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Abstract
One of the major challenges of post-PC computing is

the need to reduce energy consumption, thereby extending
the lifetime of the batteries that power these mobile devices.
Memory is a particularly important target for e�orts to im-
prove energy e�ciency. Memory technology is becoming

available that o�ers power management features such as the
ability to put individual chips in any one of several di�er-
ent power modes. In this paper we explore the interaction
of page placement with static and dynamic hardware policies
to exploit these emerging hardware features. In particular,

we consider page allocation policies that can be employed by
an informed operating system to complement the hardware
power management strategies. We perform experiments us-
ing two complementary simulation environments: a trace-
driven simulator with workload traces that are representative
of mobile computing and an execution-driven simulator with

a detailed processor/memory model and a more memory-
intensive set of benchmarks (SPEC2000). Our results make
a compelling case for a cooperative hardware/software ap-
proach for exploiting power-aware memory, with down to as
little as 45% of the Energy�Delay for the best static policy
and 1% to 20% of the Energy�Delay for a traditional full-

power memory.

1. INTRODUCTION
One of the major challenges of the post-PC

environment|encompassing ubiquitous mobile, embedded,

and wireless devices|is the need to reduce the energy

consumed in their operation, thereby extending the lifetime

of the batteries that power them. Power consumption is an

issue that extends well beyond the realm of battery-powered

mobile devices to any computing platform in which the

production of heat or fan noise is a consideration (e.g.,

medical applications). Energy e�ciency of computers is

also desirable from the economic and environmental points

of view.

Sustained exponential growth in processor performance

and memory density means that embedded processors and
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handheld devices can soon have performance characteristics

comparable to today's workstations. This increased perfor-

mance is usually accompanied by increased power consump-

tion. Memory is a particularly important target for e�orts

to address the energy e�ciency issue. Instructions invoking

memory operations have a relatively high power cost, both

within the processor and in the memory system [43]. In-

tel's guidelines for mobile power [19] indicate that the target

for main memory should be approximately 4% of the power

budget (e.g. an average 1.3W for 96MB) for year 2000 lap-

tops. This percentage can dramatically increase in systems

with low power processors (e.g., Transmeta Crusoe [15]), dis-

plays [35], or without hard disks. Recent studies [10] show

that memory system behavior can produce variations in en-

ergy consumption of 100% for a pocket computer with the

above characteristics versus 9% for a conventional laptop

with a high power processor.

Since many small devices have no secondary storage and

rely on memory to retain data, there are power costs for

memory even in otherwise idle systems. The amount of

memory available in mobile devices is expanding with each

new model to support more demanding applications (e.g.,

multimedia) while the demand for longer battery life also

continues to grow signi�cantly.

Hardware components, such as memory chips, are be-

coming available that o�er power management features. In

particular, we consider power-aware DRAM chips that sup-

port several di�erent power modes: active, standby, nap

and powerdown in order of decreasing power consumption

but increasing access time. Our goal in this work is to de-

termine how to exploit these emerging hardware features for

the most e�ective main memory power management.

Speci�cally, we ask two basic questions:

1. How can the various power modes available in state-of-

the-art DRAM devices be utilized? We consider both

static and dynamic hardware policies for determining

the power state. Our dynamic scheme uses the time

between DRAM chip accesses to determine power state

transitions.

2. What is the e�ect of code and data placement within

such power-aware memory chips? Thus we consider

page allocation strategies that complement the ability

of the hardware to adjust power modes.

Our work is based on the premise that a cooperative

hardware/software approach will o�er expanded opportuni-

ties for energy e�ciency. A primary contribution of this

paper is a quantitative study that explores the interaction



of virtual memory page allocation with dynamic hardware

policies to orchestrate the use of power modes provided in

emerging DRAM devices.

We measure the energy savings within the memory sys-

tem and any additional delay in execution time resulting

from these power management strategies, expressed in terms

of an Energy�Delay metric. Using trace-driven simulation

with a simpli�ed processor and memory system model we

evaluate our ideas for a set of productivity applications as

a workload representative of mobile laptop and handheld

devices. We also use an execution-driven simulator with a

more detailed processor and memory model to evaluate a

set of programs from the integer SPEC2000 suite that place

higher demands on the memory system than the available

traces.

Our results show the following:

� Among static policies in which every power-aware

DRAM chip in the system resides in the same base

power mode between accesses, choosing the nap mode

as the base achieves the lowest Energy�Delay prod-

uct for our workload (15% to 40% of staying in active

mode).

� Power-aware page allocation by an informed operat-

ing system coupled with dynamic hardware policies

can dramatically improve energy e�ciency of memory.

Power-aware allocation allows a 6% to 55% improve-

ment in Energy�Delay over the best static hardware

policy.

� Power-aware page allocation when used with static

hardware policies can improve Energy�Delay by up to

30%.

� Dynamic hardware policies without informed OS sup-

port (i.e., using random page allocation) do not im-

prove energy e�ciency as measured by Energy�Delay.

In the next section, we describe the power-managed

memory technology upon which this study is based and

present related work. Section 3 describes the policies that

determine which power mode each chip should be in. Then,

in Section 4, we discuss simple page allocation strategies

that exploit the power management features of the hard-

ware. Section 5 presents our experimental methods and re-

sults are presented in Section 6. Finally, we conclude in

Section 7 and describe future work.

2. BACKGROUND AND RELATED WORK

2.1 Rambus RDRAM
Memory technology has developed to respond to the

needs of mobile computer designers to limit power consump-

tion in the face of increasing demand for performance. One

concrete example is Direct Rambus DRAM (RDRAM)[40].

