
BBR vs. BBRv2: A Performance Evaluation
Rebecca Drucker

Stony Brook University, Furman University
rdrucker@cs.stonybrook.edu

Gauri Baraskar, Aruna Balasubramanian, Anshul Gandhi
Stony Brook University

{gbaraskar,arunab,anshul}@cs.stonybrook.edu

Abstract—Google’s new congestion control algorithm, BBR,
has seen wide adoption. However, there are concerns about its
unfairness to legacy congestion control algorithms and the high
retransmissions experienced under lossy conditions. In response,
Google designed BBRv2 to address these concerns. However, the
performance of BBRv2 with respect to BBR or Cubic has not
been studied systematically. This paper presents a fine-grained
performance study of BBRv2 under a variety of RTTs, band-
widths, buffer sizes, and loss conditions, in both LAN and WAN
environments. We construct a decision tree to determine whether
BBR or BBRv2 performs better under different conditions. We
observe that BBRv2’s goodput is significantly low compared to
BBR’s under induced loss and bursty losses, and the effect is
magnified under large BDP. Our results suggest that BBRv2
trades performance for better fairness under losses. To bridge this
gap, we investigate the workings of BBRv2 and find that BBRv2
employs a long-term upper bound on sending rate that is not
robust to losses. This upper bound is continually decremented in
the presence of persistent losses, thereby depressing goodput. We
show that by aligning BBRv2’s upper bound with its maximum
bandwidth estimation, BBRv2’s performance can be greatly
improved while maintaining its fairness.

I. INTRODUCTION

In the past few years, the Bottleneck Bandwidth and Round-
Trip Propagation Time (BBR) congestion control algorithm [1]
has seen widespread adoption throughout the Internet, and now
accounts for over 40% of web traffic [2]. BBR’s popularity
is largely driven by its ability to achieve high goodput while
incurring low latency [3]. However, recent studies have uncov-
ered significant drawbacks of BBR including its unfairness to
other flows and its high retransmission rate [4], [5].

Consequently, BBRv2 [6] is being actively developed (with
an alpha release of 2019) to address the drawbacks of BBR.
Google has already begun to use BBRv2 internally [7], and
once it is added to the Linux kernel, it is likely to be
widely deployed in the Internet. Recent studies conducted
in specialized networks [8] or using Mininet [9] have noted
the improvements afforded by BBRv2 over BBR. However, a
detailed study of the performance of BBRv2, especially when
compared to BBR, in generic networks and under realistic
conditions is lacking.

In this paper, we conduct an empirical measurement study to
analyze the performance of BBRv2 versus BBR. We focus on
goodput and fairness, as well as video quality, and experiment
with diverse network conditions over a LAN and a WAN
setting. In addition to buffer losses and induced random
losses, we also experiment with bursty losses experienced in
cellular networks using real cellular traces [10]. We construct a
decision tree to characterize the conditions under which BBR
and BBRv2 performance considerably vary.

Our key finding is that under both persistent random losses
and bursty losses, BBRv2 performs significantly poorly com-

pared to BBR. This is not surprising given BBRv2 has been
explicitly designed to react to losses, while the original BBR
does not react to losses. What is surprising is the extent
of the poor performance. For example, under a 500mbps
connection, when a 2% loss is induced, across all buffer
conditions, BBRv2 performs 8×–17× worse than BBR. This
poor performance holds in the WAN and in cellular networks
that experience burst losses. While not as pronounced, we
also see a reduction in video quality for BBRv2 under 2%
loss when streaming a DASH video. However, BBRv2 does
improve fairness compared to BBR, in terms of the recently
introduced harm metric [5]. Further, under only buffer losses
(i.e, no induced random loss or burst loss), BBR and BBRv2
perform similarly in terms of goodput.

To better understand this shortcoming of BBRv2, we in-
vestigate the BBRv2 congestion control logic under losses to
identify potential culprits. BBRv2 uses two mechanisms to
react to losses: (i) an upper bound on inflight packets that is
determined based on a long-term loss rate estimate, and (ii) a
lower bound on the inflight packets that is determined based
on a single loss event. BBRv2 sets the packet in flight between
this upper bound and lower bound values.

