
Massive Arrays of Idle Disks For Storage Archives

Dennis Colarelli, Dirk Grunwald�
dennisc,grunwald � cs.colorado.edu

Dept. of Computer Science
Campus Box 430

University of Colorado,
Boulder 80309-0430

July 26, 2002

Abstract

The declining costs of commodity disk drives is rapidly
changing the economics of deploying large amounts of
online or near-line storage. Conventional mass stor-
age systems use either high performance RAID clus-
ters, automated tape libraries or a combination of tape
and disk. In this paper, we analyze an alternative de-
sign using massive arrays of idle disks, or MAID. We
argue that this storage organization provides storage
densities matching or exceeding those of tape libraries
with performance similar to disk arrays. Moreover, we
show that with effective power management of indi-
vidual drives, this performance can be achieved using
a very small power budget. In particular, we show that
our power management strategy can result in the per-
formance comparable to an always-on RAID system
while using �������	��
 the power of such a RAID system.

1 Introduction

Disk arrays are typically designed to improve perfor-
mance or reliability. Existing RAID systems provide
performance by striping data across multiple drives, al-
lowing the use of multiple heads during reading and
writing. Reliability is provided by duplication or par-
ity blocks. RAID systems rely on multiple drives for

00-7695-1524-X/02 $17.00 (c) 2002 IEEE

both performance and reliability. Robotic tape systems
are designed to reduce the wait time of manual tape
loading and increase storage density to provide large
amounts of storage. Historically, tape libraries are pre-
ferred over drive arrays used for large (100+ TB) stor-
age environments. In part, this is due to the costs of
purchasing and powering large disk arrays.

Consider a scientific computing center that stores
data on a variety of magnetic tape media; such a system
may have ��������� tape cartridges and store more than
500TB of data. The growth of storage at such centers
can be large, exceeding ��� TB/month, and the amount
of storage transferred each day can exceed 680GB.
Both the increase in storage and the rate at which stor-
age is accessed are increasing because faster comput-
ers allow more accurate models that can use and gen-
erate more data. For example, the European Center for
Medium-Range Weather Forecasts (ECMWF) expects
their storage demands to grow to 1,500TB of storage
by 2004 [1]. The Stanford Linear Accelerator Center’s
BaBar experiment has a database holding over 500TB
and growing at more than 500GB daily [2].

Large tape libraries can accommodate many tape
drives; for example, the StorageTek 9310 tape libraries
can support up to 80 T9940 tape drives [3]. Each car-
tridge for the T9940 drives can record 60GB of un-
compressed data, and each 9310 library can support up
to 6000 tapes, providing a total of 360TB of uncom-
pressed storage. Tape libraries are designed to work
with different generations of media, although the tape
drives usually have limited capability. The T9940 tape
drive takes 18 seconds to load a tape, 90 seconds to

1

rewind the tape and has an average search time of 41
seconds. Each tape can be subjected to a minimum of
10,000 loads/unloads. Migrating from one generation
of media to another is problematic simply because of
the volume of media and the (relatively) limited num-
ber of drives. Many supercomputer sites that transition
from one media format to another require over a a year
to complete the transition.

Disk systems provide an alternative to large tape li-
braries, but raise problems not encountered with tape
systems [4]. Current disk drive capacities are approx-
imately the same as tape – as of May, 2002, 160GB
drives are plentiful and inexpensive (about US$180).
However, conventional disk-based RAID systems con-
sume significantly more power than comparable tape
systems.

For point of comparison, we’ll assume that 60GB
drives are used. A single StorageTek 9310 tape library
consumes 1.1Kw/h of electricity. Storing 1,000TB of
information would require three STK9310 libraries (at
a total of 3.3Kw/h) and some number of tape drives.
The T9940 tape drive consume 85 watts of power. If
we assume half of the full compliment of drives is used
(120), a further 11.5Kw/h of electricity is consumed,
assuming the drives are constantly in use. A consumer
grade 60GB IDE disk drive consumes ��������� watts.
Ignoring the energy cost of controllers, backplanes and
additional components needed by high performance
RAID systems, it would take 144Kw/h to power a disk
array similar to the tape system previously described.
Assuming a 24x7 data center operation, it would cost������� �!� to power the tape library system vs. $91,500
to power the the disks in the disk array.1

This estimate ignores the additional electronics
needed to actually build a disk array, such as RAID
controllers, high performance servers, Fibre Channel
switches and so on; thus, it is an underestimate. Ad-
ditional power would be needed for cooling since the
disk array dissipates significantly more heat than a tape
library.