The Direct Rambus technology delivers high bandwidth

(1.6GB/sec per device), using a narrow bus topology op-

erating at a high clock rate. As a result, each RDRAM chip

can be activated independently. RDRAM o�ers four power

modes: active, standby, nap, and powerdown. Because of

the narrow topology, each chip can be independently set to

an appropriate power state. Conventional DRAMs gener-

ally require multiple active chips to achieve high bandwidth.

Whereas we could apply the ideas presented in this paper to

these conventional memory systems, it would sacri�ce band-

width. By adopting the RDRAMmodel, we can concentrate

on the interactions of page allocation with the power modes

without the concern for a tradeo� between bandwidth and

energy consumption.

An RDRAM device must be in active mode while per-

forming a read or write transaction. Active mode consumes

the most power. A chip that is not servicing a memory re-

quest can be in any of the lower power states. However,

these states incur additional delay for clock resynchroniza-

tion. Standby is fast and uses 60% of the power of active

mode. Greater power savings can be achieved by using nap

mode (10% of the power of active) with an additional resyn-

chronization time required to transition to the active state

in order to service a memory request. Powerdown mode has

the minimal power consumption (1% of active), but a signif-

icant delay for clock synchronization (100 times that needed

by nap mode) to enter the active state. Figure 1 shows the

power states and their relative power costs as well as the

possible transitions and relative transition times into active

mode.

Standby
0.6x mW

Active
1.0x mW

Nap
0.1x mW

PwrDown
.01x mW0.1x ns

100x ns1.0x ns

Read/write
transaction

Figure 1: RDRAM Power States

The challenge for the laptop or handheld designer is to

utilize these modes e�ectively. It is not only the availabil-

ity of these power states but the ability to transition be-

tween them dynamically on a per-chip basis that gives the

RDRAM its potential for power management.

2.2 Power-Aware DRAM Model
Rather than trying to model the full complexity of the

Direct RDRAM speci�cations, we incorporate the essential

features (i.e., multiple, independently controlled memory

chips with multiple power states) into an abstract model of

a Power-Aware DRAM (PADRAM). We can choose param-

eters that are consistent with the power modes, the relative

power costs, and relative resynchronization times given in

Figure 1 so our results are relevant to RDRAM; however,

we do not claim to have precise numbers for the power con-

sumed in each state and state transition of any particular

RDRAM implementation. We make simplifying assump-

tions about the power consumption during state transitions

and we concentrate only on the transition times that impose

additional latency on a memory request.

We focus on improving the energy consumption of main

memory, ignoring the energy used by all other system com-

ponents (including processor and cache). In our studies, the



processor and cache a�ect memory energy e�ciency by inu-

encing execution time and miss rate (the number of DRAM

accesses).

2.3 Related Work
Architectural studies have examined the impact of soft-

ware structure on power consumption [6, 34, 44]. Other ar-

chitectural studies investigated processor design [4, 33, 39],

focused speci�cally on the memory hierarchy [14, 17, 21, 36],

or examined ways to optimize DRAM refresh counts [38].

RDRAM was clearly designed to enable designers to create

pools of devices in various power states, as it is stated in var-

ious documentation [40]. However, to our knowledge, ours

is the �rst quantitative study to explore the interaction of

page allocation with dynamic hardware policies to orches-

trate the use of power modes being provided in emerging

PADRAM-class memory devices.

A novel aspect of our work is the cooperative hard-

ware/OS approach to exploit PADRAM features. Previ-

ous OS-level studies focusing on power management include

work on scheduling for low power processor modes [31, 32,

46], spindown policies for disks and alternatives [1, 7, 8, 9,

16, 25, 30, 47], and managing wireless communication [18,

24, 42]. A consortium of companies has developed a spec-

i�cation [20] that addresses the lower-level OS/device in-

terface, providing one model for gross system-wide power

states and per-component power states as a basis for the de-

velopment of OS-directed power management. Recent work

with Odyssey [37, 11] demonstrates how system support for

application-aware adaptation can bene�t energy e�ciency.

Common themes that appear in these power management

strategies are the identi�cation / prediction of idleness in

the activity patterns of a component and techniques that

attempt to change those activity patterns. A particularly

valuable approach is based on the \ski rent-to-buy" prob-

lem formulation for competitive algorithms [22, 25].

Another related area involves operating system page

placement policies. Virtual memory page research originally

concentrated on techniques for improving program execu-

tion time, focusing on replacement algorithms. Recent stud-

ies examined page coloring policies for selecting appropriate
physical page frames to minimize cache misses [2, 23]. Other

recent work has studied page placement aimed at improving

TLB performance [41] or NUMAmultiprocessor memory ac-

cess [27, 28, 45, 12, 3]. Each of these problems bears some

resemblance to the issues we face since they all attempt to

exploit the exibility available in mapping virtual to physi-

cal pages.

3. HARDWARE POWER MANAGEMENT
This section explains various hardware policies for con-

trolling PADRAM power states. Since each chip is con-

trolled independently, the memory controller can implement

a variety of power management policies. In this paper we

investigate two types of policies: static and dynamic.

3.1 Static Policies
The static schemes we investigate correspond to placing

all PADRAM chips in a single power state. We note that

for an access to occur, the PADRAM chip must �rst transi-

tion to the active state. Only when there are no outstand-

ing requests for the device does it return to the speci�ed

static power state. Our �rst static policy assumes that all

PADRAM devices are in the active state. This corresponds

to a conventional performance oriented design, targeted at

reducing execution time.

The next three static schemes place all PADRAM chips

in the standby, nap, and powerdown state, respectively,

when there are no accesses to service. These policies cor-

respond to implementations targeting energy e�ciency by

sacri�cing performance, since the memory access time in-

creases as the power consumption is reduced. Ideally, we

want to maximize performance while minimizing energy con-

sumption. The remainder of this section describes policies

with this goal.

