions retrieve data from cache, while the memory controller
issues a single read to the memory device for each cache
line accessed. In contrast, block access typically requires
user/kernel transitions for each access, multiple PCIe trans-
actions for data and descriptor transfers and doorbell register
writes, and a significant in-kernel software path3.

The performance difference is even larger for small ac-
cesses, as block I/Os are typically rounded up to a 4 KB block
size, while PMem is accessed at cache-line granularity. Data
structures can be mapped into application memory as shown

3User-space access through SPDK [54] can reduce the software overhead of
this process, but the PCIe overhead remains.

by the rightmost arrow in the figure, and then accessed di-
rectly, without needing to copy data into DRAM. This ability
to access persistent data in place is one of the major benefits
of PMem [44].

PMem challenges. Systems supporting PMem have two
levels of store persistence, as per the SNIA Programming
model. The most common level, avoiding the need for more
expensive platform logic, requires applications to flush stores
explicitly to ensure persistence. While storage has always
worked this way, programmers are not used to having to
flush memory stores; this introduces new software complex-
ities. The problem is exacerbated by existing code that as-
sumes block writes are atomic, which allows atomic updates
of large data structures. Libraries like PMDK [44] normally
handle some of the complex logic around flushing and trans-
actions, but significant work may be needed to adapt existing
software [34].
The second level of persistence is provided by platforms

that automatically flush all CPU caches to PMem on power
loss or system crash. This relieves the software from that
responsibility. But since this feature is not guaranteed to exist
on every platform with PMem, the software must typically
handle both cases, so no complexity is avoided.
The lack of native language support for PMem is also

problematic, requiring libraries to use non-idiomatic con-
structs like preprocessor macros to support PMem, adding
to debugging complexity. Although it is possible that id-
iomatic, usable PMem extensions to high-level languages
will emerge in the future, such improvements typically ar-
rive only slowly. The fact that software must be modified to
use PMem at all is itself a problem, since software changes
are expensive. To mitigate this, a number of ways to leverage
PMem transparently have emerged. Ideas such as Whole
System Persistence [38] and Whole Process Persistence [17]
can leverage the benefits of PMem’s in-place access without
application modification. In many cases language support for
transparent use of PMem may be difficult—existing code of-
ten assumes that data structures are assembled in ephemeral
buffers, never visible outside a limited range of code; the lack
of buffering in PMem accesses may necessitate significant
changes in strategy.
Finally, a consistent pain point for PMem has been that

it is directly attached to a single host; if the host goes down,
access to that persistent data is lost. This differs from other
storage systems that can be attached on the network and
made accessible frommultiple hosts (e.g., NAS, SAN). Several
solutions to replicate PMem in software have been imple-
mented [13, 14, 52], but they increase complexity further.

DIMES ’23, October 23, 2023, Koblenz, Germany P. Desnoyers et al.

3 CXL: A NEW PMEM INTERFACE
CPU changes were needed to efficiently support new PMem
products. Modifications to the DDR protocol supported
variable timing [1] and power-loss notification. For perfor-
mance [7, 9], new instructions and memory controller de-
signs [43] were needed to quickly and reliably persist data.

In 2019, the first version of the Compute Express Link (CXL)
specification was released by a consortium of over 250 com-
panies. As of November 2020, version 2.0 of the CXL speci-
fication contains first-class support for PMem, rather than
adding it as an afterthought as was done for DDR protocols.

CXL 1.1 and 2.0 run over PCIe 5, while CXL 3.0 uses PCIe
6, introducing three new protocols:

• CXL.io: PCIe functionality, including device enumer-
ation and PCIe-style data transfers.

• CXL.cache: allows device caches as part of the CPU
cache-coherency domain.

• CXL.mem: allows hosts to access device-attached
memory with cache-coherent loads and stores.