There are advantages to using a disk system for data
archiving – the data would be available much quicker,
allowing better utilization of the supercomputers, and a
single homogeneous disk array may be easier to man-

1This estimate is based on an electricity rate of "�# $&% cents/Kw/h
rate for commercial customers; electric utility rates have held fairly
constant over the last 10 years at '("�# $)% cents/Kw/h for commer-
cial customers [5].

age. Our hypothetical tape library would have an ag-
gregate bandwidth of �*����� MB/s, while the disk ar-
ray could provide a peak bandwidth of �+���,���������
MB/s. However, existing RAID systems provide more
capability than needed by such large storage environ-
ments. Analysis of mass storage systems in a super-
computer environment has shown that 50% of the data
is written and never accessed [6] and a further 25% of
the data is accessed only once. In our more recent anal-
ysis of a supercomputer storage system, we found that
of the �-�� �������,���� file operations we examined, 60%
of the ���,��������.��� unique files were used by a single
operation (e.g. read or write) and 84% were used by
two or fewer operations. This file access pattern may
be common in supercomputing centers, because it is
more cost effective to store data than to recompute it
and some centers must maintain data for longitudinal
studies that span decades. Although such systems need
a large amount of reliable storage, they have little need
of either the high performance or increased reliability
of conventional RAID systems, at least at this scale.

We propose to build large storage arrays using mas-
sive arrays of idle disks, or MAIDs. The design goals
for our system are: reducing the energy to large storage
arrays while maintaining acceptable performance, in-
creasing storage density and maintaining performance
similar to conventional disk arrays or tape libraries.
Unlike existing RAID systems, MAID systems are
designed to emphasize performance and energy effi-
ciency. Since performance, while important, is sec-
ondary, MAIDs can be constructed using inexpensive
commodity disk drives and inexpensive servers. Like
traditional RAID systems, MAID systems may empha-
size caching and workload prediction for good perfor-
mance, but the performance implications of these de-
signs differs; if a MAID system were constructed fol-
lowing the design decisions of a conventional RAID
system, it would have good performance but waste
power.

In this paper, we use trace-driven simulation to com-
pare the performance of a simple MAID cluster to a
fully active drive array. Our simulator combines both
performance and power estimates using a disk power
model derived from measurements of sample drives.
Since supercomputer archival storage is one of the
most immediate applications for large MAID arrays,
we have used file access traces from a supercomputing
center to drive our simulations. Our analysis demon-

2

strates that MAID offers performance comparable to a
constantly-on drive array for workloads representative
of archival storage systems while using about 15% of
the power of such and array.

In / 2, we measure and characterize the performance
and power of commodity IDE disk drives. We then
describe the workload we used to evaluate our initial
design and variants of the MAID systems we have ex-
plored. In / 5 we compare the performance and energy
efficiency of MAID systems to conventional RAID
drive arrays.

2 Disk Performance And Power Mod-
eling

The design of MAID arrays requires accurate models
for both drive performance and for drive power. We
use a combination of existing performance models and
measurements from sample IDE drives to develop a
unified performance and power model. Our simulator
model is simply an extension to a analytic model de-
signed for SCSI drives [7]; however, we verified that
the important aspects of the model are also appropriate
for IDE drives. To make our model and analysis con-
crete, we measured various characteristics of several
samples of a 20GB IDE drive; specifically, we used
the IBM 60GXP Model IC35L020AVER07 because
there is copious information available and we had sev-
eral of the drives. The drive supports the ATA-5 stan-
dard and UltraDMA Mode 5 (100MB/sec) and uses a
load/unload mechanism to avoid head-to-disk contact
on startup.

Shriver et al [7] model the seek time within a sin-
gle head using a bipartite equation (combining a linear
portion and a sub-linear portion). We wrote a program
to seek from cylinder to cylinder using the native IDE
command interface. Using this program, we collected
the data shown that appears to match the prior models
sufficiently well. We then computed a least-squares fit
for the more linear portion of the data and used that
to estimate the value where the non-linear model takes
over. We then used a non-linear regression model to
fit the remaining data. The resulting parameters for the
seek time in the Shriver et al [7] model are shown in
Figure 1 where 610000 and 0�132 are in units of sectors
using a linear block address.