3.2 Dynamic Policies
To obtain higher performance and energy e�ciency we

must relax the constraint that each PADRAM chip return

to the same base power state when there are no pending

accesses. This allows the possibility of exploiting locality

in the program's memory access pattern to reduce energy

consumption. To accomplish this, we need to dynamically

determine the power state of each chip. Clearly, a chip needs

to be in the active state to perform an access. The more di�-

cult decision is to determine when the chip should transition

to a lower power state.

Our approach uses the time between accesses to a chip

as a metric for transitioning to lower power states. If a chip

is not accessed for a threshold amount of time it transitions

to the next lower power state. This allows individual chips

to reside in di�erent power states, based on their individual

access patterns.

The threshold values are an important parameter in this

approach. Too large a threshold and the chip will spend

too much time in the higher power state, increasing energy

consumption. In contrast, if the threshold is too small, then

the chip will transition into a slower, but lower power state,

increasing execution time.

Dynamic power state management exploits locality of

reference to individual PADRAM chips. Reference locality

is determined in part by the algorithm/data structures and

in part by the mapping of program virtual addresses to phys-

ical addresses. The next section discusses how the operating

system can inuence energy e�ciency through physical page

allocation. Source code and data structure transformations

for improving energy e�ciency is an important and interest-

ing topic, but is beyond the scope of this paper.

4. PAGE ALLOCATION
An important contribution of this paper is to re-examine

virtual memory page allocation policies in light of new

PADRAM technology. Previous page allocation studies ig-

nored which actual DRAM chips contained the allocated

page frame. In contrast, our work focuses speci�cally on this

parameter in an e�ort to maximize energy e�ciency. Given

hardware mechanisms, as described above, that can deter-

mine when to transition between power states, the operating

system may further improve energy e�ciency by allocating

physical pages in a manner that fully exploits the hardware.

As a �rst step, the page allocation should cluster an applica-

tion's pages into the minimum number of PADRAM chips.

To determine the bene�ts of power aware page allocation

(see Section 6) we compare random and the well-known se-

quential �rst-touch placement policies. Our �rst policy ran-

domly chooses a PADRAM chip for the physical page. We



believe that the allocation policies in conventional operating

systems would appear to be essentially a random assignment

with respect to chip selection.

The sequential �rst-touch policy allocates pages in the

order they are accessed, �lling an entire PADRAM chip be-

fore moving on to the next. This scheme minimizes the

number of PADRAM chips utilized for a given application.

Therefore, the hardware can automatically place unused

PADRAMs in the powerdown state, and hence potentially

reduce energy consumption.

This new form of page coloring targets reducing power

consumption rather than improving performance. However,

we note that conventional page coloring for improved cache

performance can still be utilized when selecting pages from

within a PADRAM chip. We also assume that physical ad-

dresses are not interleaved across PADRAM chips. We can

interleave at the word, cache line, or page granularity within

the PADRAM chip, since each chip will likely contain mul-

tiple independent banks.

Finally, experience has shown that �rst-touch is often not

representative of subsequent locality since it may capture

only an initialization phase of the program. Thus, we also

consider the potential for limited reassignment intended to

cluster pages with similar access patterns within PADRAM

chips. The Frequency policy attempts to improve upon an

initial allocation of frequently accessed pages at some point

into the execution. Identi�cation of candidates for reassign-

ment is done with small per-page hardware counters, record-

ing frequency of accesses to each page, outside of the L1 and

L2 caches, over a window of time. A limited number of the

most frequently accessed pages are then moved into a com-

mon chip. In our formulation of this scheme, a block of

free page frames is reserved in one chip during initial place-

ment to serve as a destination during this later one-time

reallocation. Of course, this could be repeated, but we leave

multiple \corrections" as future work.

In Section 6, an o�ine version (counting over the entire

trace and then placing pages accordingly) is �rst considered

in order to ascertain that \better" placements are possible

using such frequency information. Then the online policy,

described above, is simulated, including the costs of page

migration.

5. METHODOLOGY
To evaluate energy e�ciency, we use the Energy�Delay

product [13]. This metric captures our goal of achieving

high performance (seconds) while minimizing energy con-

sumption (joules). Although total system energy consump-

tion is important, it is highly dependent on speci�c design

choices (e.g., processor, display type, wireless network in-

terface, etc.). Therefore, we concentrate only on PADRAM

energy consumption, and ignore the energy consumed by all

other system components.

To compute energy e�ciency, we developed two simu-

lators: a trace-driven simulator and a detailed execution-

driven out-of-order processor simulator. One of the primary

considerations that went into our experimental design was

the choice of a workload that would seem appropriate to mo-

bile/wireless devices. The availability of traces from a set

of popular applications used on laptops motivated the de-

velopment of our trace-driven simulator. While these traces

satis�ed the need for a representative workload for the target

environment, they had disadvantages for memory research:

low miss rates and the constraints of trace-driven simulation

(e.g., no detailed processor timing). Thus, the execution-

driven simulator was developed to address the need for a

more detailed processor/memory model and more memory-

intensive benchmarks.

Table 1 shows the parameter values we use to determine

energy consumption and DRAM access delay. These values

were obtained from the Rambus Direct RDRAMmanual [40]

and from an EE Times article [26] on Rambus. At the time

of writing, RDRAM vendor data sheets did not contain suf-

�cient information on power consumption. It is important

to note that precise values will vary from vendor to vendor.

The values we use match the relative values provided by

Rambus. While the values for a particular power state are

taken from the literature, we approximate the power con-

sumption associated with a transition between two power

states as the average of the power consumed in the two

states. The total energy consumption depends on the time

for the transition to complete, also shown in Table 1.

5.1 Trace-Driven Simulation
The trace-driven simulator processes instruction and

data address traces and uses a simpli�ed PADRAM model.