A CXL Type 3 Memory Device, built using the CXL.io and
CXL.mem protocols, allows OSes to have a single, generic
driver supporting both volatile memory and PMem, even
on the same device [8, 24]. Moreover, while previous PMem
devices required explicit CPU support, CXL allows indepen-
dent vendors and even researchers to build a wide variety of
PMem devices. CXL incorporates the lessons learned from
prior PMem products, and in many cases allows binary com-
patibility for applications developed for NVDIMM [49] and
Optane devices.
With CXL, memory pooling, supported by the Multi-

Headed Device (MHD) model in CXL 3.0, allows multiple
hosts to access memory presented by a single device. This
provides the ability to disaggregate both volatile and persis-
tent memory, and to dynamically assign it to different hosts
over time [30], as shown in Figure 2, providing a separate
“memory appliance” with its own power, failure domain, and
reliability characteristics. As an example, Pond [30] uses a
custom controller to provide single-host cache coherence,
coupled with dynamic access control assigning each memory
region to a single host at a time.
Such memory pooling offers an opportunity for appli-

cation-transparent data replication across failure-domain
boundaries. This in turn addresses a key limitation of prior
PMem configurations, where such replication required ex-
plicit application support, typically requiring slower soft-
ware intervention rather than being implemented in hard-
ware.

Pond and similar approaches allow non-concurrent shar-
ing of memory where, for example, a new host may take

Memory Media

Host 0

Disaggregated
Memory Pool

Host N

… CXLCXL

Memory Media

Host 0

Disaggregated
Memory Pool

Host N

… CXLCXL

Figure 2: Basic CXL memory pooling.

ownership of a memory region after a crash; additional fea-
tures allow concurrent sharing of memory regions by multi-
ple hosts, with either non-coherent access (requiring explicit
flush operations) or optionally with full cache coherency
across hosts.

Memory pooling and sharing also introduce new security
concerns. The CXL specification supports low-level encryp-
tion for memory and interconnect links [8, Section 11.0];
further research is needed in this area.

4 RESEARCH GOING FORWARD
Although other persistent memory technologies predated
it, 3D XPoint was perhaps the first solid-state technology
to offer both cost and performance midway between con-
temporary main memory and block storage technologies—
the cheaper-than-DRAM, faster-than-NAND flash window.
Since this “storage-class memory” window is amoving target,
the emergence of a new and competitive persistent-memory
technology is heavily dependent on progress at both ends
of this window—progress driven by enormous investments
based on the size of these markets.
As a result, it is entirely possible that we will not see a

solid-statememory technology arise that directly replaces 3D
XPoint. Yet we argue that in the CXL era, persistent-memory
research remains just as relevant, for two reasons:

• Hybrid persistent memory [41]. Even in the absence of
new technologies, hybrid strategies combining DRAM,
flash, and energy storage will enable future CXL-
attached persistent-memory systems at varying price
and performance points.

• Multi-host consistency. PMem raised the new (at
the time) problem of crash consistency for memory;
in previous systems memory contents were lost on
power failure, and the CPU could never observe crash-
inconsistent memory states. CXL memory pooling al-
lows memory to be observed from multiple indepen-
dent failure domains, leading to similar challenges

Persistent Memory Research in the Post-Optane Era DIMES ’23, October 23, 2023, Koblenz, Germany

Example Storage / Memory Technologies Coherent Byte-addressable Persistent
1 Volatile RAM disk ✘ ✘ ✘

2 Conventional HDD, SSD ✘ ✘ ✔

3 Incoherent load/store to PCIe address space ✘ ✔ ✘

4 Byte-addressable I/O device (e.g., object storage) ✘ ✔ ✔

5 Memory pooling ✔ ✔ ✘

6 Conventional PMem use cases, including NVDIMM ✔ ✔ ✔

Table 1: A taxonomy of storage technologies that may support coherency, byte-addressability, and persistence.

even in the absence of persistence, while doing so un-
der a range of topologies and speeds.

Changes brought about by CXL. Historically (i.e., before
PMem) memory researchers have not had to worry about
issues like data persistence, durability, and availability; these
were issues specific to storage systems. PMem changed this
and opened up a decade’s worth of research. A key resulting
artifact is PMDK [21]—a suite of libraries providing a single
consistency model across a range of hardware persistence
features. Storage researchers working at the device or block
level watched with interest as memory researchers tackled
key storage issues like transactions and atomic writes.
Looking up from the block layer, PMem changed very

little. Researchers quickly dealt with the low-hanging fruit
(e.g., block-mode abstractions to PMem [4]). Otherwise, there
were few opportunities at the storage (i.e., block) layer.