Most drive performance models focus on estimating

the effect of seeks, rotational delay and drive cache
policies [8, 7]; we are also concerned with the time
needed to spin-up disk drives. Although some papers
have modeled spin-up performance, the models were
either for laptop drives (which have different charac-
teristics) or relied on vendor specifications of typical
behavior [9, 10]. We found that disks had wildly vary-
ing times to transition from power-off to idle; most list
7-15 seconds, but we found values of 3-8 seconds until
first byte read to be more typical. Spinning down the
sample disk for even a short period requires a relatively
long spin-up period (�4��56� seconds). The spin-up pe-
riod increases almost linearly with time once the disk
begins to spin down. Once the platters have stopped
rotating, spin-up time is relatively constant. The ini-
tial delay is caused by head loading – once the drive is
placed in standby or sleep mode, the head is moved off
the disk. Moving the head back requires servo calibra-
tion to accurately track the head as it moves over the
drive.

We approximate the spin-up delay using a two-piece
linear model; this slightly over-estimates the delay in
spinning up the drive but means that our performance
estimates for spinning up the drive are conservative.

As with spin-up performance, few papers have pro-
vided drive energy models for large IDE drives; the
models were either for laptop drives (which have dif-
ferent characteristics) or relied on vendor specifica-
tions of typical behavior [9, 10].

Disk drives have two components that contribute to
the overall power demands of the drive. The first is the
12V spindle motor used to spin the platters and drive
the head motors. The other is the 5V supply used to
power the analog-to-digital converters, servo-control
DSP’s and interface logic. Figure 2 show the power
used on the 12V and 5V supplies, respectively, as the
drive transitions from idle 7 standby 7 idle. During the
idle period, we conduct numerous seeks. We believe
the large peak (from �98�����:;2	7<������:;2) is due to
drive spin-up and the short peak (at �=�-������:;2) is
due to unparking the head. We couldn’t observe sig-
nificant power spikes due to the seeks – although a
seek takes considerable power, the actuator is actively
driven for a very short period of time, meaning the total
energy from seeks is fairly small. We observed that the
average power values are appropriate approximations
for the idle (6.6 Watts) and standby (1.03 Watts) peri-
ods. We use similar measured data from many drives

3

>@?A?�BDC 1E: ?DF 0!132�GIH
JKL KM 0�132�HN�5O�.�����P�N��5Q8A�!SRT�-�UWV�X 0�132 ZY<0!132\[<���-�����5O�������P�]��56^��	�_RT�- UI`badc 0�132e0�132gf<���-����

Figure 1: Seek Time Model For Sample Disks

-5

0

5

10

15

20

25

30

0 2000 4000 6000 8000 10000 12000

Time?(ms)

P
o

w
er

(W
)

(a) Motor Power

0

0.5

1

1.5

2

2.5

3

0 2000 4000 6000 8000 10000 12000

Time?(ms)

P
o

w
er

(W
)

(b) Electronics Power

Figure 2: Power from the 12V and 5V Supply for the
Spindle and Actuator

to calibrate our simulator for the disk spin-up power
and drive power; the values described for this partic-
ular drive are representative of many of the drives we
measured.

3 Workload

A massive disk array is clearly targeted for very large
workloads. It is difficult to assess the efficacy of such
a system without some model or trace of activity from
a similar system; if a system is configured with many
drives and there are few requests, the power savings
can be dramatic.

Rather than use synthetic workloads or extrapolate
behavior from small traces, we have evaluated the sys-
tems using a combination of small workloads repre-
sentative of common workstation file access, a trace of
database access and another trace constructed from a
workload using logs of file-level access to a large stor-
age system in use at a supercomputing facility. Due to
space constraints, we will only report on the results for
the supercomputer center. We first describe the traces
used to evaluate the system and the performance met-
rics we used.