This simulator models a two-level cache hierarchy with a

16KB, direct-mapped level one cache and a 256KB direct-

mapped second-level cache, both caches have 32B cache

blocks. Results for a 4-way associative L2 were qualita-

tively similar to the direct-mapped cache, therefore we omit

them. We also model the individual PADRAM chips and

their associated power state. Each cache is lockup-free and

can have up to eight outstanding misses. In this simula-

tor, we do not model memory bus contention or the internal

DRAM banks. Instead we optimistically assume all requests

to a single PADRAM can be overlapped (i.e., no bank con-

icts). In these studies we only model the transition from

the lower power state to active. The transitions from active

to lower power states are assumed to incur no delay or en-

ergy consumption. These assumptions are removed in our

execution-driven simulator.

For timing considerations (necessary to compute energy

consumption), we use a simpli�ed processor model that exe-

cutes one instruction per cycle, and never stalls due to long

latency operations (i.e., execution only stalls when the max-

imum number of outstanding misses is reached). We assume

a 500Mhz processor clock, the level one cache takes 2 cycles

to access, while the level two cache incurs an additional 10

cycles. We simulate a non-interleaved main memory system

with eight 32Mb PADRAM chips, for a total main memory

capacity of 32MB.

For our trace-driven studies we use instruction traces

from personal productivity applications executing on an In-

tel processor with Microsoft Windows NT. These traces,

provided by the University of Washington Etch project [29],

include instruction and data accesses for several popular ap-

plications typical of those used on laptops today. Table 2

provides information on the applications we use. The �rst

six benchmarks are from the NT traces.

5.2 Execution-Driven Simulation
To overcome the limitations of trace-driven simulation,

we augmented the SimpleScalar execution-driven simula-

tor [5] with a PADRAM model based on the detailed timing

and power speci�cations of Rambus RDRAM. SimpleScalar



Power State/Transtion Power Time

Active 300mW 60ns

Standby 180mW -

Nap 30mW -

Powerdwn 3mW -

Standby ! Active 240mW +6ns

Nap ! Active 165mW +60ns

Powerdwn ! Active 152mW +6000ns

Table 1: Power State and Transition Values: All accesses incur the 60ns Active access time, additional delay

(denoted by the +) is incurred for clock resynchronization.

Benchmark Description Instructions Size
Executed
(Millions) (MB)

acrord32 Adobe Acrobat Reader 3.0 PDF �le reader. 408 9.73

Trace compress SPEC95 version of Unix compress utility. 403 0.849

Driven go SPEC95 version of game go. 315 1.05

netscape Netscape Navigator 3.1 web browser. 92 9.95

powerpnt Microsoft PowerPoint 7.0b slide preparation package. 209 12.5

winword Microsoft Word 7.0 word processor 351 11.2

bzip SPEC2000 compression. 100 180

compress SPEC95 version of Unix compress utility. 100 32

Execution go SPEC95 version of game go. 100 1

Driven gcc SPEC2000 compiler. 100 32

vpr SPEC2000 FPGA placement and routing. 100 37

Table 2: Benchmarks

models a dynamically scheduled processor using a Register

Update Unit (RUU) and a Load/Store Queue (LSQ). We

use a 400Mhz 8-issue processor that can have up to 256 ac-

tive instructions and 128 memory operations. The �rst-level

cache is 32KB, 4-way set-associative with 32B blocks, while

the second-level cache is 256KB, direct-mapped, with 64B

blocks. As above, although speci�c values for a 4-way L2

cache di�er from the direct-mapped cache, overall results

are qualitively similar and thus omitted. Each cache can

have up to 16 outstanding misses. The processor executes

Compaq Alpha binaries.

Our PADRAM memory model uses the values from Ta-

ble 1, but includes further details, such as multiple banks per

chip, open page and close page policies, and various inter-

leaving strategies for mapping physical addresses to speci�c

chips and banks within chips. This simulator provides a

more accurate model of timing at all levels of the memory

hierarchy, including contention at each level and within each

PADRAM device and transitions from higher to lower power

states. In particular, active to either nap or powerdown

takes 8 cycles, standby to nap takes 12 cycles, nap to pow-

erdown takes 61 cycles because we must �rst enter the active

state. Active to standby either takes 1 cycle or 73 cycles,

depending on the DRAM page mode (See Section 6.4.1).
We simulate a non-interleaved main memory system with

eight 256Mb chips for a total capacity of 256MB.

Due to excessive simulation time, we fast-forward the

simulator over the �rst 4 billion instructions, and then sim-

ulate in detail the next 100 million committed instructions.

This allows us to skip over program initialization, however

page placement is based on accesses from the beginning of

program execution (during the fast-forwarding). In addi-

tion to the two SPEC95 benchmarks for which NT traces

also exist (compress and go, above), we use three integer

programs from the SPEC2000 suite (bzip, gcc, and vpr) for

our execution-driven analysis (described at the bottom of

Table 2). These three were chosen because they exhibited

the highest data cache miss ratios. For all benchmarks, we

use the reference input data set.

6. EXPERIMENTAL RESULTS
This section presents our results on power management

for PADRAM. We begin with analysis of static hardware

power state policies and their interaction with page alloca-

tion (Section 6.1). This is followed in Section 6.2 by analysis

of the e�ects of page allocation on dynamic hardware power

management policies described in Section 3. We then in-

vestigate the e�ects of open/close DRAM page policies and

interleaving on energy e�ciency.

The main results from this study are:

1. Cooperative hardware and software for power aware

page allocation can improve main memory energy e�-

ciency, measured in terms of Energy�Delay, by 6% to

55% over the best static policy.

2. Nap mode is the most energy e�cient static policy for

our applications.

3. Power aware page allocation without dynamic hard-

ware support can improve energy e�ciency by up to

30% over static nap, depending on application charac-

teristics.



4. Dynamic hardware schemes do not improve energy ef-

�ciency for random page allocation.