But CXL will change this in two ways: (1) by bringing
memory abstractions to a standardized I/O interconnect, and
(2) by making persistence optional (as discussed earlier, CXL
works with both volatile and non-volatile memory). This
means that memory and storage researchers will need to
coordinate, especially if the goal is an optimized solution
that spans all hardware and software layers.
For example, although a CXL device could be exposed

as a hybrid device with a completely separate memory API
(CXL.mem and/or CXL.cache) and storage API (CXL.io), de-
signing such a solution is a missed opportunity. Rather, the
memory “half” of a device should leverage the storage half
for bulk data, and the storage half should leverage the mem-
ory half for coherence and byte addressability. One example
is a computational SSD that modifies data in host memory,
without resorting to bulk DMA operations. Alternatively,
consider a GPU or an FPGA using CXL.cache to gain coher-
ent access to host memory. If that same data is destined for
block storage, we do not want to send it to the PCI layer a
second time; the data may already be partially present in the
device, just in a memory form. Hence, CXL introduces the
need for the memory and storage halves to coordinate, and
therein lies the potential for new research.

New research opportunities. We introduce new opportuni-
ties brought about by CXL across three dimensions: persis-
tence, byte addressability, and coherence. We consider six
of the eight possible combinations: three map to existing
memory or storage technologies and three are entirely new,
representing research opportunities going forward.

For the taxonomy in Table 1, we define persistent as being
able to survive a cold reboot or loss of power, coherent4 to
mean that read operations (across CPUs or hosts as appro-
priate) will transparently see the result of write operations
from other CPUs or hosts, and byte-addressable as allow-
ing accesses smaller than a single sector (512 bytes). It is
worth noting that byte addressability does not require a co-
herent memory interface. Indeed, object storage protocols
already allow for byte-granular access [35] on the PCIe bus
using versions of standard I/O commands; we therefore treat
coherency and byte-addressability independently.
A number of rows represent conventional storage tech-

nologies. Rows 1 and 2 represent RAM disks and conven-
tional block devices such as NVMe drives. Access is at a
block granularity, and cached data (i.e., kernel buffer caches)
is managed “manually”. Row 6, in turn, corresponds to ex-
isting PMem architectures, combining persistence, cache
coherency, and byte addressability.
Other combinations are less common. In row 3, read and

write operations can be performed at byte granularity, but
without coherence or persistence. PCIe address space pro-
vides these semantics, with operations performed via load
and store instructions. Although the NVMe specification
defines an optional PCIe address space allowing such di-
rect access, it is not supported by any commonly available
devices. Alternatively, InfiniBand RDMA verbs provide an
I/O-operation-based mechanism that is byte-addressable but
offers noncoherent access to (remote) volatile memory.

In row 4, byte addressability and persistence are combined
with non-coherent access, e.g., via I/O commands rather than

4We note that coherence in the non-byte-addressable model is not novel, as
it is the traditional access model for block devices.

DIMES ’23, October 23, 2023, Koblenz, Germany P. Desnoyers et al.

CPU load/store operations. This model is used by object stor-
age devices that provide byte-aligned read and write opera-
tions, although it could also be applied to flat address spaces.
At present there are no commercially availablemodern object
storage devices; the flat-address-space model corresponds to
RDMA access to remote persistent memory.

Combinations with cache-coherent access at block granu-
larity seem either impossible or impractical, and are omitted
from Table 1.

Finally, row 5—cache-coherent byte-addressable access to
volatile storage—corresponds to CXL memory pooling with
volatile RAM.

