
DreamWeaver: Architectural Support for Deep Sleep

David Meisner Thomas F. Wenisch
meisner@umich.edu twenisch@umich.edu

Advanced Computer Architecture Lab
University of Michigan

Abstract
Numerous data center services exhibit low average utilization lead-
ing to poor energy efficiency. Although CPU voltage and frequency
scaling historically has been an effective means to scale down
power with utilization, transistor scaling trends are limiting its
effectiveness and the CPU is accounting for a shrinking fraction
of system power. Recent research advocates the use of full-system
idle low-power modes to combat energy losses, as such modes pro-
vide the deepest power savings with bounded response time impact.
However, the trend towards increasing cores per die is undermin-
ing the effectiveness of these sleep modes, particularly for request-
parallel data center applications, because the independent idle pe-
riods across individual cores are unlikely to align by happenstance.

We propose DreamWeaver, architectural support to facilitate
deep sleep for request-parallel applications on multicore servers.
DreamWeaver comprises two elements: Weave Scheduling, a
scheduling policy to coalesce idle and busy periods across cores
to create opportunities for system-wide deep sleep; and the Dream
Processor, a light-weight co-processor that monitors incoming net-
work traffic and suspended work during sleep to determine when
the system must wake. DreamWeaver is based on two key con-
cepts: (1) stall execution and sleep anytime any core is unoccu-
pied, but (2) constrain the maximum time any request may be
stalled. Unlike prior scheduling approaches, DreamWeaver will
preempt execution to sleep, maximizing time spent at the systems’
most efficient operating point. We demonstrate that DreamWeaver
can smoothly trade-off bounded, predictable increases in 99th-
percentile response time for increasing power savings, and strictly
dominates the savings available with voltage and frequency scaling
and timeout-based request batching schemes.

Categories and Subject Descriptors C.5.5 [Computer System Im-
plementation]: Servers

General Terms Design, Measurement

Keywords power management, servers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’12, March 3–7, 2012, London, England, UK.
Copyright c© 2012 ACM 978-1-4503-0759-8/12/03. . . $10.00

1. Introduction
Modern data centers suffer from low energy efficiency due to en-
demic under-utilization [8]. The gap between average and peak
load, performance isolation concerns, and redundancy all lead to
low average utilization even in carefully designed data centers; con-
servative over-provisioning and improper sizing frequently result
in even lower utilization. Low utilization leads to poor energy ef-
ficiency because current servers lack energy proportionality—that
is, their power requirements do not scale down proportionally with
utilization. Architects are seeking to improve server energy propor-
tionality through low-power modes that conserve energy without
compromising response time when load is low.

Unfortunately, the confluence of technology and software scal-
ing trends is undermining the continued effectiveness of these low-
power modes, particularly for interactive data center applications.
On the one hand, device scaling trends are compromising the ef-
fectiveness of voltage and frequency scaling (VFS) [27, 30, 32, 51]
due to the shrinking gap between nominal and threshold voltages
[19], limiting both the range and leverage of voltage scaling. Recent
research shows that, beyond the 45nm node, circuit delay grows
disproportionately as voltage is scaled [15]. Figure 1 illustrates how
the power-performance trade-off of VFS grows worse each gen-
eration. On the other hand, the prevalence of request-level paral-
lelism in server software combined with the trend towards increas-
ing cores per die is blunting the effectiveness of idle low-power
modes, which place components in sleep states during periods of
inactivity [3, 16, 21, 35, 37, 40, 41, 46]. In uniprocessors, the deep
sleep possible with full-system idle low-power modes (e.g., Pow-
erNap [40, 41]) can achieve energy-proportionality if mode tran-
sitions are sufficiently fast. However, for a request-parallel server
application, full-system idleness rapidly vanishes as the number of
cores grows—the busy and idle periods of individual cores (each
serving independent requests) hardly ever align, precluding full-
system sleep. Figure 2 illustrates the poor scalability of PowerNap
for a Web serving workload when CPU utilization is fixed at 30%
(i.e., load is scaled with the number of cores to maintain constant
utilization; see Section 5.1 for methodology details).

In this paper, we propose DreamWeaver, architectural support
to facilitate deep sleep for request-parallel applications on multi-
core servers. DreamWeaver comprises two elements: the Dream
Processor, a light-weight co-processor that monitors incoming net-
work traffic and suspended work during sleep to determine when
the system must wake; and Weave Scheduling, a scheduling policy
to coalesce idle and busy periods across cores to create opportu-
nities for system-wide deep sleep while bounding the maximum
latency increase observed by any request.

Like prior work on scheduling for sleep, DreamWeaver rests
on the fundamental observation that system-wide idle periods will

1 1.5 2 2.5
0

20

40

60

80

100

Relative Frequency Slowdown

R
el

at
iv

e
P

ow
er

 (
P

er
ce

nt
)

65 nm/4 Cores
45 nm/8 Cores
32 nm/16 Cores
22 nm/32 Cores
16 nm/64 Cores

Figure 1: Voltage and frequency scaling. Future technol-
ogy nodes require a disproportionate reduction in clock fre-
quency for a given voltage reduction, breaking the classic
assumption that dynamic power scales down cubically with
frequency. Hence, VFS is becoming less effective: a 16nm
processor requires a 2x slowdown for 50% power savings
compared to 1.25x at 65nm. Data from [15].

1 2 4 8 16 32
0

20

40

60

80

100

Cores

P
ow

er
 S

av
in

gs
 (

P
er

ce
nt

)

Figure 2: Full-system idle low-power mode. Power sav-
ings for a Web server at 30% utilization using a full-system
idle low-power mode (e.g., PowerNap [41]). System-level
idleness disappears with multicore integration, rendering
coarse-grain power savings techniques ineffective.

not arise naturally in request-parallel systems; rather, per-core idle
periods must be coalesced by selectively delaying and aligning
requests. Prior work has proposed batching requests, using simple
timeouts to control performance impact, to reduce the overhead
of transitioning to/from sleep modes [5, 21, 46]. However, the
fundamental flaw of timeout-based batching approaches is that
they only align the start of a batch of requests. Since requests
tend to have highly-variable long-tailed service times [25], there is
nearly always a straggling request that persists past the rest of the
batch, destroying the opportunity to sleep. A recent case study of
request batching for Google’s Web Search reveals an unappealing
power-performance trade-off—even allowing a 5x increase in 95th-
percentile Web search response time provides only ∼15% power
savings for a 16-core system [42]. Naı̈ve batching is not effective
because it either (1) incurs too large an impact on response time if
the batching timeout is too large, or (2) fails to align idle and busy
times if the timeout is too small.

The central innovation that allows Weave Scheduling to solve
the problems of batching is preemptive sleep; that is, DreamWeaver
will interrupt and suspend in-progress work to enter deep sleep.
Weave Scheduling is based on two simple policies: (1) stall execu-
tion and sleep any time that any core is unoccupied, but (2) con-
strain the maximum amount of time any request may be stalled.
DreamWeaver will preempt execution to sleep when even a sin-
gle core becomes idle (i.e., a request completes), provided that no
active request has exhausted its allowable stall time. Thus, Dream-
Weaver tries to operate a server only when all cores are utilized—its
most efficient operating point.