6.1 Static Power State Policies
In this section we evaluate the static policies that uni-

formly place all PADRAM chips in the same power state.

We begin by evaluating PADRAM power management tech-

niques in the context of random physical page allocation. In

other words, the operating system is oblivious to the power

management capabilities of the underlying hardware.

Figure 2 shows the Energy�Delay product for the four

static policies (active, standby, nap, and powerdown) normal-

ized to the active policy for each program. Table 3 shows the

absolute values for runtime, energy, and Energy�Delay prod-

uct. From Figure 2 we see that placing all PADRAM chips

in the nap state provides the lowest Energy�Delay prod-

uct for all applications in both simulations. Nap achieves

approximately 15% of the Energy�Delay of active for the

trace-driven simulations, while it achieves 20% to 40% of

active for the execution-driven results. Powerdown is gener-

ally the poorest performing, followed by active.
These results match our expectations, since powerdown

incurs a signi�cant increase in access delay, while active con-
sumes too much energy when it is not servicing requests.

The notable exception is acrord32, where powerdown is bet-

ter than active. This is due to the low rate at which acrord32

generates DRAM accessess. From Tables 2 and 3 we see

that acrord32 has the lowest rate of DRAM accesses. There-

fore, it still achieves energy savings even though its delay in-

creases. We also note that the Energy�Delay of powerdown
is directly related to the rate at which benchmarks generate

DRAM accesses.

Standby is the next best mode after nap achieving 60%

of active in the trace-driven simulations, and 60% to 70% of

active in the execution-driven simulations. Standby is worse
than nap because the additional time penalty of nap causes
only a slight increase in total run time, while the power

reductions are very large (30mW vs 180mW).

We note that the relative Energy�Delay values for ac-
tive, standby, and nap follow the relative ratios of power

consumption. This is particularly true for the trace-driven

simulations, and is a direct result of the low L2 miss rates

exhibited by those programs (< 1%). The extremely high

time penalty of powerdown is too much for even these low

miss rates, and Energy�Delay increases dramatically.

6.1.1 Impact of Page Allocation
We now examine the bene�ts of sequential-�rst-touch

page allocation over random page allocation for the static

hardware power management schemes. Figure 3 shows the

Energy�Delay of sequential allocation normalized to the

Energy�Delay of random allocation. From Figure 3a we

see that page allocation has very little e�ect on energy ef-

�ciency for active, standby, or nap, using the trace-driven

simulations, producing at most a 6% reduction for nap (go).
For these policies with random allocation, each chip con-

sumes near its minimum energy because the programs have

very low miss ratios. Packing all the program's pages into

the minimum number of chips reduces the unused chips' en-

ergy by very little, which is o�set by the increase in energy

consumption for the more utilized chips. We note that se-

quential page allocation dramatically improves the energy

e�ciency for the powerdown static policy, achieving 30% to

70% of the random allocation. This is because the delay

to transition out of powerdown is extremely long, and con-

sumes a signi�cant amount of energy. When program text

and data are packed into the minimum number of chips,

each chip is likely to statisfy more requests when it reaches

the active state than when pages are randomly spread across

chips. This observation is supported by our data that shows

an increase in the number of references that occur when the

target chip is already in the active state.

In contrast to the trace-driven results, our execution-

driven results (see Figure 3b) show that power aware page

allocation does improve energy e�ciency for the nap pol-

icy by 12% to 30%. In particular, we note that compress

and go, the SPEC95 benchmarks, show larger improvements

than those observed in the trace-driven experiments. This

is due in part because �rst-touch produces lower L2 cache

miss ratios and part to the more detailed processor model

used by SimpleScalar. Recall, our trace-driven simulator

does not model data dependencies or �nite processor re-

sources, which minimizes the e�ects of long latency oper-

ations. Our execution-driven simulator accurately models

these constraints and the corresponding additional delays

when long latency operations cause resources (e.g., instruc-

tion bu�ers) to be overcommitted. Finally, as before, we see

very little improvement for active and standby, while power-

down bene�ts the most from sequential page allocation.

6.2 Dynamic Power State Management
We now examine more sophisticated hardware support

for PADRAM power management. By dynamically deter-

mining each chip's power state based on recent references,

we hope to improve overall energy e�ciency. Figure 4 shows

the Energy�Delay of various dynamic policies normalized to

the static nap policy for our trace-driven simulations using

sequential �rst-touch allocation. Each bar in the graph rep-

resents a di�erent set of thresholds (in nano-seconds) for

transitioning from active to nap (x) and from nap to power-
down (y), represented as x/y. Table 4 shows the raw data

for the static nap and powerdown schemes along with the

best dynamic scheme.

We determined a loose lower bound on the time required

to be spent in a lower power state in order to overcome the

transition costs by analytically computing the penalty vs.

reward for transitioning to the lower power state. We use

that bound to guide the choice of threshold values to explore.

Appendix A provides details on our threshold computation.

Our analysis determined that there was very little bene�t for

remaining in standby, and that the active to nap threshold

should be on the order of 100's of nanoseconds, while the nap
to powerdown threshold should be on the order of 10,000ns.

Our trace-driven simulation results show that thresholds of

100ns/5,000ns produce the best overall Energy�Delay.

From Figure 4 we see that the combination of power

aware page allocation and dynamic hardware policies can

produce Energy�Delay values that are 50% to 94% of the

static nap policy. Five of the six benchmarks achieve 80%

or lower.

Our execution-driven results show that dynamic hard-

ware policies improve energy e�ciency of sequential page

allocation by 42% for bzip, 43% for compress, 50% for go,

55% for gcc, and 30% for vpr over static nap, the best static
policy. Furthermore, this is an overall improvement of 50%

to 60% compared to static nap using random page alloca-
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Figure 2: Static Base Power State Policies and Random Page Allocation, Energy�Delay normalized to active

policy.
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tion. Due to excessive simulation time we did not perform as

exhaustive of an evaluation as with the trace-driven studies.