Research questions. In a post-Optane landscape with
CXL attached volatile and non-volatile devices, we see a
range of problems which remain to be addressed.
Latency and memory access: Optane memory is no

slower than cross-NUMA-node access to DRAM,while poten-
tial future technologies may have significantly higher worst-
case latency. At what point are architectural changes in the
CPU or memory controller needed to address non-uniform
access times? Is there a point where software-controlled
access commands become more efficient than handling op-
erations with wildly different latencies within the hardware
pipeline?
Performance factors: Optane memory provides both

byte addressability and low latency—10× less than the fastest
(Optane) NVMe devices, and 100× less than typical ones.
Optane-based applications and systems have been shown
to provide significantly higher performance than NVMe-
based ones, but how much of this improvement is due to
byte addressability, and how much due to performance? Fu-
ture PMem technologies may be slower than Optane, and
the answer to this question is important for assessing their
potential.
Memory pooling and crash consistency:Will the ap-

proaches used to provide crash consistency with a single
host attached to a single persistent memory be appropriate
for multiple attached hosts across multiple failure domains?
Application intent: Operating systems go to great

lengths to infer application intent, allowing, e.g., I/O prefetch-
ing and migration of data to lower-performance memory
tiers. This is more difficult with PMem, where accesses are
performed by hardware rather than software, and may be
especially important for hybrid PMem systems.
Byte-granular I/O devices: High-performance PMem-

based systems often achieve some of their gains by perform-
ing small atomic updates to stored data structures, e.g., by
atomically swapping pointers [51]. Extensions to the NVMe
protocol might allow such accesses to be performed on ex-
ternal storage, without coherent load/store access from the
CPU. Is direct load/store access even necessary to achieve

the benefits of byte-granular access, or can I/O protocols
evolve to incorporate this model?
Collectively, these CXL-enabled opportunities motivate

more distributed storage systems research, including job de-
composition, scheduling, safely sharing data, and program-
ming and managing storage devices that speak both byte and
block protocols. It remains to be seen whether this takes the
form of computational memory, computational storage, or
some hybrid. Indeed, CXL will blur the lines between mem-
ory and storage, allowing us to rethink and expand the role
of a “device.” Devices will become computing peers, bringing
a wide and exciting array of possibilities.

5 CONCLUSION
We posit that the current lack of commercial PMem avail-
ability does not detract from its importance and promise
as a core storage technology, both in academia and indus-
try. The Compute Express Link (CXL) interconnect carries
forward the lessons from previous PMem implementations
and lowers the barrier for developing new PMem products.
The wide adoption of the CXL standard allays vendor lock-in
concerns, and is a core reason that we believe PMem is worth
continued research effort. In particular, CXL enables one to
consider each PMem attribute separately or in combination:
byte addressability, persistence, and direct access via CPU
load/store instructions. Finally, new CXL features such as
memory pooling and sharing are seeing considerable interest
as rich areas for future PMem research and development.

ACKNOWLEDGMENTS
We thank Andrew Rudoff for his extensive contributions
to this work. We thank the anonymous reviewers for their
constructive feedback. This work was made possible in part
thanks to Dell-EMC, NetApp, Facebook, and IBM support; a
SUNY/IBM Alliance award; and NSF awards CNS-1910327,
CCF-1918225, CNS-1900706, CNS-1951880, CNS-2106263,
CNS-2106434, and CNS-2214980.

REFERENCES
[1] JEDEC Solid State Technology Association. 2021. JEDEC Publishes

DDR4 NVDIMM-P Bus Protocol Standard.
[2] Lawrence Benson, Marcel Weisgut, and Tilmann Rabl. 2023. What

We Can Learn from Persistent Memory for CXL. In 20th Conference
on Database Systems for Business, Technology and Web (BTW), Bir-
gitta König-Ries, Stefanie Scherzinger, Wolfgang Lehner, and Gottfried
Vossen (Eds.). Gesellschaft für Informatik e.V., Dresden, Germany, 535–
554. https://doi.org/10.18420/BTW2023-48

[3] Miao Cai and Hao Huang. 2021. A survey of operating system support
for persistent memory. Frontiers of Computer Science 15 (2021), 154207.

[4] Feng Chen, Michael Mesnier, and Scott Hahn. 2014. A Protected Block
Device for Persistent Memory. In Proceedings of the 30th Symposium
on Mass Storage Systems and Technologies (MSST). IEEE, Santa Clara,
CA, 1–12.

https://doi.org/10.18420/BTW2023-48

Persistent Memory Research in the Post-Optane Era DIMES ’23, October 23, 2023, Koblenz, Germany

[5] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and
Jiwu Shu. 2020. FlatStore: An Efficient Log-Structured Key-Value
Storage Engine for Persistent Memory. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, Lausanne, Switzerland, 1077–
1091.