The Dream Processor is a simple microcontroller that tracks ac-
cumulated stall time for suspended requests and receives, enqueues,
and counts incoming network packets during sleep. When enough
packets arrive to occupy all idle cores, or when the allowable stall
time for any request is exhausted, the Dream Processor wakes the
system to resume execution. The Dream Processor bears similari-

ties to the hardware support for Barely-alive Servers [6] and Som-
niloquy [3], but is simpler because it need not run a full TCP/IP
stack.

We present a two-part evaluation of DreamWeaver. First, we an-
alyze the performance impact of Weave Scheduling using a soft-
ware prototype that emulates the Dream Processor on the system’s
primary CPU. Through a case study of the popular open-source
Solr Web search system, we show that Weave Scheduling allows an
8-core system to sleep 40% of the time when allowed a 1.5x slack
on 99th-percentile response time. We also use our prototype to val-
idate the performance predictions of our simulation model. Second,
we evaluate the power savings potential of DreamWeaver, examine
its scalability, and contrast it with other power management ap-
proaches using Stochastic Queuing Simulation (SQS) [44], a vali-
dated methodology for rapidly simulating the power-performance
behavior of data center workloads. Our simulation study demon-
strates that DreamWeaver dominates the power-performance trade-
offs available from either VFS or batch scheduling on systems with
up to 32 cores on four data center workloads, including Google
Web search.

2. Background
We begin with a brief overview of the challenges that make power
management for request-parallel data center workloads difficult.
Then, we review related work on server power management.

2.1 Power Management Challenges
Power management for data center workloads is challenging be-
cause many of these workloads are latency-sensitive. Moreover, it
is growing more challenging with multicore scaling [28]. Servers
must meet strict service level agreements (SLAs), which prescribe
per-request latency targets that must be met to prevent stringent
penalties. SLAs are typically based on the 99th-percentile (or simi-

Time

Core 0

Core 1

Core 2

Core 3

Idle Idle

Time

Core 0

Core 1

Core 2

Core 3

Idle Idle

Time

Core 0

Core 1

Core 2

Core 3

Idle Idle

Time

Core 0

Core 1

Core 2

Core 3

Idle Idle

(a) Clustered Arrivals & Uniform Request Size (b) Clustered Arrivals & non-Uniform Request Size

(c) Non-Clustered Arrivals & Non-Uniform Request Size (d) Batch Scheduling for Idleness

50% Utilization 50% Idle 50% Utilization 25% Idle

50% Utilization 10% Idle 50% Utilization 30% Idle

Figure 3: Full-system idleness varies widely as a function of arrival and request size patterns. As seen in (a), a workload with
clustered arrivals (high coefficient of variation, or “Cv”) and uniform request sizes (low Cv) maximizes idleness. Notice that in this
case, core-level idleness and full-system idleness are the same (50%). If requests are non-uniform in size, as in (b), full-system idleness
decreases (25%) although core-level idleness does not (50%). Similarly in (c), with both non-clustered request arrivals (low Cv) and
non-uniform request sizes (high Cv), full-system idleness is significantly decreased. One technique to mitigate these effects is batching,
shown in (d), which increases request latency and creates artificial idle periods.

lar high percentile) latency, not the mean. Meeting this requirement
is complicated by workloads with long-tailed and unpredictable
service times [25]. The majority of existing literature (particularly
works that have focused on power management) has concentrated
on the average latency of server systems; we instead set targets
for 99th-percentile latency, but our results generalize to other high
quantiles.

Furthermore, data center workloads are often highly variable.
For instance, for Web serving, the difference between the mean
and 99th-percentile latency is over a factor of four. This constraint
means designers must take care: a change that has a small impact on
mean response time may have a large effect on the 99th percentile.

2.2 Related Work
Previous literature has demonstrated that reducing power at low
utilization is critical to increasing server efficiency [8, 41]. System
designers use numerous approaches to improve energy efficiency
of under-utilized systems. These approaches fall into three broad
classes: cluster-grain approaches, active low-power modes, and idle
low-power modes. Though our study is focused on idle low-power
modes, we briefly discuss the merits and challenges of each.

Cluster-grain approaches to energy-proportionality. The cause
of poor efficiency in servers is rooted in their low utilization and
lack of energy-proportional components. Techniques such as dy-

namic cluster resizing and load dispatching [4, 12–14, 26, 33, 47]
or server consolidation and virtual machine migration [10, 49] seek
to increase average server utilization, which improves efficiency on
non-energy-proportional hardware. By moving the work of multi-
ple server onto a single machine, fixed power and capital costs may
be amortized.

Though this approach is effective for many workloads, there
are several data center workload paradigms for which consolida-
tion/migration is inapplicable. For many workloads of increasing
importance (e.g., Web search, MapReduce), large data sets are dis-
tributed over many servers and the servers must remain powered to
keep data accessible in main memory or on local disks [39, 42]. In
the case of Web search, clusters are sized based on memory capac-
ity and latency constraints rather than throughput—the entire clus-
ter must remain active to serve even a single search request with
acceptable latency [42]. Task migration typically operates over too
coarse time scales (minutes) to respond rapidly to unanticipated
load. In latency-sensitive interactive workloads, compacting multi-
ple services onto the same machine may make service increasingly
vulnerable to the effects of variance (e.g., traffic spikes). Low uti-
lization is common for this exact reason; well-designed services are
intentionally operated at 20-50% utilization to ensure performance
robustness despite variable load [8].

SSD
Fans

NIC

DRAM Main CPUs

zzz

zzz

Main Server

Dream Server
Dream CPU

Request

SSD
Fans

NIC

DRAM Main CPUs

Dream CPU

Wake
Transition

Nap
Transition

Response

SSD
Fans

NIC

DRAM Main CPUs

zzz

zzz

Dream CPU

Dream CPU queues up requests
until num. requests == num. cores

Requests are forwarded to and
processed by main CPUs

If not 100% utilized, main server is
pre-empted to sleep

Wake
Transition SSD

Fans

NIC

DRAM Main CPUs

Dream CPU

Dream CPUs wakes main server
when per-request timers expire

!

Main Server

Dream Server

Main Server

Dream Server

Main Server

Dream Server

Figure 4: DreamWeaver. The DreamWeaver system is composed of a main server with PowerNap capabilities [41] and Dream Processor
that implements Weave Scheduling. The Dream Processor is a modest microcontroller that is isolated from the power state of the rest of
a server. It is responsible for modulating the power state of the main system, buffering incoming requests from the network, and tracking
any delay of requests while in the nap state. The nap processor resembles hardware such as in Barely-alive Servers [6] or Somniloquy [3],
but requires far less processing power because it does not directly process or respond to packets.

Server-level active low-power modes. Many hardware devices of-
fer active low-power modes, which trade reduced performance for
power savings while a device continues to operate. Active low-
power modes (e.g., VFS) improve energy efficiency if they provide
superlinear power savings for linear slowdown. VFS is well-studied
for reducing CPU power [27, 30, 32, 38, 48, 51]. Unfortunately, the
effectiveness of VFS is shrinking with technology scaling (see Fig-
ure 1) as decreases in voltage result in increasingly disproportionate
increases in circuit delay [15]. Active low-power modes have also
been proposed for disks [11, 24]. Whereas active low-power modes
are largely orthogonal to our study, we compare the effectiveness of
DreamWeaver to voltage and frequency scaling to provide a frame
of reference for our results.