3.1 Traces For Evaluation

The first version of MAID we are evaluating presents
a block-based interface. To evaluate this version, we
used traces of file system activity that was reduced to a
sequence of block requests (read, write) to a disk array.
For each request, we recorded an arrival time for that
request; requests are issued no sooner than the origi-
nal arrival time. We also recorded the block number
and operation type. In general, we must assume that
each request must be completed before any further re-
quests can be issued; for example, a read request for
a directory may need to complete so the O/S can de-
termine the blocks needed for future read. Without ex-
plicit dependence information, we assumed that each
operation depended on all prior operations. In certain

4

Attribute Trace B
Prior Requests In Trace 9,000,000
Prior Files In Trace 4,615,188
Prior Reference Volume In Trace 600,304,523 MB
Requests In Trace 200,000
Days In Trace 'h%
Unique Files In Trace 174,178
Reads 31,050 3,967,016 MB
Write 14,252 725,285 MB
Create 143,533 5,211,031 MB
Purge 11,165 2,140,427 MB

Table 1: Characteristics of Workload Used For Evalu-
ation

circumstances, we were able to synthesize dependence
information or determine that dependences did not ex-
ist. We determined the traces from the supercomputer
center were largely non-dependent.

The file-level traces are the “cello96” traces pro-
vided by HP labs; these are a more recent set of trace
similar to the “Cello92” traces [11]. The database
traces were block level accesses from a 32GB RAID
disk that was split into two partitions; the first was a
swap partition and the second was used for an oracle
database. Since this workload easily fits into a contem-
porary single drive, we scaled the drive sizes to use 10
3GB drives; although these are artificially small drives,
they allow us to examine power and performance for a
small workload. For space reasons we report only on
the supercomputer center traces.

The supercomputer center trace was synthesized
from a trace of a storage system that has been in use
for many years and uses a combination of disk, robotic
tape and hand-mounted tape systems. The storage sys-
tem actions can either create a file, write to an exist-
ing file, read from a file or purge a file. The trace we
used contained a total of 10,489,550 transactions cov-
ering 5,511,019 unique files. The read, write and cre-
ate operations result in an average total of 1,871GB of
data transfers per day; this is approximately 22MB/s of
sustained activity throughout each day, although peak
bandwidth demands are higher.

The supercomputer file-level traces provide a rich
source of information for approximating a workload
that might use very large disk arrays system, but they
arise from a mixed-media storage system. We selected
two sub-traces from the workload and used these to
characterize MAID performance; we only report on

one here due to space constraints. Salient character-
istics of the trace is shown in Table 1. The trace was
from late in the year. We used the references prior
to the start of the trace to populate a file system in
our simulated disk array. For the trace, we allocated
space for 4,615,188 files taking a total of 600TB of
storage. Each ’read’, ’write’ or ’create’ would cause a
file to be created. Each ’purge’ would cause a file to
be deleted, making the space available for other files.
Following this initial population of the disk array, we
would then simulate the access of 200,000 file opera-
tions; only read, write and create operations actually
generated disk transactions. The simulated disk array
contained 1120TB of storage organized as 7,000 disks
holding 160GB each.

Both of our evaluations traces are compromises. The
database trace is small, but uses application level block
operations. The supercomputer center configuration
presents a more realistic number of drives, but synthe-
sizes the location of block operations.

3.2 Metrics for Evaluation

There are two performance metrics we use to compare
system configurations: energy and request response
time. Energy is significant because the amount of en-
ergy required to spin-up a drive is considerably more
than that required to keep the drive spinning. Hence a
power model that would spin-up drives too frequently
would consume more energy than simply leaving the
drives spinning. Additionally, frequently spinning up
drives reduces their lifetime. Request response time
provides and accurate basis for performance compari-
son, particularly when using trace data in a simulation.

4 The Initial MAID Design

At first blush, the design of the MAID system is sim-
ple compared to the performance-oriented design of
RAID systems; unlike RAID systems, there are no par-
ity drives and thus no optimization of parity decluster-
ing or the like. However, maintaining the balance be-
tween performance and energy efficiency means there
are several design decisions to consider.