[6] Zhaole Chu, Yongping Luo, and Peiquan Jin. 2021. An Efficient Sorting
Algorithm for Non-Volatile Memory. Int. J. Softw. Eng. Knowl. Eng. 31
(2021), 1603–1621.

[7] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-
jesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps:
Making Persistent Objects Fast and Safe with Next-Generation, Non-
Volatile Memories. In Proceedings of the Sixteenth International Confer-
ence on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS). ACM, Newport Beach, CA, 105–118.

[8] Compute Express Link. 2022. Compute Express Link (CXL) Specifica-
tion. Available from http://www.computeexpresslink.org.

[9] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek,
Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O
through Byte-Addressable, Persistent Memory. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles. ACM,
Big Sky, Montana, USA, 133–146. https://doi.org/10.1145/1629575.
1629589

[10] Laxman Dhulipala, Charles McGuffey, Hong Kyu Kang, Yan Gu, Guy E.
Blelloch, Phillip B. Gibbons, and Julian Shun. 2019. Sage: Parallel
Semi-Asymmetric Graph Algorithms for NVRAMs. Proc. VLDB Endow.
13 (2019), 1598–1613.

[11] R. F. Freitas and W. W. Wilcke. 2008. Storage-Class Memory: The Next
Storage System Technology. IBM Journal of Research and Development
52, 4/5 (July 2008), 439–447. https://doi.org/10.1147/ rd.524.0439

[12] G. Gill, Roshan Dathathri, Loc Hoang, Ramesh V. Peri, and Keshav
Pingali. 2019. Single Machine Graph Analytics on Massive Datasets
using Intel Optane DC Persistent Memory. Proceedings of the VLDB
Endowment 13 (2019), 1304 – 1318.

[13] Tomasz Gromadzki and Jan Marian Michalski. 2019. Persistent
Memory Replication Over Traditional RDMA Part 4: Persistent
Memory Development Kit (PMDK)-Based PMEM Replication.
https://www.intel.com/content/www/us/en/developer/articles/
technical/persistent-memory-replication-over-traditional-
rdma-part-4-persistent-memory-development.html.

[14] Shashank Gugnani, Scott Guthridge, Frank Schmuck, Owen Anderson,
Deepavali Bhagwat, and Xiaoyi Lu. 2022. Arcadia: A Fast and Reliable
Persistent Memory Replicated Log. arXiv:cs.DC/2206.12495

[15] Jim Handy and Tom Coughlin. 2023. Optane’s Dead: Now What?
Computer 56, 3 (2023), 125–130. https://doi.org/10.1109/MC.2023.
3235096

[16] Dave Hitz, James Lau, and Michael Malcolm. 1994. File System Design
for an NFS File Server Appliance. In Proceedings of the USENIX Winter
1994 Technical Conference (ATC). USENIX Association, San Francisco,
California, 19–19.

[17] George Hodgkins, Yi Xu, Steven Swanson, and Joseph Izraele-
vitz. 2023. Zhuque: Failure Isn’t an Option, It’s an Excep-
tion. http://nvmw.ucsd.edu/nvmw2023-program/nvmw2023-
paper16-presentation_slides.pdf 14th Non-Volatile MemoriesWork-
shop.

[18] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam.
2018. Endurable Transient Inconsistency in Byte-Addressable Persis-
tent B+-Tree. In USENIX Conference on File and Storage Technologies.
USENIX Association, Oakland, CA, 187–200.

[19] Intel Corporation. 2022. Intel Optane persistent memory
and Intel® Xeon® scalable processors offer a practical migra-
tion path to memory expansion, tiering, and pooling with

Compute Express Link (CXLTM)-attached memory devices.
https://www.intel.com/content/dam/www/central-libraries/
us/ en/documents/2022-11/optane-pmem-to-cxl-tech-brief.pdf

[20] Intel Corporation. 2022. Intel Reports Second-Quarter 2022 Financial
Results. https://www.intc.com/news-events/press-releases/detail/
1563/ intel-reports-second-quarter-2022-financial-results.