Sever-level idle low-power modes. Many devices also offer idle
low-power modes, which provide even greater power savings than
the most aggressive active low-power modes [22, 41]. One of the
most attractive properties of idle low-power modes is that they offer
fixed latency penalties. These modes are characterized by their
transition time Ttr: the time to enter or leave the low-power mode.
When Ttr is small relative to the average service time, requests only
experience a slight delay [41]. Whereas active low-power modes
can increase the 99th-percentile response time significantly, small
Ttr minimally alters it.

The deepest component energy savings can typically be ex-
tracted only when a component is idle. Idle low-power modes have
been explored in processors [39, 45], memory [17, 18, 37], network
interfaces [3], and disk [11]. Unfortunately, current per-core power
modes (e.g. ACPI C-states or “core parking”) save less than 1/Nth
of the power in an N core processor because support circuitry (e.g.,
last-level caches, integrated memory controllers) remain powered
to serve the remaining active cores [29]. The Intel Nehalem pro-
cessor provides a socket-grained idle low-power mode through its
“Package C6” power state, which disables some of this circuitry,
but the incremental power savings over the per-core sleep modes
is small. Nevertheless, processors typically consume only 20-30%
of a server’s power budget, while 70% of power is dissipated in
other devices (e.g., memory, disks, etc.) [41]. PowerNap [40, 41]
proposes to use full-system sleep to save energy during system idle
periods, however, the prior study did not consider the implications
of multicore scaling on idleness.

Alternatively, some authors have proposed scheduling back-
ground tasks or other work during primary-application idle periods
[20, 23]; these mechanisms are orthogonal to our study.

2.3 Scheduling for energy efficiency
Idleness depends heavily on the workload running on a server. The
amount of idleness observed at individual cores and over the system
as a whole can differ drastically depending on workload character-
istics. We illustrate the factors affecting idleness in Figure 3 for a
four core system with a fixed utilization. If all requests arrive at the
server at the same time and are of equal length (Figure 3(a)), all
core-level idle periods align. Only in this degenerate case are core-
level and system-level idleness equal. In Figure 3(b), the timing of
request arrivals remain the same, but the request lengths vary; the
amount of system-level idleness is reduced. Additionally varying
request arrival timing, in Figure 3(c), further reduces system-level
idleness. Finally, Figure 3(d) illustrates the effect of batch schedul-
ing; though it is not possible to change request sizes, it is possible
to alter the effective arrival pattern by delaying requests.

Elnozahy et al investigated using request batching (similar to
what is shown in Figure 3(d)) to leverage idle low-power modes
in uniprocessors [21]. DreamWeaver’s contribution differs in three
regards. First, DreamWeaver’s request alignment algorithm is dif-
ferent; it is based on per-request stall constraints, it initiates ser-
vice immediately once sufficient requests have arrived to fill all
processing slots, and it suspends/resumes in-progress execution.
In contrast, Elnozahy et al implement a simpler algorithm: re-
quests are accumulated during a predefined batching window and
released upon timeout. Furthermore, rather than imposing a per-
request latency constraint, their approach tunes the timeout period
over coarse intervals in a control-loop. Second, we consider the
consequences of idleness and request skew for multicore systems;
the previous study seeks to reduce transition penalties in a unipro-
cessor. Finally, the previous study was concerned only with pro-
cessor power; one of our key observations is that non-CPU power
management is critical to achieve energy-proportionality. A recent
case study of request batching for Google’s Web Search concludes
that it provides an unappealing power-performance trade-off [42].

Several other prior scheduling mechanisms bear similarities to
DreamWeaver in that they seek to align or construct batches of
requests, for example, ecoDB [34] and cohort scheduling [36].
EcoDB introduces two techniques: using DVFS and delaying re-
quests to batch SQL requests with common operators that can be
amortized. Cohort scheduling seeks to maximize performance by
scheduling similar stages of multiple requests together to increase
the effectiveness of data caching. In contrast, DreamWeaver intro-
duces delays to increase usable idleness; it is agnostic of the under-
lying software (i.e., the requests need not be similar) and depends
only on statistical effects. All of these techniques take advantage of

Time

Core 0

Core 1

Core 2

Core 3

Timeout

Time

Core 0

Core 1

Core 2

Core 3

All cores assigned requests Timeout Request complete

Nap Nap NapNap

Figure 5: Weave Scheduling example. Weave Scheduling is an algorithm for intelligently delaying, preempting, and executing requests
to maximize the fraction of time a multicore CPU is fully utilized while providing an upper-bound on per-request latency increase. The
example on the left demonstrates an individual request exceeding its maximum delay. Although the system is underutilized, the system
transitions out of the nap state because Core 0’s request experienced a timeout. On the right, we demonstrate an example of preemption.
At first, requests are delayed until all cores can be occupied and then the system transitions out of the nap state. The system remains active
until Core 3’s request finishes and then the system preempts the unfinished requests. Finally, Core 1’s request experiences a timeout and
the system resumes to meet the maximum delay constraint.

the insight that handling requests as they arrive may not be optimal
for performance or energy efficiency.

3. DreamWeaver
DreamWeaver increases usable idleness by batching requests to
maximize server utilization whenever it is active while ensuring
that each request incurs at most a bounded delay. Our approach
builds on PowerNap [40, 41], which allows a server to transi-
tion rapidly in and out of an ultra-low power nap state. PowerNap
places an entire system (including memory, motherboard compo-
nents, and peripherals) in an application-software–transparent deep
sleep state during idle periods. PowerNap reduces power consump-
tion by up to 95% while sleeping. Though PowerNap already ap-
proaches energy-proportionality (energy consumption proportional
to utilization) in uniprocessor servers, it requires full-system idle-
ness. As shown in Figure 2, there is little, if any, opportunity for
PowerNap in lightly- to moderately-utilized large-scale multicore
servers.

3.1 Hardware mechanisms: the Dream Processor
The baseline PowerNap design requires a sever (and, hence, all
of its components) to transition between active and idle states in
millisecond timeframes. Furthermore, it requires an operating sys-
tem without a periodic timer tick, and software/hardware support
to schedule wake-up in response to software timer expiration. The
original PowerNap study [41] outlines these software and hardware
requirements in greater detail, we focus here on new requirements.

DreamWeaver presents several additional implementation chal-
lenges. The largest challenge lies in handling the expiration of re-
quest timeouts and arrival of new work while the system is napping.
Under PowerNap, handling the arrival of new work is simple—the
system wakes up. Under DreamWeaver, however, the system must
keep track of the number of idle cores and be able to defer arriving
requests (while tracking their accumulated delay) without waking.
A second challenge lies in preempting in-process execution to enter
the nap state.

DreamWeaver addresses these requirements through the addi-
tion of a dedicated Dream Processor that coordinates with the op-
erating system on the main processor(s) to manage sleep and wake

transitions. The functionality of the Dream Processor is summa-
rized in Figure 4. During operation, the primary OS uses the Dream
Processor to track the assignment of requests to cores and the accu-
mulated delay of each request. The primary OS notifies the Dream
Processor each time a new request is created (e.g., because an in-
coming packet is processed), assigned one or more cores for exe-
cution, or completes. When a core becomes idle, the primary OS
is responsible for preempting work on all cores and triggering a
sleep transition. Upon transition, the primary OS passes the Dream
Processor a list of active requests, the accumulated delay for each
and the number of idle cores. Then, it hands control to the Dream
Processor, which tracks the passage of time and continues to oper-
ate the network interface, while tracking the accumulated delay for
each request. Using its own hardware timers, the Dream Processor
wakes the system when any request’s accumulated delay reaches
the threshold.