The best results in the limited experiments we did perform

are produced by threshold values of 0ns between active and
standby, 2,000ns between standby and nap, and 50,000ns

between nap and powerdown. Section 6.4.1 discusses as-

pects of our RDRAM model that produce the 0ns thresh-

old. While further improvements might be achieved by �ne

tuning the thresholds, these results are su�cient to show

that cooperative hardware/software techniques can improve

energy e�ciency.

The energy e�ciency of sequential-�rst-touch page al-

location and dynamic hardware power state management

is signi�cantly better than using a traditional full-power

memory system, e.g., static active. Our cooperative hard-

ware/software schemes achieve from 7% to 20% of the

Energy�Delay for the static active policy for the execution-

driven simulations and from 1% to 10% of the Energy�Delay

for the trace-driven experiments.

An important observation from our simulation results is

that dynamic power state management does not improve en-

ergy e�ciency for random page allocation over the static nap



Benchmark Policy DRAM Run Time Energy Energy�Delay
Accesses (ms) (mJ)

Active 2142947 821.60 1971.84 1.6201
acrord32 Standby 2144482 830.79 1194.39 0.9923

Nap 2140029 836.07 211.85 0.1771
Power Down 2138783 1811.26 598.93 1.0848
Active 3460487 805.80 1933.92 1.5584

compress95 Standby 3460256 806.23 1162.98 0.9376
Nap 3450740 807.27 221.22 0.1786
Power Down 3446425 2465.30 1526.98 3.7645
Active 5306343 631.66 1515.98 0.9576

go Standby 5326190 632.35 913.66 0.5778
Nap 5307126 635.93 192.41 0.1224
Power Down 5397678 3626.58 1970.60 7.1465
Active 927654 186.06 446.54 0.0831

netscape Standby 935725 187.15 269.80 0.0505
Nap 928205 189.73 50.58 0.0096
Power Down 932157 695.25 268.59 0.1867
Active 1890243 419.17 1006.01 0.4217

powerpnt Standby 1888144 420.00 605.71 0.2544
Nap 1895739 422.83 113.25 0.0479
Power Down 1786613 1382.50 554.91 0.7672
Active 6186470 762.86 1830.87 1.3967

winword Standby 6202047 786.38 1120.78 0.8814
Nap 6185615 805.36 221.68 0.1785
Power Down 6180983 3926.53 1757.27 6.9000

Active 493496 124.82 299.58 0.0374
bzip Standby 493351 125.58 189.17 0.0238

Nap 493333 138.78 56.40 0.0078
Power Down 491150 3647.10 982.09 3.5818
Active 171871 115.09 276.21 0.0318

compress Standby 171869 115.11 168.06 0.0193
Nap 171886 125.24 38.16 0.0048
Power Down 171823 3524.68 698.08 2.4605
Active 624912 260.96 626.31 0.1634

go Standby 625651 261.41 385.24 0.1007
Nap 630775 293.45 99.39 0.0292
Power Down 631931 8264.94 2021.63 16.7086
Active 335303 99.78 239.48 0.0239

gcc Standby 335262 100.57 149.20 0.0150
Nap 335813 112.48 39.73 0.0045
Power Down 335857 3406.77 777.38 2.6483
Active 2268727 227.14 545.14 0.1238

vpr Standby 2266131 232.11 385.02 0.0894
Nap 2271568 271.83 191.98 0.0522
Power Down 2272356 13211.38 5216.70 68.9199

Table 3: Raw Data for Static Policies with Random Allocation, Energy�Delay is de�ned in terms of joules�seconds

policy. In particular, for the execution-driven experiments

above, the dynamic policies with random placement are over

an order of magnitude worse than the static nap policy for

two of the benchmarks. This poor performance is a result

of moving to the powerdown state too soon, and incurring

the large delay and corresponding energy consumption to

transition out of powerdown. This overhead can be reduced

by increasing the nap to powerdown threshold, and thus pre-

venting any chip from entering powerdown. We veri�ed this

behavior through simulation, and achieved energy e�ciency

comparable to the static nap policy. Further tuning of the

other thresholds produced only minor bene�ts. We also note

that for sequential page allocation, the higher powerdown
thresholds do not signi�cantly change the results from those

presented above. This is important since we want the dy-

namic polices to produce comparable results to the static

schemes in cases where the operating system is unable to

successfully perform power aware page allocation.

6.3 Frequency-based Page Placement
The primary goal of page placement thus far has been

to cluster all pages into the minimum number of PADRAM

chips. In this section, we present preliminary results from

an alternative placement technique that further re�nes page

allocation based on access frequency. To achieve this, we

�rst construct a histogram of page accesses o�ine. The

results of this pro�le run are then used to determine initial

page placement, starting with the most frequently accessed

page and continuing to the least accessed.

Figure 5 shows the Energy�Delay for both the frequency

and sequential �rst-touch allocation policies and the dy-

namic hardware policy with thresholds of 100ns/5,000ns

normalized to sequential �rst-touch static nap. These re-

sults clearly show that �rst-touch is not the best placement

policy. Compress and go do not show any bene�t since they

both �t entirely on a single chip. Acrord32, netscape, and

powerpoint all reduce the Energy�Delay by approximately



Benchmark Policy Run Time Energy Energy�Delay
(ms) (mJ)