The first decision is whether we should use data mi-
gration or duplication (caching). If migration is used,
the intent would be to move storage to a cluster of

5

0

500

1000

1500

2000

2500

3000

0 0.7 1.1 1.4 1.6 1.8 1.9 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 <5 <6 <7 <8 <9 <10

T
h

o
u

sa
n

d
s

Read Write Create Purge

0

2

4

6

8

10

12

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253 265 277 289 301 313 325 337 349 361

M
ill

io
n

s

Trace Day

C
u

m
m

u
la

ti
ve

 N
u

m
b

er
 O

f
O

p
er

at
io

n
s

Purge
Create
Write
Read

(a) Logarithm of File Size, Broken Down By Op-
eration Type

(b) Cumulative Size of File Operations Over
Time, Broken Down By Operation Type

Figure 3: Characteristics of the supercomputing center workload showing file size distribution and file access
rates. The file system is shown on a logarithmic scale on the horizontal access; there are a large number of
“small” files (Y��-!i�j) and also many “large” files (from �-Dk@5-5-5��-!l�i�j).

“more active” drives, or to distribute the data based on
the likelihood of access; that data would not be dupli-
cated on the remaining drives. Alternatively, we can
dedicate a small number of drives as “cache drives”
that would cache recently used data. Cache drives
would always remain active to improve performance
and reduce the need to spin-up idle data drives. Mi-
gration provides more usable storage, since no dupli-
cation is necessary, and is appropriate when distribut-
ing storage across a small number of drives. It may
also provide better performance because varying usage
patterns of the data will automatically aggregate the in-
formation on a few drives.

However, migration requires a map or directory
mechanism that maps the storage across all drives. By
comparison, caching requires maps or directories pro-
portional to the size of the cache disks. If a MAID
system is to hold 6,000 drives and total 1,000GB of
storage, it is difficult to see how to build an efficient
map or directory for such all drives in such a large sys-
tem. Even maintaining a map for the drives that make
up the cache may be difficult.

There is also the question whether caching should
be used at all. We could construct the MAID system
as a simple RAID-0 and power down individual drives
based on timers or access pattern heuristics. Caching
decisions vary depending on the temporal and spatial
locality in the file accesses. For large systems, we ex-
pect that file system metadata will be frequently ac-

cessed as people navigate a large MAID; this metadata
would probably benefit from being cached. It is less
clear if the actual data contents should cached. Traces
of file accesses on supercomputer mass-storage sys-
tems indicate that most data is written and never ac-
cessed. This same pattern will probably hold for data
archiving in large companies, although data mining, in-
ventory and other database operations may access the
data more frequently. If large arrays are used for media
servers or as storage containers for large proxy caches,
different access patterns are likely – we would expect
some degree of reference locality in a media server as
users start, stop and replay music or videos.

These access patterns will also govern the caching
policy in a MAID system – should writes be cached?
All reads? Only small requests (which may be likely to
be meta-data)? The answer to these questions depend
on the usage patterns of MAID systems, and we ex-
pect those patterns to differ from typical RAID access
patterns.

The second decision is whether to provide a file sys-
tem or block interface. File-level access would pro-
vide many benefits since accesses in large tertiary sys-
tems typically involves reading large files (e.g. climate
model data or movies). Using file system information
to copy or cache entire files would provide a perfor-
mance benefit. For our initial study, we chose to use
a block interface as this would let us deploy a MAID
system across a broader array of systems; it also lets us

6

Active Drives Passive Drives

Cache Manager Passive Drive Manager

Virtualization Manager

Requests via iSCSI

Figure 4: MAID configuration with caching

use block-level traces to quantify the performance of
a MAID system. We may be able to capture the ben-
efits of file system knowledge by prefetching blocks;
this will be examined later when we can collect larger
and more representative traces from a deployed MAID
system.

4.1 Design choices used in this study

For our initial study, we choose to examine a non-
migratory, block-level design. Figure 4 shows a
schematic of the system design. The system is di-
vided into zero or more “cache drives” that remain
constantly spinning; the remaining “data drives” are al-
lowed to spin-down following a varying period of in-
activity. We assume that a large MAID system will be
used by a number of clients using some form of storage
virtualization. For our prototype we plan on providing
an iSCSI interface since this provides an inexpensive
block-level interface. Requests from one or more ini-
tiators is directed to the set of virtual targets.

Three parameters were used in the simulation stud-
ies: power management policy, data layout and cache
use. Power management is controlled by a simple non-
activity policy, where drives that have not seen any re-
quests for a specified period are spun down, or an adap-
tive spin-down policy. The adaptive power manage-
ment policy either lengthens or shortens the spin-down
period, based on a recent request history to each drive.