Network packets that arrive during nap are received and queued
by the Dream Processor. When the system wakes, the Dream Pro-
cessor returns the accumulated delay of each request to the pri-
mary OS and then replays the delivery of queued packets through
the network interface. Each arriving packet is assumed to create a
new single-core request, and the Dream Processor wakes the sys-
tem when the number of queued packets equals the number of idle
cores. Hence, the number of queued packets is bounded by the
number of cores and never grows large. While the Dream Processor
could operate a complete TCP/IP stack, this is not necessary; only
a layer-2 interface is needed to receive and log arriving packets. A
more sophisticated Dream Processor may be able to identify pack-
ets that require minimal processing or can be deferred (e.g., TCP
ack packets).

Since the Dream Processor operates continuously (including in
the nap state), it is essential that its power requirements are low.
Hence, it operates using its own dedicated memory and does not
access any system peripherals except the network interface. The
Dream and main processors communicate through programmed I/O
(i.e., no shared memory). As the Dream Processor performs rela-
tively simple tasks, it can be implemented with a low-power micro-
controller. Several recent studies have evaluated auxiliary proces-
sors and network interfaces with similar capabilities, for example,
Barely-alive Servers [6] and Somniloquy [3]. Our Dream Proces-

sor also is similar, albeit with considerably simpler requirements,
to the service processors in existing IBM and HP server systems.
These service processors perform a variety of environmental, tem-
perature, and performance monitoring, maintenance, failure log-
ging, and system management functions. They usually operate a
complete TCP/IP stack to provide integrated lights-out functional-
ity in contrast to the simple layer-2 and programmed I/O interfaces
of the Dream Processor.

3.2 Weave Scheduling
Weave Scheduling improves energy efficiency by aligning service
and idle times as much as possible, such that all cores are simul-
taneously active or idle. Our key intuition is to stall service any
time that any cores are unoccupied, even if that means preempting
requests that are in progress to go to sleep. During stalls, we in-
voke PowerNap to save energy. By allowing execution only when
all cores are busy, DreamWeaver maximizes energy efficiency—the
power required to operate the system is amortized over the maxi-
mum amount of concurrent work. If strictly implemented, this pol-
icy guarantees that all core-grain idleness is exploited at the system
level.

Of course, such an approach could result in massive (potentially
unbounded) increases in response time. To limit the impact on re-
sponse time, we constrain the maximum amount of time any request
may be stalled. Hence, if not all cores are occupied, but at least
one request in the system has accrued its maximum allowable stall
time, we resume service and allow all cores to execute until that
request completes. When service proceeds due to exhausting a re-
quest’s allowable stall time, some core-grain idleness is lost (cannot
be used to conserve energy). However, the maximum stall thresh-
old bounds the response time increase from Weave Scheduling; we
simply choose this bound based on the amount of slack available
between the current 99th-percentile response time and that required
by the SLA.

We illustrate the operation of Weave Scheduling in a 4-core sys-
tem in Figure 5. On the left, we demonstrate the stall threshold
mechanism. Service is initially stalled and the system is napping.
Then, the request at Core 0 reaches its maximum allowable delay
(timeout). Request processing then resumes and all current requests
are released (even though Core 3 is idle) until the request at Core
0 finishes. Subsequently, the system will again stall and nap. On
the right, we demonstrate the behavior when all cores become oc-
cupied. The system is initially stalled and napping. Then a request
arrives at Core 3, occupying all cores and starting service. As soon
as the first request completes (at Core 3), the system again stalls and
returns to nap. Shortly after, the request at Core 1 reaches timeout.
Hence, service resumes and continues until the request at Core 1 is
finished.

4. Prototype Evaluation
We evaluate DreamWeaver in two steps. In this section, we inves-
tigate its performance impact with a proof-of-concept prototype.
We use these results to validate the performance predictions of our
simulation approach. In Section 5, we use simulation to explore
DreamWeaver’s impact on power consumption.

4.1 Methodology
To assess the performance impact of DreamWeaver, we have con-
structed a software prototype that implements Weave Scheduling.
Our prototype models the functionality of the Dream Processor
with a software proxy that executes on the main CPU. Because
servers with PowerNap capabilities are not currently commercially
available, we cannot directly measure power savings from Dream-
Weaver; we defer this investigation to our simulation-based studies.

1.0 1.2 1.4 1.6 1.8 2.0
99th-Percentile Latency (Normalized to nominal)

0

20

40

60

80

100

Fr
a
ct

io
n
 o

f
T
im

e
 i
n
 N

a
p

Prototype

Simulation (SQS)

Figure 6: DreamWeaver prototype vs. simulation valida-
tion. This figure illustrates the accuracy of our simulation en-
vironment to predict the fraction of time a DreamWeaver server
spends in the nap state. As we increase the predefined maxi-
mum delay a request can experience, the available full-system
idleness increases as a function of 99th-percentile latency. One
can see that the simulation (“Simulation”) makes reasonable es-
timates of our prototype system (“Prototype”).

We study the impact of DreamWeaver on a Web Search system
modeled after that studied in [42] using the Solr Web Search plat-
form. Solr is a full-featured Web indexing and search system used
in production by many enterprises to add local search capability to
their Web sites. Our system serves a Web index of the Wikipedia
site [2], which we query using the AOL query set [1]. We believe
this is the best approximation of a commercial Web search system
that can be achieved using open source tools without access to pro-
prietary binaries and data.

We emulate the behavior of the Dream Processor through a soft-
ware proxy. Instead of sending queries directly to the Solr system,
queries are sent to the proxy, which controls their admission to Solr.
The software logic in the proxy mirrors that of the Dream Proces-
sor, however, the code runs on a core of the main CPU rather than
a dedicated Dream Processor. The proxy tracks the number of ac-
tive queries in the system and the accumulated delay of each query.
When the system is awake, queries are passed immediately from the
proxy to Solr via TCP/IP. We have confirmed that the addition of
the proxy has negligible impact on the response time or throughput
of Solr. When the system emulates nap, the proxy buffers incoming
packets and uses timers to monitor accumulated delay. We imple-
ment the preemptive sleep called for by Weave Scheduling using
Linux’s existing process suspend capabilities; whenever the system
enters the nap state, a suspend signal is sent to all Solr processes.
The proxy assumes that all incoming TCP/IP packets correspond to
a new query for the purposes of determining when to awake from
nap. A Resume signal is sent to Solr upon a wake transition. Tran-
sition delays are emulated through busy waits in the proxy.

4.2 Results
We now present the results of our prototype system and compare it
to our simulation infrastructure used in Section 5. Specifically we
compare the sleep-latency tradeoff of the two evaluation method-
ologies. In Figure 6 we provide the time spent in sleep as a function
of 99th-percentile latency as provided by our prototype (“Imple-

Table 1: Server Power Model. Based on data from Google [9]
and HP [50].