Nap 837.69 211.11 0.1768
acrord32 Power Down 1860.70 383.34 0.7133

Dynamic 100ns/5,000ns 915.84 128.70 0.1179
Nap 807.33 216.26 0.1746

compress95 Power Down 2767.50 457.89 1.2672
Dynamic 100ns/5,000ns 805.96 126.56 0.1020
Nap 636.90 183.14 0.1166

go Power Down 4064.43 682.03 2.7721
Dynamic 100ns/5,000ns 638.39 136.02 0.0868
Nap 190.03 49.89 0.0095

netscape Power Down 724.81 155.85 0.1130
Dynamic 100ns/5,000ns 212.54 35.25 0.0075
Nap 423.28 112.16 0.0475

powerpnt Power Down 1432.95 295.56 0.4235
Dynamic 100ns/5,000ns 453.05 77.43 0.0351
Nap 809.23 218.86 0.1771

winword Power Down 4039.94 1000.87 4.0435
Dynamic 100ns/5,000ns 911.53 195.14 0.1779

Nap 132.77 41.61 0.0055
bzip Power Down 3037.55 340.82 1.0353

Dynamic 2,000ns/50,000ns 122.85 25.95 0.0032
Nap 121.06 32.91 0.0040

compress Power Down 2560.44 291.30 0.7458
Dynamic 2,000ns/50,000ns 115.60 20.21 0.0023
Nap 286.51 85.29 0.0244

go Power Down 6785.82 890.64 6.0437
Dynamic 2,000ns/50,000ns 262.26 45.80 0.0120
Nap 111.84 36.02 0.0040

gcc Power Down 2987.83 447.47 1.3370
Dynamic 2,000ns/50,000ns 101.33 18.89 0.0019
Nap 273.39 134.26 0.0367

vpr Power Down 12199.88 2618.03 31.9396
Dynamic 2,000ns/50,000ns 231.88 112.27 0.0260

Table 4: Raw Data for Static Nap and Power Down and Best Dynamic Policy with Sequential Allocation,
Energy�Delay is de�ned in terms of joules�seconds
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Page Allocation (NT Traces) for Dynamic Policy,
thresholds of 100ns/5,000ns, normalized to sequen-

tial �rst-touch static nap.

20% beyond the values achieved by �rst-touch. Winword

exhibits the largest bene�t of frequency based placement,

achieving 60% of the static nap value, whereas �rst-touch

did not improve energy e�ciency at all.

We are currently investigating online techniques to re-

assign pages based on reference frequency. Our initial im-

plementation reserves 128 physical pages in chip 0, reallo-

cates the 128 most frequently accessed pages from the other

chips to chip 0, and then packs the remaining pages into

the smallest number of chips. We execute the program for a

100ms warmup period to skip initialization, and then sam-

ple page accesses for 2ms. We associate a 10-bit saturating

counter with each physical page, and increment the appro-

priate counter for each page accessed during the sample pe-

riod. At the end of the sample period, the OS sorts the

counters and performs the movement and repacking opera-

tions, and resumes program execution. We include the cost

of page moves as 0.011ms and 0.008mJ, obtained by mea-

suring the energy and delay of a bcopy using our execution-

driven simulator.

The above implementation produces a 10% reduction in

Energy�Delay for winword, the program with the most op-

portunity, over static nap. This is because winword is a long

running program that accesses a large amount of memory.

We did not see any improvement for the other programs.

The other programs either do not run very long or do not

stress the memory system much. Furthermore, the other

programs achieve signi�cant gains from �rst-touch, while

winword does not. We are currently investigating other ap-

plications and other, less hardware intensive, techniques for

obtaining page reference frequency. However, we note that

conventional page reference counting may not directly apply

since large L2 caches can �lter many accesses, whereas it is



L2 misses that dictate DRAM access frequency.

6.4 Alternative DRAM Architectures
In this section we examine the e�ects of two important

DRAM architectural alternatives: DRAM page policy and

interleaving.

6.4.1 Open vs. Close Page Policy
The previous execution-driven results use a 0ns threshold

for transitioning from active to standby. This is a result of

the detailed DRAM model used in those simulations. Most

current DRAM devices support two operating modes: open

page and close page. These modes indicate what occurs

after the DRAM services a request. In open page mode,

data from a DRAM page
1
remains on the sense ampli�ers

in anticipation of future accesses to nearby data. How-

ever, subsequent accesses to a di�erent DRAM page incur

an additional precharge delay before fetching the appropri-

ate DRAM page. In contrast, close page mode immediately

precharges the DRAM bank after an access in an attempt

to avoid the precharge delay. If the same DRAM page is ac-

cessed, it incurs higher delay than the open page technique,

since the data must be fetched again.

The DRAM page policy relates to power management in

that an important di�erence between the active and standby
power states is whether there is data on the sense ampli�ers.

To enter standby all pages must be closed (i.e. precharge all

sense ampli�ers). Furthermore, the resynchronization de-

lay of standby applies only to the column address and data

bus and can be completely overlapped with the row activate

command. Therefore, in close page mode, when there are

no requests to any banks of a chip, it enters standby (0ns

threshold from active), since this will not introduce any ad-

ditional delay, but can reduce energy consumption. This

is the policy used to obtain the previous results. In open

page mode, a device can remain in the active state while it
retains data on the sense ampli�ers. The threshold for tran-

sitioning to standby determines when all DRAM pages on a

device should be closed. For our con�guration, there is also

an additional 73 cycle delay incurred to issue appropriate

commands to close the open DRAM pages.

We use the execution-driven simulator to evaluate the

impact of open vs. close page modes on energy e�ciency.

The trace-driven simulator does not model the PADRAM

devices in su�cient detail to perform this study. We use the

dynamic hardware policies with sequential �rst-touch page

allocation and non-interleaved main memory. Our simula-

tions show that close page mode produces Energy�Delay

values 20% lower than open page mode.

6.4.2 Interleaving
The results thus far do not use any interleaving; physical

addresses are mapped sequentially to each chip, so chip 0

contains physical pages 0 to N-1, chip 1 contains N to 2N-1,

etc. However, we do interleave cache blocks across internal

DRAM banks.
2
This allows sequential cache block accesses

within a page to overlap much of their DRAM latency.