[21] Intel Corporation. 2023. Persistent Memory Development Kit (PMDK).
pmem.io.

[22] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
samanMemaripour, Yun Joon Soh, ZixuanWang, Yi Xu, Subramanya R.
Dulloor, Jishen Zhao, and Steven Swanson. 2019. Basic Performance
Measurements of the Intel Optane DC Persistent Memory Module.
https://doi.org/10.48550/ARXIV.1903.05714

[23] Jungi Jeong and Changhee Jung. 2021. PMEM-Spec: Persistent Memory
Speculation (Strict Persistency Can Trump Relaxed Persistency). In
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).
ACM, virtual, 517–529.

[24] Myoungsoo Jung. 2022. Hello Bytes, Bye Blocks: PCIe Storage Meets
Compute Express Link for Memory Expansion (CXL-SSD). In Proceed-
ings of the 14th ACMWorkshop on Hot Topics in Storage and File Systems
(HotStorage). ACM, Virtual Event, 45–51. https://doi.org/10.1145/
3538643.3539745

[25] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. 2019. SplitFS: Reducing
Software Overhead in File Systems for Persistent Memory. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles
(SOSP). ACM, Huntsville, Ontario, Canada, 494–508.

[26] Olzhas Kaiyrakhmet, Song Yeon Lee, Beomseok Nam, Sam H. Noh, and
Young ri Choi. 2019. SLM-DB: Single-Level Key-Value Store with Per-
sistent Memory. In USENIX Conference on File and Storage Technologies.
USENIX Association, Boston, MA, 191–205.

[27] Rajat Kateja, Andrew Pavlo, and Greg Ganger. 2020. Vilamb: Low Over-
head Asynchronous Redundancy for Direct Access NVM. , 17 pages.
https://arxiv.org/abs/2004.09619

[28] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and
Vijay Chidambaram. 2019. RECIPE: Converting Concurrent DRAM
Indexes to Persistent-Memory Indexes. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP). ACM, Huntsville,
Ontario, Canada, 462–477.

[29] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and
Thomas Willhalm. 2019. Evaluating Persistent Memory Range Indexes.
Proc. VLDB Endow. 13 (2019), 574–587.

[30] Huaicheng Li, Daniel S. Berger, Stanko Novakovic, Lisa R. Hsu, Dan
Ernst, Pantea Zardoshti, Monish Shah, Samir Rajadnya, Scott Lee,
Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo Bianchini.
2022. Pond: CXL-Based Memory Pooling Systems for Cloud Platforms.
In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
Vol. 2. ACM, Lausanne, Switzerland, 574–587.

[31] Jen-Kuang Liu and Sheng-De Wang. 2022. CFFS: A Persistent Mem-
ory File System for Contiguous File Allocation With Fine-Grained
Metadata. IEEE Access 10 (2022), 91678–91698.

[32] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L. Scott, Sam H.
Noh, and Changhee Jung. 2018. iDO: Compiler-Directed Failure Atom-
icity for Nonvolatile Memory. In 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, Fukuoka, Japan, 258–
270.

[33] Sara Mahdizadeh-Shahri, Seyed Armin Vakil-Ghahani, and Aasheesh
Kolli. 2020. (Almost) Fence-less Persist Ordering. In 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
ACM, Virtual, 539–554.

http://www.computeexpresslink.org
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1147/rd.524.0439
https://www.intel.com/content/www/us/en/developer/articles/technical/persistent-memory-replication-over-traditional-rdma-part-4-persistent-memory-development.html
https://www.intel.com/content/www/us/en/developer/articles/technical/persistent-memory-replication-over-traditional-rdma-part-4-persistent-memory-development.html
https://www.intel.com/content/www/us/en/developer/articles/technical/persistent-memory-replication-over-traditional-rdma-part-4-persistent-memory-development.html
https://arxiv.org/abs/cs.DC/2206.12495
https://doi.org/10.1109/MC.2023.3235096
https://doi.org/10.1109/MC.2023.3235096
http://nvmw.ucsd.edu/nvmw2023-program/nvmw2023-paper16-presentation_slides.pdf
http://nvmw.ucsd.edu/nvmw2023-program/nvmw2023-paper16-presentation_slides.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-11/optane-pmem-to-cxl-tech-brief.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-11/optane-pmem-to-cxl-tech-brief.pdf
https://www.intc.com/news-events/press-releases/detail/1563/intel-reports-second-quarter-2022-financial-results
https://www.intc.com/news-events/press-releases/detail/1563/intel-reports-second-quarter-2022-financial-results
pmem.io
https://doi.org/10.48550/ARXIV.1903.05714
https://doi.org/10.1145/3538643.3539745
https://doi.org/10.1145/3538643.3539745
https://arxiv.org/abs/2004.09619