Power (% of Peak) CPU Memory Disk Other

Max 40% 35% 10% 15%
Idle 15% 25% 9% 10%

mentation”) and our simulation infrastructure (“SQS”). When al-
lowed a 1.5x slack on 99th-percentile response time, DreamWeaver
allows the prototype system to sleep 40% of the time. In contrast,
the opportunity to sleep with PowerNap alone is negligible. Fur-
thermore, the figure clearly demonstrates that the performance pre-
dictions of our simulation model agree well with the actual behav-
ior of the prototype DreamWeaver system.

5. Power Savings Evaluation
While our prototype allows us to validate the performance impacts
of DreamWeaver, the lack of PowerNap support in existing servers
precludes measuring power savings. In this section, we use simula-
tion to investigate DreamWeaver’s power-performance impact on a
variety of workloads over several multicore server generations.

5.1 Methodology
We evaluate the power savings potential of DreamWeaver and con-
trast it with other power management approaches using the Big-
House simulator [44]. This simulator leverages Stochastic Queu-
ing Simulation (SQS), a validated methodology for rapidly simu-
lating the power-performance behavior of data center workloads.
SQS is a framework for stochastic discrete-time simulation of a
generalized system of queuing models driven by empirical pro-
files of a target workload. In SQS, empirical interarrival and ser-
vice distributions are collected from measurements of real sys-
tems at fine time-granularity. Using these distributions, synthetic
arrival/service traces are generated and fed to a discrete-event sim-
ulation of a G/G/k queuing system that models server active and
idle low-power modes through state-dependent service rates. SQS
allows real server workloads to be characterized on one physical
system, but then studied in a different context, for example on a sys-
tem with vastly more cores (by varying k), or at different levels of
load (by scaling the interarrival distribution). Furthermore, SQS en-
ables analysis of queuing systems that are analytically intractable.
Performance measures (e.g., 99th-percentile response time) are ob-
tained by sampling the output of the simulation until each reaches
a normalized half-width 95% confidence interval of 5%. Further
details of the design and statistical methods used in SQS appear
in [43, 44]. SQS has been previously used to model Google’s Web
search application [42], and its latency and throughput predictions
have been validated against a production Web search cluster.

SQS does not model the details of what active system compo-
nents are doing (e.g., which instructions are executing, what mem-
ory locations are accessed). However, these are not relevant to un-
derstanding idle periods and scheduling effects, hence, more de-
tailed simulation models (e.g., instruction or cycle-accurate simu-
lators) are unnecessary.

Low-Power Modes. Our power model assumptions for the sys-
tem (Table 1) are based on the breakdowns from Google [9] and
HP [50] and published characteristics of Intel Nehalem [29]. We
model idle low-power modes through exceptional first service; that
is, when a system is napping, the service rate of the corresponding
server in the queuing model is set to zero and a latency penalty is
incurred when the first request is serviced after idle.

As a point of comparison, we also model voltage and frequency
scaling (VFS), by varying the service rate. We map core count to

a corresponding technology node and power-performance scaling
curve as shown in Figure 1, using data from [15]. We explore
a range of power-performance settings by exhaustively sweeping
static frequency and corresponding voltage settings. It is important
to note that we optimistically allow the system to pick any arbitrary
voltage/frequency setting although most processors only provide
a few discrete points. Our VFS results should be viewed as an
estimate of the potential of voltage and frequency scaling, they do
not model any particular policy for selecting voltages. It is possible
that a scheme that dynamically tunes frequency could improve
slightly over our VFS estimates, though we expect such gains to
be minimal because our experiments operate a server at a steady
utilization.

Workloads. We collect empirical interarrival and service distri-
butions from several production server workloads. These distribu-
tions are derived from week-long traces of departmental servers and
from the Google Web Search test cluster as described in [42, 44].
Table 2 describes each workload and summarizes important in-
terarrival and service statistics: for each distribution, we include
the mean (Avg.), standard deviation (σ), and coefficient of varia-
tion (Cv).

Using these empirical distributions, we can independently scale
arrival and service rates (i.e., without changing the distributions’
shapes) to simulate higher and lower utilization. Moreover, we can
replay stochastically-generated request sequences against arbitrary
queuing models, including models for multicore chips far larger
than are built today.

5.2 Results
Power-latency tradeoff compared to other techniques. We first
contrast DreamWeaver with alternative power management ap-
proaches. We consider systems assuming a fixed throughput and
evaluate the latency-power tradeoffs. It is important to note that
nearly any power savings techniques will undoubtedly increase la-
tency. If latency-at-any-cost is paramount, the best system design
may discard power management. Instead, the question we pose is:
Given an allowable threshold to increase 99th-percentile response
time, what is the best way to save energy and how much can we
save?

We contrast our mechanism (“DreamWeaver”) with four other
power management approaches. First, we compare against Pow-
erNap as proposed in [41] (“PowerNap”). We initially assume an
aggressive transition latency of 100 µs for both PowerNap and
DreamWeaver because the goal of this work is to evaluate the abil-
ity of these techniques to exploit multicore idleness, not to mitigate
transition latencies. We examine sensitivity to longer transition la-
tencies below. Second, we compare it against Core Parking (“Core
Parking”). We optimistically assume that cores can be parked dur-
ing all core-grain idle time, ignoring transition penalties. Under
this assumption, Core Parking subsumes approaches that consoli-
date tasks onto fewer cores to reshape core-grain idle periods (e.g.,
to lengthen them). Furthermore, we compare against a timeout-
based batching mechanism (“Batch”) based on the approach of El-
nozahy et al [21]. Finally, we compare to voltage/frequency scaling
(“VFS”), as described in Section 5.1.

4-Core Server. We first show the results for a server with
four cores. The relative power savings of each of the considered
power savings techniques is shown in Figure 7. Core Parking,
Socket Parking, and PowerNap each yield only a single latency-
performance point per system configuration and workload. In con-
trast, DreamWeaver, Batch, and VFS each produce a range of
latency-power options. We present each of the four workloads with
load scaled such that the server operates at 30% average utilization.
The horizontal axis on each graph shows 99th-percentile latency

Table 2: Workload Characteristics.

Workload Interarrival Service Description
Avg. σ Cv Avg. σ Cv

DNS 1.1s 1.2s 1.1 194ms 198ms 1.0 DNS and DHCP server
Mail 206ms 397ms 1.9 92ms 335ms 3.6 POP and SMTP servers
Search 319µs 376µs 1.2 4.2ms 4.8ms 1.1 Google Web Search [42]
Apache 186ms 380ms 2.0 75ms 263ms 3.4 Web server

1.0 1.5 2.0 2.5 3.0
99th-Percentile Latency (Normalized)

0

20

40

60

80

100

P
o
w

e
r

S
a
v
in

g
s

(P
e
rc

e
n
t)

Core Parking

Socket Parking

PowerNap

VFS

Batch

DreamWeaver

(a) Apache

1.0 1.5 2.0 2.5 3.0
99th-Percentile Latency (Normalized)

0

20

40

60

80

100

P
o
w

e
r

S
a
v
in

g
s

(P
e
rc

e
n
t)

Core Parking

Socket Parking

PowerNap

VFS

Batch

DreamWeaver

(b) DNS

1.0 1.5 2.0 2.5 3.0
99th-Percentile Latency (Normalized)