Alternatively, we may get higher performance if we can

spread pages across DRAM chips, potentially exposing more

1
A DRAM page is one row of an internal DRAM bank.

2
RDRAM has 32 internal banks, a maximum of 16 can be

accessed in parallel.

parallelism by reducing DRAM bank conicts. For exam-

ple, we could interleave at the page granularity, such that

physical pages are allocated in a round-robin manner across

chips (e.g., page 0 to chip 0, page 1 to chip 1, etc.). While

this may reduce execution time, it forces many chips to be

active, similar to random page allocation. The operating

system could still pack pages into the minimum number of

DRAM chips, but that produces the same DRAM access

pattern as no interleaving. It also has the additional disad-

vantage of potentially using only a subset of large physically

indexed caches.

Execution-driven simulation results reveal that page-

grain interleaving produces Energy�Delay values close to

random page allocation, as expected. Further experiments

that vary the cache block interleaving within a DRAM chip

reveal no signi�cant di�erences among alternatives.

7. CONCLUSION
In this paper, we have built a compelling case for co-

operative hardware/software policies that can exploit the

power management features o�ered by new PADRAMmem-

ory devices, such as the Rambus RDRAM, to dramatically

improve the Energy�Delay of main memory. We use trace-

driven simulations of a set of personal productivity applica-

tions and execution-driven simulation of integer SPEC2000

benchmarks to evaluate static and dynamic hardware poli-

cies that determine the power states of each memory chip.

We show that statically assigning the nap mode as the base

power mode for all memory chips in a system is a successful

strategy, achieving an Energy�Delay of 15% to 40% of static

active mode. We show that power aware page allocation can

improve energy e�ciency by up to an additional 30%.

Using power-aware page allocation in conjunction with

hardware policies that dynamically adjust the power mode

of each individual memory chip based on thresholds of inac-

tivity can provide 6% to 55% improvement in Energy�Delay

over the best static hardware policy and o�ers 99% to 80%

improvement over a traditional full-power memory system

with random page placement.

There are many opportunities left for future work with

the PADRAM model of memory devices and especially with

the interaction between hardware and software manage-

ment. Following our belief that energy conservation should

become a \�rst class" design goal for higher levels of system

design, many of our plans explore ways to give the OS more

explicit control over PADRAM power modes. This may even

eventually extend into API features that allow some degree

of application-level direction of memory power states. Se-

quential �rst-touch is a simple page allocation scheme. We

may consider other \page coloring" techniques and further

explore the movement of pages between chips to improve

initial placements based on observed access patterns.

We note that our clustered page allocation has other

power-related side-e�ects. It can also be used to reduce

DRAM refresh rates. By compacting physical pages into

the minimum number of internal memory banks, we can po-

tentially eliminate refresh for entire DRAM banks in which

there are no active pages.

The threshold values in our dynamic policy are an im-

portant parameter. Unfortunately, using the same threshold

value for all programs and all PADRAM chips may not pro-

duce the best results. Thus, another possible direction we

are exploring is a dynamic policy that attempts to adap-



tively determine the best threshold values for each chip.

Our dynamic policies have concentrated on the transi-

tion into lower power states. Policies that support pre-

transitioning into higher power states, in anticipation of im-

minent access in a manner analogous to prefetching, may

also have a role to play in improving the Energy�Delay met-

ric of some applications.
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APPENDIX

A. DETERMINING THRESHOLD VALUES
For dynamic power state management, we bene�t by

staying in lower power state, while paying the cost for

transitioning back to active on the next access. If the chip

can stay in the lower power state long enough, the bene�t

could be greater than the cost. Assume Tp, Tn and Ts
are the times of staying in powerdown, nap and standby

to improve the E � D product. Based on these times, we

pick our idle time threshold for transitioning to a lower

power state. Assume Pp, Pn, Ps and Pa are per-chip power

consumption for powerdown, nap, standby and active

states respectively; Pp!a, Pn!a and Ps!a are transition

(resynchronization) power consumption from powerdown,

nap and standby to active; Tp!a, Tn!a and Ts!a are

transition (resynchronization) time from powerdown, nap

and standby to active.

We observe a single independent transition active !

powerdown. Assume E0 and T0 are the original energy

consumption and run time without power state transition.

We have

Enew �Dnew =

(E0 + Tp!aPp!a � (Pa � Pp)Tp) � (T0 + Tp!a)

In order for Enew �Dnew < E0 � T0

Tp >
E0Tp!a + T0Tp!aPp!a + T 2

p!aPp!a

(Pa � Pp)(T0 + Tp!a)

because Tp!a << T0, and Tp!aPp!a << E0, and the

active power is P0 =
E0

T0
, we have

Tp >
Pp!a + P0

Pa � Pp
Tp!a

Now we pick
Pp!a+P0
Pa�Pp

Tp!a as the lower bound of our time

threshold between accesses to a chip for transitioning from

active to powerdown. Similarly, we have

Tn >
Pn!a + P0

Pa � Pn
Tn!a

Ts >
Ps!a + P0

Pa � Ps
Ts!a

Substituting values from our RDRAM con�guration (Pp =

3mW;Pn = 30mW;Ps = 180mW;Pa = 300mW;Pp!a =

152mW;Pn!a = 165mW;Ps!a = 240mW; Tp!a =

6000ns; Tn!a = 60ns; Ts!a = 6ns; P0 = Pa = 300mW ),

we have Tp > 9131ns, Tn > 103ns, Ts > 27ns.

As we can see from the above lower bound, Tn is in the

same magnitude as Ts, and considering the extra hardware

overhead of standby state, we don't remain in standby. The

threshold of active to nap should be in magnitude of 10
2ns,

and active to powerdown in 10
4ns.