DIMES ’23, October 23, 2023, Koblenz, Germany P. Desnoyers et al.

[34] Virendra J. Marathe, Margo Seltzer, Steve Byan, and Tim Harris. 2017.
Persistent Memcached: Bringing Legacy Code to Byte-Addressable
Persistent Memory. In 9th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage 17). USENIX Association, Santa Clara,
CA. https://www.usenix.org/ conference/hotstorage17/program/
presentation/marathe

[35] Michael P. Mesnier, Gregory R. Ganger, and Erik Riedel. 2003. Object-
based Storage. IEEE Communications 44, 8 (August 2003), 84–90.

[36] Micron. 2021. Micron Updates Data Center Portfolio Strategy to
Address Growing Opportunity for Memory and Storage Hierarchy
Innovation. https:// investors.micron.com/news-releases/news-
release-details/micron-updates-data-center-portfolio-strategy-
address-growing

[37] Moohyeon Nam, Hokeun Cha, Young ri Choi, Sam H. Noh, and
Beomseok Nam. 2019. Write-Optimized Dynamic Hashing for Persis-
tent Memory. In USENIX Conference on File and Storage Technologies.
USENIX Association, Boston, MA, 31–44.

[38] Dushyanth Narayanan and Orion Hodson. 2012. Whole-System Per-
sistence. SIGARCH Comput. Archit. News 40, 1 (mar 2012), 401–410.
https://doi.org/10.1145/2189750.2151018

[39] Emerson W. Pugh, Lyle R. Johnson, and John H. Palmer. 2003. IBM’s
360 and early 370 systems. MIT Press, Cambridge, Massachusetts.

[40] Han Jie Qiu, Sihang Liu, Xinyang Song, Samira Khan, and Gennady
Pekhimenko. 2022. Pavise: Integrating Fault Tolerance Support for
Persistent Memory Applications. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques. ACM,
Chicago, IL, 109–123.

[41] The Register. 2022. Last week Intel killed Optane. Today, Kioxia and
Everspin announced comparable tech. https://www.theregister.
com/2022/08/02/kioxia_everspin_persistent_memory/

[42] Andy Rudoff. 2017. Persistent Memory Programming. USENIX ;login:
42, 2 (July 2017), 34–40.

[43] Andy M. Rudoff. 2016. Deprecating the PCOMMIT Instruc-
tion. https://www.intel.com/content/www/us/en/developer/
articles/ technical/deprecate-pcommit-instruction.html.

[44] Steve Scargall. 2020. Programming Persistent Memory: A Comprehensive
Guide for Developers. Apress, New York, New York. 5–7 pages. https:
//doi.org/10.1007/978-1-4842-4932-1

[45] Xinyang (Kevin) Song, Sihang Liu, and Gennady Pekhimenko. 2022.
Persistent Memory —- A New Hope. https://www.sigarch.org/
persistent-memory-a-new-hope/

[46] Storage Networking Industry Association. 2017. NVM Programming
Model (NPM). https://www.snia.org/ sites/default/files/ technical-
work/npm/release/SNIA-NVM-Programming-Model-v1.2.pdf

[47] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann,
and Alfons Kemper. 2019. Persistent Memory I/O Primitives. In Pro-
ceedings of the 15th International Workshop on Data Management on
New Hardware (DaMoN). ACM, Amsterdam, Netherlands, 1–7.

[48] Jingyu Wang, Shengan Zheng, Ziyi Lin, Yuting Chen, and Linpeng
Huang. 2022. Zebra: An Efficient, RDMA-Enabled Distributed Per-
sistent Memory File System. In International Conference on Database
Systems for Advanced Applications. ACM, Virtual, 341–349.