0

20

40

60

80

100

P
o
w

e
r

S
a
v
in

g
s

(P
e
rc

e
n
t)

Core Parking

Socket Parking

PowerNap

VFS

Batch

DreamWeaver

(c) Mail

1.0 1.5 2.0 2.5 3.0
99th-Percentile Latency (Normalized)

0

20

40

60

80

100

P
o
w

e
r

S
a
v
in

g
s

(P
e
rc

e
n
t)

Core Parking

Socket Parking

PowerNap

VFS

Batch

DreamWeaver

(d) Search

Figure 7: Comparison of power savings for 4-core system. This figure demonstrates the power savings of low-power modes as a
function of 99th-percentile latency for a 4 core server. Per-core power gating (“Core Parking”) can save a modest amount of power for
a small latency increase because its transition latency is low, however it cannot reduce power in non-core components (e.g., last-level
caches or the memory system). Attempting to put an entire socket into a low-power sleep mode (“Socket Parking”) provides roughly
the same benefit as per-core power gating; less idleness is available at socket granularity but this reduction is offset by the increase in
power savings. Using a full-system low-power mode such as PowerNap (“PowerNap”) exploits as much idle time as socket parking, but
saves significantly more power. Processor voltage and frequency scaling (“VFS”) provides significant savings for the CPU, but does not
alter non-processor power (e.g., the memory system, I/O buses etc.). Greater power savings can be achieved by using a full-system idle
low-power mode. Creating idleness by batching (“Batch”), provides even more power savings than PowerNap in exchange for increased
latency due to delaying requests. An even better power-latency tradeoff is achieved by DreamWeaver (“DreamWeaver”), because of its
hardware support to track requests and intelligent scheduling.

1.0 1.5 2.0 2.5 3.0
99th-Percentile Latency (Normalized)

0

20

40

60

80

100
P
o
w

e
r

S
a
v
in

g
s

(P
e
rc

e
n
t)

Core Parking

Socket Parking

PowerNap

VFS

Batch

DreamWeaver

(a) Apache

1.0 1.5 2.0 2.5 3.0
99th-Percentile Latency (Normalized)

0

20

40

60

80

100

P
o
w

e
r

S
a
v
in

g
s

(P
e
rc

e
n
t)

Core Parking

Socket Parking

PowerNap

VFS

Batch

DreamWeaver

(b) DNS

1.0 1.5 2.0 2.5 3.0
99th-Percentile Latency (Normalized)

0

20

40

60

80

100

P
o
w

e
r

S
a
v
in

g
s

(P
e
rc

e
n
t)

Core Parking

Socket Parking

PowerNap

VFS

Batch

DreamWeaver

(c) Mail

1.0 1.5 2.0 2.5 3.0
99th-Percentile Latency (Normalized)

0

20

40

60

80

100

P
o
w

e
r

S
a
v
in

g
s

(P
e
rc

e
n
t)

Core Parking

Socket Parking

PowerNap

VFS

Batch

DreamWeaver

(d) Search

Figure 8: Comparison of power savings for 32-core system. Most low-power modes are less effective when moving to future systems
(smaller transistor feature size and higher core count) because voltage scaling requires greater frequency reductions and coarse-grain
idleness is more difficult to capture (See Figures 1 and 2). Per-core power gating (“Core Parking”) does not rely on coarse-grain
idleness and is just as effective as for a 4 core system (see Figure 6). However, both Socket Parking (“Socket Parking”) and PowerNap
(“PowerNap”) require that all cores are simultaneously idle. At 32 cores, the system is almost never entirely idle and there is no opportunity
to use these low-power modes. Voltage and frequency scaling (“VFS”) saves less power because it requires a larger slowdown for a given
voltage reduction. Batching (“Batch”) at 32 cores is quite ineffective requiring inordinate latency increases to save appreciable power.
DreamWeaver’s effectiveness is reduced at 32 cores (“DreamWeaver”), but generally provides the greatest power savings for all but the
tightest latency constraints.

normalized to the nominal latency (i.e., no power management). As
discussed in Section 2, we focus our evaluation on 99th-percentile
latencies as these are the more difficult constraints to meet; Dream-
Weaver’s impact on mean latency follows the same trends. The ver-
tical axis shows power savings relative to a nominal system with-
out any of these power management features (but with clock gating
on HLT instructions as in Nehalem); higher values indicate greater
power savings.

Over the range from nominal to a 2x increase in 99th-percentile
latency, DreamWeaver strictly dominates the other power manage-
ment techniques. When the user configures DreamWeaver to allow
no additional performance degradation on the 99th-percentile la-
tency (i.e., a timeout of zero), DreamWeaver converges to Power-
Nap as expected; with a 2x increase in latency, DreamWeaver can
offer roughly 25% better power savings than PowerNap and nearly

30% more than VFS. Also important, Batching can provide sub-
stantial power savings, and provides a roughly linear trade-off of
99th-percentile latency vs. power. However, its range of latency-
power settings, while also better than VFS, is strictly inferior to
DreamWeaver.

32-Core Server. Next, we consider a server with 32 cores.
The results are presented in Figure 8 and parallel the previous
study. First, as expected, we highlight that PowerNap is ineffective.
Because there is no naturally occurring full-system idleness, there
is no opportunity for PowerNap and it saves no power (nor incurs
any latency). Next, we observe that Core Parking is still effective,
but as before only provides power savings of less than 20%. A
striking difference is that, unlike our four core study, Batch has
become largely ineffective. The latency-power tradeoff for this
technique is unattractive; it saves far less power than Core Parking,

1s100ms10ms1ms100us10us
Transition Time

0

20

40

60

80

100

P
o
w

e
r

S
a
v
in

g
s

(P
e
rc

e
n
t)

M
a
il

A
p
a
ch

e

D
N

S

S
e
a
rc

h

Apache

Mail

DNS

Search

Figure 9: Sensitivity to transition time. DreamWeaver is less
effective as the transition time in and out of PowerNap in-
creases. Dotted vertical lines denote the average service time
of each workload. The majority of power savings is realized by
providing a transition time of about one order of magnitude less
than the average service time of the workload.

4 8 16 32 64
Cores

0

20

40

60

80

100

P
o
w

e
r

S
a
v
in

g
s

(P
e
rc

e
n
t)

Apache

Mail

DNS

Search

Figure 10: Sensitivity to number of cores. Solid bars repre-
sent DreamWeaver savings and hatched bars represent VFS
savings. DreamWeaver is less effective as the number of cores
increase, but always provides greater savings than VFS.

while incurring much greater delays. As with the 4-core system,
DreamWeaver dominates the alternative approaches.

Sensitivity to transition time. To understand the utility of
DreamWeaver for various server scenarios, we provide three sen-
sitivity studies. First, we characterize the effectiveness of Dream-
Weaver for varying sleep transition times. Figure 9 illustrates how
power savings diminishes for increasing transition time. We present
results for a 16-core system at 30% utilization, with a performance
constraint of 1.5x increase in 99th-percentile latency relative to
nominal. We annotate the average service time of each workload

10 30 50
Utilization (%)

0

20

40

60

80

100

P
o
w

e
r

S
a
v
in

g
s

(P
e
rc

e
n
t)

Apache

Mail

DNS

Search

Figure 11: Sensitivity to utilization. Solid bars represent
DreamWeaver savings and hatched bars represent VFS sav-
ings. DreamWeaver provides more savings in all cases.

along the time axis. As with PowerNap, when transition time be-
comes large relative to average service time, less power is saved.
Ideally, transition time should be roughly an order of magnitude
smaller than the average service time. Consistent with PowerNap
[41], we find that the slowest transition time that is useful across
all workloads is 1ms and designers should target the 100 µs to 1ms
range.