Data layout is either linear, with successive blocks

being placed on the same drive, or striped across mul-
tiple drives. Blocks are grouped into “chunks” of 1MB
to facilitate cache management and striping. The width
of a stripe is limited to ten drives, which we assume to
be reasonable to address both performance and power.

The cache parameter indicates the number of drives
of the array which will be used for cache.

Simulation components consist of a fixed number
of drives, some of which may be used as cache, a
cache manager which implements the cache protocol, a
power manager which enforces the power management
policies, and a virtualization manager which controls
data layout.

When a request arrives at the virtualization manager
it is split in to some number of “physical” requests,
predicated on the data layout policy. If no caching is
enabled, requests are passed directly to the data drives.
With caching, requests are checked in the cache di-
rectory. Requests that hit in the cache are sent to the
cache drives and returned to the virtualization manager.
Reads that miss in the cache are passed on to the data
drives. Writes that miss in the cache are written to the
to the cache, and written to the data drives when the
target data drives transition from standby to active, typ-
ically from a read miss.

The write policy was designed to avoid spinning up
idle drives. We assume that there will be limited reuse
of data, and thus there is a low probability that any
item will be read from cache and actually delay a disk
spin-up; however, each write must be confirmed to sta-
ble storage, and storing the writes on the active drives
should defer many drive spin-ups.

The power manager monitors request activity for all
of the data drives. When requests arrive they are sent to
the appropriate drive. Upon completion the request is
returned and the spin-down interval timing is initiated.

Finally the virtualization manager coalesces all re-
lated physical requests and completes the original re-
quest.

These design choices were predicated on our target
workload. We are currently investigating other options
for different workloads and methods that adapt policies
for the workload presented to the system.

7

100.0%

15.0% 15.0% 15.0% 15.0% 16.0% 15.9% 16.0% 15.9%
St

ri
pe

d,
 A

lw
ay

s
O

n,
 N

o
C

ac
he

L
in

ea
r,

 F
ix

ed
, N

o
C

ac
he

St
ri

pe
d,

 F
ix

ed
, N

o
C

ac
he

L
in

ea
r,

 A
da

pt
iv

e,
 N

o
C

ac
he

St
ri

pe
d,

 A
da

pt
iv

e,
 N

o
C

ac
he

L
in

ea
r,

 F
ix

ed
, C

ac
he

St
ri

pe
d,

 F
ix

ed
, C

ac
he

L
in

ea
r,

 A
da

pt
iv

e,
 C

ac
he

St
ri

pe
d,

 A
da

pt
iv

e,
 C

ac
he

Maid Configuration

0

20

40

60

80

100

E
ne

rg
y

R
el

at
iv

e
T

o
A

lw
ay

s-
O

n
St

ri
pp

ed
 C

on
fi

gu
ra

tio
n

(P
er

ce
nt

ag
e)

(a) Relative energy for different MAID configurations

0.303s 0.312s 0.309s 0.312s 0.311s

0.682s
0.649s

0.720s

0.651s

St
ri

pe
d,

 A
lw

ay
s

O
n,

 N
o

C
ac

he

L
in

ea
r,

 F
ix

ed
, N

o
C

ac
he

St
ri

pe
d,

 F
ix

ed
, N

o
C

ac
he

L
in

ea
r,

 A
da

pt
iv

e,
 N

o
C

ac
he

St
ri

pe
d,

 A
da

pt
iv

e,
 N

o
C

ac
he

L
in

ea
r,

 F
ix

ed
, C

ac
he

St
ri

pe
d,

 F
ix

ed
, C

ac
he

L
in

ea
r,

 A
da

pt
iv

e,
 C

ac
he

St
ri

pe
d,

 A
da

pt
iv

e,
 C

ac
he

Maid Configuration

0

A
ve

ra
ge

 R
eq

ue
st

 R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

(b) Performance for different MAID configurations

Figure 5: Energy And Performance Comparison for Differing MAID Configurations

8

5 Results

Figure 5 shows the energy and per-request response
time performance for seven different MAID configura-
tions; we have examined a number of other traces and
configurations, but these illustrate the primary point of
our research: intelligent power control of large very
RAID clusters can yield performance comparable to an
always-on disk array with significantly reduced power.