[49] Wikipedia. 2023. NVDIMM — Wikipedia, The Free Encyclo-
pedia. http:// en.wikipedia.org/w/ index.php?title=NVDIMM&
oldid=1141063008. [Online; accessed 27-March-2023].

[50] Jian Xu, Juno Kim, Amir Saman Memaripour, and Steven Swanson.
2019. Finding and Fixing Performance Pathologies in Persistent Mem-
ory Software Stacks. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM, Providence, RI, 427–439.

[51] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File
System forHybrid Volatile/Non-volatileMainMemories. In Proceedings

of the 14th Usenix Conference on File and Storage Technologies. USENIX
Association, Santa Clara, CA, 323–338.

[52] Jian Xu, Lu Zhang, AmirsamanMemaripour, Akshatha Gangadharaiah,
Amit Borase, Tamires Brito Da Silva, Steven Swanson, andAndy Rudoff.
2017. NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Memory File
System. In Proceedings of the 26th Symposium on Operating Systems
Principles. ACM, Shanghai China, 478–496. https://doi.org/10.1145/
3132747.3132761

[53] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steven Swanson. 2020. An Empirical Guide to the Behavior and Use of
Scalable Persistent Memory. In USENIX Conference on File and Storage
Technologies (FAST). USENIX Association, Santa Clara, CA, 169–182.

[54] Ziye Yang, James R. Harris, Benjamin Walker, Daniel Verkamp, Chang-
peng Liu, Cunyin Chang, Gang Cao, Jonathan Stern, Vishal Verma,
and Luse E. Paul. 2017. SPDK: A Development Kit to Build High Per-
formance Storage Applications. In 2017 IEEE International Conference
on Cloud Computing Technology and Science (CloudCom). IEEE, Hong
Kong, 154–161. https://doi.org/10.1109/CloudCom.2017.14

[55] Wenhui Zhang, Xingsheng Zhao, Song Jiang, and Hong Jiang. 2021.
ChameleonDB: A Key-value Store for Optane Persistent Memory. In
Proceedings of the Sixteenth European Conference on Computer Systems
(Eurosys). ACM, Edinburgh, Scotland, 194–209.

https://www.usenix.org/conference/hotstorage17/program/presentation/marathe
https://www.usenix.org/conference/hotstorage17/program/presentation/marathe
https://investors.micron.com/news-releases/news-release-details/micron-updates-data-center-portfolio-strategy-address-growing
https://investors.micron.com/news-releases/news-release-details/micron-updates-data-center-portfolio-strategy-address-growing
https://investors.micron.com/news-releases/news-release-details/micron-updates-data-center-portfolio-strategy-address-growing
https://doi.org/10.1145/2189750.2151018
https://www.theregister.com/2022/08/02/kioxia_everspin_persistent_memory/
https://www.theregister.com/2022/08/02/kioxia_everspin_persistent_memory/
https://www.intel.com/content/www/us/en/developer/articles/technical/deprecate-pcommit-instruction.html
https://www.intel.com/content/www/us/en/developer/articles/technical/deprecate-pcommit-instruction.html
https://doi.org/10.1007/978-1-4842-4932-1
https://doi.org/10.1007/978-1-4842-4932-1
https://www.sigarch.org/persistent-memory-a-new-hope/
https://www.sigarch.org/persistent-memory-a-new-hope/
https://www.snia.org/sites/default/files/technical-work/npm/release/SNIA-NVM-Programming-Model-v1.2.pdf
https://www.snia.org/sites/default/files/technical-work/npm/release/SNIA-NVM-Programming-Model-v1.2.pdf
http://en.wikipedia.org/w/index.php?title=NVDIMM&oldid=1141063008
http://en.wikipedia.org/w/index.php?title=NVDIMM&oldid=1141063008
https://doi.org/10.1145/3132747.3132761
https://doi.org/10.1145/3132747.3132761
https://doi.org/10.1109/CloudCom.2017.14

	Abstract
	1 Introduction
	2 What is Persistent Memory?
	3 CXL: A New PMem Interface
	4 Research Going Forward
	5 Conclusion
	References