Sensitivity to core count. In the next two sensitivity studies,
we directly compare DreamWeaver to a system using VFS to save
power. Figure 10 contrasts the power savings of DreamWeaver
(solid bars) and VFS (hashed subset within each bar) when both are
allowed a 1.5x slack on 99th-percentile latency. We vary the num-
ber of cores and the corresponding assumption for technology gen-
eration (65nm down to 16nm). Even for 64-core systems, Dream-
Weaver still provides power savings over 20%. DreamWeaver pro-
vides greater savings than VFS at all core counts, though its advan-
tage shrinks as the number of cores grows.

Sensitivity to utilization. DreamWeaver is designed for low
utilization, which is the common-case operating mode of servers
[7]. Accordingly, DreamWeaver provides greater power savings at
lower utilization. In Figure 11 we again contrast DreamWeaver
(solid) and VFS (hashed) for a 16-core system as a function of uti-
lization, under a 1.5x 99th-percentile response time slack. Dream-
Weaver still saves roughly 25% of power at utilization as high as
50%. Across the utilization spectrum, DreamWeaver saves more
power than VFS, though its advantage is small for some workloads.

5.3 Discussion
Power Management in the 1000-Core Era. DreamWeaver is an
effective means to enable full-system idle low-power modes for
core counts that we foresee in the next three process generations (to
16nm). However, recent research has proposed 1000-core systems
[31] and if transistor scaling beyond the 16nm node continues to
double core counts, eventually, massively multicore architectures
may become mainstream. The power management challenges we
have identified will reach near-asymptotic limits in such a scenario.
As we have observed, VFS effectiveness is shrinking at each tech-
nology node due to transistor scaling. Similarly, if servers continue
to leverage weak scaling, full-system idleness will clearly disap-

pear altogether with 1000 concurrent requests. The hardware and
software models for 1000-core systems remain unclear; however, if
we continue under current server software paradigms, we conclude
that these power management techniques may become ineffective.

The Potential of Strong Scaling. Existing data center workloads
rely on request-level parallelism to achieve performance scalabil-
ity on multicore hardware. This parallelism strategy is a form of
weak scaling (i.e, solving a larger problem size in a fixed amount
of time, as opposed to strong scaling where a fixed problem size
is solved in a reduced amount of time)—scalability is achieved by
increasing request bandwidth rather than per-request speedup. A
potential solution to the inefficacy of power management in a 1000-
core system is for server software architectures to adopt strong
scaling. Whereas in current systems each incoming request is as-
signed to a single core, under strong scaling multiple cores work
together to service a single request faster. The aggregate through-
put under strong scaling stays the same, but per-request latency is
reduced; the downside is that the software engineering overhead
for such architectures is likely to be significantly higher, as engi-
neers must identify intra-request parallelism. Strong scaling makes
power management easier because the number of concurrent inde-
pendent requests is reduced—idle and busy periods naturally align
across cooperating cores. As a result, the trends observed in Fig-
ure 2 will be reversed. In the limit, if all cores are used to service a
single job, the system will behave (with respect to idleness) as if it
were a uniprocessor. However, it is likely that Amdahl bottlenecks
will preclude using 1000 cores for one request; instead clusters of
cores might cooperate. Under this scenario, there will be a moder-
ate number of clusters, and the effectiveness of DreamWeaver will
resemble a weak-scaling system with the corresponding moderate
number of cores. Unfortunately, the effectiveness of VFS does not
change with better parallel software and its effectiveness will con-
tinue to decline unless better circuit techniques are developed.

6. Conclusion
As technology continues to scale and core counts increase, effec-
tive power management is becoming increasingly difficult. The ef-
fectiveness of voltage and frequency scaling is diminishing due
to fundamental scaling trends. Because current-generation server
software relies on weak scaling to use additional cores, full-system
idleness is becoming increasingly scarce. DreamWeaver offers one
mechanism to trade latency for power savings from idle low-power
modes despite the challenges posed by multicore scaling. We show
that DreamWeaver outperforms alternatives such as VFS, Core
and Socket Parking, and past batching approaches while provid-
ing a smooth trade-off of 99th-percentile latency for power sav-
ings. Furthermore, should the community succeed in rearchitecting
server systems to leverage strong scaling through intra-request par-
allelism, the advantages of DreamWeaver over other power man-
agement schemes grow even larger. We hope that our work serves
as a warning that past approaches to power management are under
threat given present scaling trends, and as a call to arms to redesign
server software for strong scaling.

Acknowledgements
The authors would like to thank Ricardo Bianchini and Philip
Wells for feedback on early drafts of the paper and the anonymous
reviewers for their feedback. This work was supported in part by
grants from Google and NSF grants CNS-0834403, CCF-0811320,
and CCF-0815457.

References
[1] AOL Query Log, 2006.

[2] A Solr index of Wikipedia on EC2/EBS. 2010.

[3] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl, and R. Gupta.
Somniloquy: augmenting network interfaces to reduce PC energy us-
age. NSDI ’09: Networked Systems Design and Implementation, 2009.

[4] F. Ahmad and T. Vijaykumar. Joint optimization of idle and cooling
power in data centers while maintaining response time. ASPLOS ’10:
Architectural Support for Programming Languages and Operating
Systems, 2010.

[5] H. Amur, R. Nathuji, M. Ghosh, K. Schwan, and H. Lee. IdlePower:
Application-aware management of processor idle states. MMCS ’08:
Workshop on Managed Many-Core Systems, 2008.

[6] V. Anagnostopoulou, S. Biswas, A. Savage, R. Bianchini, T. Yang,
and F. Chong. Energy Conservation in Datacenters through Cluster
Memory Management and Barely-Alive Memory Servers. WEED ’09:
Workshop on Energy-Efficient Design, 2009.

[7] L. A. Barroso, J. Dean, and U. Hölzle. Web Search for A Planet: The
Architecture of the Google Cluster. IEEE Micro, 2003.

[8] L. A. Barroso and U. Hölzle. The Case for Energy-Proportional
Computing. IEEE Computer, (December):33–37, 2007.

[9] L. A. Barroso and U. Hölzle. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Synthesis
Lectures on Computer Architecture, Morgan Claypool, 2009.

[10] C. Bash and G. Forman. Cool job allocation: Measuring the power
savings of placing jobs at cooling-efficient locations in the data center.
USENIX Annual Technical Conference, 2007.

[11] E. V. Carrera, E. Pinheiro, and R. Bianchini. Conserving disk energy
in network servers. ICS ’03: Proceedings of the 17th annual interna-
tional conference on Supercomputing, 2003.

[12] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P.
Doyle. Managing Energy and Server Resources in Hosting Centers.
SOSP ’01: Symposium on Operating Systems Principles, Dec. 2001.