The figure shows seven configurations in four
groups. A “striped” configuration uses a RAID-0 or-
ganization where blocks are striped across multiple
drives2 We used a stripe group of ten drives, since
that saturates the I/O bandwidth of the host system.
A “linear” organization allocates data within a drive;
this would result in fewer drives being spun up for a
particular I/O than in the striped configuration, but can
suffer from greater contention. These figures show dif-
ferent power management policies. The “full” power
management policy always leaves each drive spun up.
The “fixed” power management policy spins down any
given drive following a specific period of no activity
(512 seconds in this case). The “adaptive” policy uses
a moving-average estimator for the idle period prior to
spinning down a drive.

Lastly, cache configurations use 1% of the total drive
budget.

From left to right, we show the energy and perfor-
mance for a striped, full power system with no cache.
Energy is given as a percentage of the always on,
striped, no cache configuration. Note that we only
measure energy from drives. No estimate was made
for the overhead of virtualization, cache management,
etc. For this study we were primarily interested in how
power management techniques and cache behavior ef-
fect energy consumption in comparison to a similar
system without these capabilities.

Performance is the sum of the response time for each
I/O request. The full system time was the same for all
configurations (i.e. the request stream could be satis-
fied with no delay by each configuration). The remain-
ing groups show both fixed and adaptive policies for
striped with no cache; striped with a cache; linear with
no cache; and, linear with a cache.

Clearly, the full-power configuration (i.e. a con-

2In our initial study, we’re primarily concerned with non-
redundant configurations.

ventional RAID-0 system) has the best performance;
it also consumes the most energy because the drives
are always on. There were some surprises in the re-
maining results. We had originally expected that the
cache would benefit the “small” files seen in the super-
computer center traces; in studies using file system and
database workloads, caches were essential to maintain-
ing high performance. However, for this workload, the
cache drives actually reduced performance. Analysis
indicated that this occurs because of the lack of local-
ity in the workload. Successive requests that hit in the
cache drive compete with read misses that are written
to the cache and dirty cache elements written to back-
ing store for the I/O bandwidth on the few number of
cache drives.

We had also expected that a linear data layout would
be more energy efficient than a striped configuration,
since fewer drives would be spun up for each re-
quest. However, the supercomputer center workload
has many large transfers; this causes longer I/O queues
for each drive, increasing both the response time and
the time that those drives are spun-up. The greater
power usage by the cache over the other non-cached
power management configurations is due to the lack
of block reuse in the cache. The 1% difference is at-
tributed primarily to the cache comprising 1% of all
drives.

Other workloads which exhibited greater locality
saw a larger benefit from the use of cache drives.

6 Prior Work

Most work on disk drive power management to date
has been concerned with mobile computers. Low
power advances in microprocessors have increased the
percentage of total system power consumed by drives
to 20-30% and more [12]. While the characteristics
of drives used for mobile computing differ from those
used in large storage arrays, the research in this area is
valuable for our studies.

Douglis et al. [12] compare fixed-threshold strate-
gies against optimal offline algorithms. The authors
also hint at predictive spin-down strategies. In [13]
adaptive spin-down policies change the spin-down
threshold based on perceived inconvenience to the user.
Greenawald [10] discusses spin-down techniques with
the assumption that arrivals of I/O requests are a Pois-

9

son process; the traces we examined have very bursty
behavior. The author also studies how the reliability
of drives is impacted by repeatedly spinning drives up
and down.

Li et al. [9] look at several issues including fixed
spin-down policies, performance impact as perceived
by the user, adding memory as a disk cache, delayed
writes and name-attribute caches. They conclude that a
fixed spin-down policy with a small delay time can re-
duce almost all the energy consumed by the disk drive.
This motivated our design - although the workloads are
very different, their observations also appear

A machine learning approached is used by [14].
In their multiplicative-weight algorithm, input is taken
from a set of ”experts” which are other algorithms
which make predictions. Predictions are combined
with the goal of minimizing total error. They use Herb-
ster and Warnmuth’s variable-share algorithm which
takes some weight of each expert’s, and shares it with
the other experts. The algorithm gives the most cre-
dence to those experts performing well in the recent
past.