[13] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and
F. Zhao. Energy-aware server provisioning and load dispatching for
connection-intensive internet services. NSDI ’08: Networked Systems
Design and Implementation, 2008.

[14] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gau-
tam. Managing server energy and operational costs in hosting cen-
ters. SIGMETRICS ’05: International Conference on Measurement
and Modeling of Computer Systems, 2005.

[15] M. Cho, N. Sathe, M. Gupta, S. Kumar, S. Yalamanchilli, and
S. Mukhopadhyay. Proactive power migration to reduce maximum
value and spatiotemporal non-uniformity of on-chip temperature dis-
tribution in homogeneous many-core processors. Semiconductor Ther-
mal Measurement and Management Symposium, 2010.

[16] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and
M. Irwin. DRAM energy management using software and hardware
directed power mode control. HPCA ’01: High-Performance Com-
puter Architecture, 2001.

[17] Q. Deng, D. Meisner, T. F. Wenisch, and R. Bianchini. MemScale :
Active Low-Power Modes for Main Memory. ASPLOS ’11: Archi-
tectural Support for Programming Languages and Operating Systems,
2011.

[18] B. Diniz, D. Guedes, W. Meira Jr., and R. Bianchini. Limiting the
Power Consumption of Main Memory. ISCA ’07: International Sym-
posium on Computer Architecture, 2007.

[19] R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and
T. Mudge. Near-threshold computing: Reclaiming Moore’s law
through energy efficient integrated circuits. Proceedings of the IEEE,
98(2), Feb. 2010.

[20] L. Eggert, J. D. Touch, and M. Rey. Idletime scheduling with preemp-
tion intervals. SOSP ’05: Symposium on Operating Systems Princi-
ples, Oct. 2005.

[21] M. Elnozahy, M. Kistler, and R. Rajamony. Energy conservation poli-
cies for web servers. USENIX Symposium on Internet Technologies
and Systems-Volume 4, 2003.

[22] A. Gandhi, M. Harchol-Balter, R. Das, J. Kephart, and C. Lefurgy.
Power Capping Via Forced Idleness. WEED ’09: Workshop on Energy
Efficient Design, 2009.

[23] R. Golding, P. Bosch, C. Staelin, T. Sullivan, and J. Wilkes. Idleness
is not sloth. USENIX Annual Technical Conference, 1995.

[24] S. Gurumurthi, A. Sivasubramaniam, and M. Kandemir. DRPM: dy-
namic speed control for power management in server class disks. ISCA
’03: International Symposium on Computer ArchitectureA, 2003.

[25] M. Harchol-Balter and A. B. Downey. Exploiting process lifetime
distributions for dynamic load balancing. ACM Transactions on Com-
puter Systems, 15(3), Aug. 1997.

[26] T. Heath, B. Diniz, and E. Carrera. Energy conservation in heteroge-
neous server clusters. PPoPP ’05: Principles and Practice of Parallel
Programming, 2005.

[27] S. Herbert and D. Marculescu. Analysis of Dynamic Volt-
age/Frequency Scaling in Chip-Multiprocessors. ISLPED ’07: Inter-
national Symposium on Low Power Electronics and Design, 2007.

[28] U. Hölzle. Brawny cores still beat wimpy cores, most of the time.
IEEE Micro, 30(4), 2010.

[29] Intel. Intel Xeon Processor 5600 Series. Datasheet, Volume 1. 2010.
[30] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi.

An Analysis of Efficient Multi-Core Global Power Management Poli-
cies: Maximizing Performance for a Given Power Budget. Micro ’06:
International Symposium on Microarchitecture, 2006.

[31] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy,
A. Mahesri, S. S. Lumetta, M. I. Frank, and S. J. Patel. Rigel :
An Architecture and Scalable Programming Interface for a 1000-
core Accelerator. ISCA ’09: International Symposium on Computer
Architecture, 2009.

[32] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks. System level analysis
of fast, per-core DVFS using on-chip switching regulators. HPCA ’08:
High Performance Computer Architecture, 2008.

[33] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, and R. Katz.
NapSAC : Design and Implementation of a Power-Proportional Web
Cluster. Green Networking, 2010.

[34] W. Lang and J. Patel. Towards eco-friendly database management sys-
tems. CIDR ’09: Conference on Innovative Data Systems Reasearch,
2009.

[35] W. Lang and J. M. Patel. Energy Management for MapReduce Clus-
ters. VLDB, 2010.

[36] J. Larus and M. Parkes. Using Cohort Scheduling to Enhance Server
Performance. In ACM SIGPLAN Notices, volume 36, 2001.

[37] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power Aware Page
Allocation. ASPLOS ’00: Architectural Support for Programming
Languages and Operating Systems, 2000.

[38] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and
T. Keller. Energy management for commercial servers. Computer,
36(12):39–48, Dec. 2003.

[39] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and
C. Kozyrakis. Power Management of Datacenter Workloads Us-
ing Per-Core Power Gating. IEEE Computer Architecture Letters,
8(2):48–51, Feb. 2009.

[40] D. Meisner, B. T. Gold, and T. F. Wenisch. The PowerNap server
architecture. ACM Transactions on Computer Systems (TOCS), 29(1),
2011.

[41] D. Meisner, B. T. Gold, and T. F. Wenisch. PowerNap: Eliminating
Server Idle Power. ASPLOS ’09: Architectural Support for Program-
ming Languages and Operating Systems, Feb. 2009.

[42] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F.
Wenisch. Power Management of Online Data-Intensive Services.
ISCA ’11: International Symposium on Computer Architecture, 2011.

[43] D. Meisner, and T. F. Wenisch. Stochastic Queuing Simulation for
Data Center Workloads. EXERT ’10: Exascale Evaluation and Re-
search Techniques Workshop, 2010.

[44] D. Meisner, J. Wu, and T. F. Wenisch. BigHouse: A simulation
infrastructure for data center systems. ISPASS ’12: International
Symposium on Performance Analysis of Systems and Software, 2012.

[45] Microsoft. Improved data center power consumption and streamlining
management. 2010.

[46] V. Pandey, W. Jiang, Y. Zhou, and R. Bianchini. DMA-Aware Mem-
ory Energy Management. HPCA ’06: High-Performance Computer
Architecture, 2006.

[47] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath. Load Balancing
and Unbalancing for Power and Performance in Cluster-Based Sys-
tems. Workshop on Compilers and Operating Systems for Low Power,
2001.

[48] J. Sharkey, A. Buyuktosunoglu, and P. Bose. Evaluating design trade-
offs in on-chip power management for CMPs. ISLPED 07: Interna-
tional symposium on Low power electronics and design, 2007.

[49] N. Tolia, Z. Wang, M. Marwah, C. Bash, P. Ranganathan, and X. Zhu.
Delivering Energy Proportionality with Non Energy-Proportional Sys-
tems Optimizing the Ensemble. HotPower ’08: Workshop on Power-
Aware Computing Systems, 2008.

[50] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah. Analyzing the
energy efficiency of a database server. SIGMOD, 2010.

[51] F. Xie, M. Martonosi, and S. Malik. Bounds on power savings using
runtime dynamic voltage scaling: an exact algorithm and a linear-
time heuristic approximation. International Symposium on Low Power
Electronics and Design, page 287, 2005.