7 Summary and Future Work

This work demonstrates that intelligent power manage-
ment of large disk arrays can yield significant energy
savings with only a modest performance penalty.

The MAID configurations examined in this study in-
dicate that the success of a particular configuration is
somewhat workload dependent.

With the large requests in this workload, striping
improved performance over a linear data placement
(which we expected) at no significant energy costs
(which we didn’t expect).

Our workload exhibited little locality. Consequently
the cache configurations impeded performance and re-
quired more power than non-cache configurations. The
lack of performance and energy gains with cache drives
has motivated us to look at cache protocols that can
intelligently handle low-locality workloads. Addition-
ally we are looking at distributed caches to benefit both
performance and energy savings.

As an alternative to using caches, we are investigat-
ing a migration scheme where blocks which are fre-
quently referenced are moved to drives which remain
spun up longer and infrequently referenced blocks are

moved to drives which may be spun-up less frequently.
The power management schemes require spinning

up drives many more times than would be expected in
an always on array. Based on the frequency of spin-
ning the drives up, we are concerned about expected
drive lifetime. As such, we are investigating redun-
dancy methods to insure data integrity. We are partic-
ularly interested in redundancy techniques which re-
quire little power.

We are in the process of building a 2TB MAID pro-
totype and have received funding to build a 20TB pro-
totype.

8 Acknowledgements

We would like to thank Bernie O’Lear, Gene Harano
and Bill Anderson for their help in defining supercom-
puter workloads. Michael Neufeld provided us with
experimental results of power used in disk state transi-
tions and seek time performance. We would also like to
thank the anonymous reviewers for their many helpful
suggestions. This was was funded in part with support
from the National Science Foundation through grant
CCR-9988548 as well as support through the Colorado
Center for Information Storage.

References

[1] Jan 2002. http://searchstorage.
techtarget.com/ originalContent/
0,289142,sid5 gci788800,00.html.

[2] Jan 2002. http://slac.stanford.edu/
BFROOT/www/Public/ Comput-
ing/Databases/ Indes.shtml.

[3] StorageTek Corp. 9310 tape silo infor-
mation. http://www.storagetek.com/products/
tape/9310/9310 sp.htm—, 2001.

[4] D.A. Sanders, L. M. Cremaldi, V. Eschenburg,
D. N. Lawerence, C. Riel, D. J. Summers, and
D. L. Petravick. Redundant arrays of ide drives.
In IEEE Transactions on Nuclear Science, 2001.

[5] Department of Energy. His-
torical electricity rate tables.
http://www.eia.doe.gov/cneaf/electricity/page
/at a glance/sales tabs.html, 2001.

10

[6] Ethan Miller and Randy Katz. An analysis of
file migration in a unix supercomputing environ-
ment,. In USENIX Winter Technical Conf. Pro-
ceedings, pages 421–433, 1993.

[7] Elizabeth A. M. Shriver, Arif Merchant, and John
Wilkes. An analytic behavior model for disk
drives with readahead caches and request reorder-
ing. In Measurement and Modeling of Computer
Systems, pages 182–191, 1998.

[8] C. Ruemmler and J. Wilkes. An introduction to
disk drive modeling. IEEE Computer, 27(3):17–
28, 1994.

[9] Kester Li, Roger Kumpf, Paul Horton, and
Thowas Anderson. A quantitative analysis of disk
drive power management in portable computers.
In USENIX Winter Technical Conf. Proceedings,
pages 279–291, 1994.

[10] P. Greenawalt. Modeling power management for
hard disks, 1994.

[11] C. Ruemmler and J. Wilkes. UNIX disk access
patterns. In Proc. of the Winter 1993 USENIX,
pages 405–420. USENIX, Jan 1993.

[12] Fred Douglis, P. Krishnan, and Brian Marsh.
Thwarting the power-hungry disk. In Proceed-
ings of the 1994 Winter USENIX Conference,
1994.

[13] Fred Douglis and P. Krishnan. Adaptive disk
spin-down policies for mobile computers. Com-
puting Systems, 8(4):381–413, 1995.

[14] David P. Helmbold, Darrell D. E. Long, and
Bruce Sherrod. A dynamic disk spin-down tech-
nique for mobile computing. In Mobile Comput-
ing and Networking, pages 130–142, 1996.

11