Based on a fine-grained investigation of these two param-
eters, we find that the lower bound parameter is effective in
the presence of buffer losses, reducing the sending rate and
subsequent congestion. However, when losses are persistent or
bursty, the upper bound parameter is continually decremented.
Since the packets in flight cannot exceed the upper bound, the
goodput reduces significantly. However, completely removing
the upper bound parameter affects fairness.

To improve BBRv2 performance under losses while main-
taining fairness, we propose an adaptive version of BBRv2.
In the adaptive version, the long-term upper bound is reset to
BBRv2’s maximum bandwidth estimate in each cycle rather
than allowing it to decrement continuously under loss. The
lower bound parameter remains unchanged. We implemented
this adaptive BBRv2 version in the Linux kernel by modifying
existing BBRv2. We evaluate the adaptive BBRv2 implemen-
tation under diverse network conditions and find that it is
able to achieve goodput 8× greater than unmodified BBRv2
(and only 8% less than BBR) while being fairer to Cubic
than BBR in the LAN and reducing the retransmission rate
by 70%. Our results suggest that, with some modifications,
BBRv2 can address the drawbacks of BBR without impacting
performance, and replace BBR in production environments.

II. BACKGROUND

BBR: Loss-based congestion control algorithms such as Cubic
use loss as their only congestion signal, and are known to



RTTs (ms) 10, 100
BWs (mbps) 25, 50, 100, 300, 500, 1000
Buffer Sizes 100KB, 2MB, 10MB, 50MB, 100MB
Loss Rates 0%, 1%, 2%

TABLE I: Network settings employed in our experiments.

suffer from bufferbloat. To alleviate these issues, the Bot-
tleneck Bandwidth and Round-Trip Propagation Time (BBR)
congestion control algorithm [1] was introduced. BBR does
not react to loss. Instead, BBR aims to send at a rate that
matches the available network capacity, called the bandwidth-
delay product (BDP). BBR measures the available bandwidth
and the minimum RTT over a period of time and computes the
BDP as the product of bandwidth and minimum RTT. Since
BBR will keep sending even in the presence of losses as long
as the delivery rate can be maintained, BBR tends to be unfair
to other flows and has high retransmission counts [3].
BBRv2: To address the poor fairness and high retransmissions
of BBR, the designers of BBR made some key changes and
released a new version, BBRv2, in 2019 [6]. BBRv2 also
determines its sending rate based on estimated BDP; however,
unlike BBR, BBRv2 does react to loss. BBRv2 introduces
new upper and lower bounds on the number of packets in
flight. The upper bound reacts to loss over the long term, and
the lower bound reacts to short-term losses. We discuss these
values further in Section IV-A.

BBRv2 operates in different phases (shown later in Fig-
ure 4). In the startup phase, BBRv2 increases its sending
rate quickly. When BBRv2 exits the startup phase, it enters
a set of four phases—PROBE_DOWN, PROBE_CRUISE,
PROBE_REFILL, and PROBE_UP, which are part of the
steady state. The number of packets in flight in steady state
is between the long-term upper and short-term lower bound
values. Periodically (every 5 secs), BBRv2 reduces its sending
rate to half. This phase is called PROBE_RTT, and it elimi-
nates queues in bottleneck routers.

III. COMPARING BBRV2 WITH BBR

A. Experimental Setup, Metrics, and Methodology

We consider three types of networks in our experiments:
LAN, WAN, and emulated cellular network using real cellular
traces. We evaluate BBR and BBRv2 using iPerf3 and measure
peak goodput under the network conditions. We also conduct
DASH video experiments and evaluate video quality.

a) LAN and WAN: In our LAN setup, we connected
a client and a server, both running Ubuntu 18.04, through
a Linksys WRT1900ACS router with OpenWRT 19.07.1 in-
stalled. This setup allows us to abstract away all effects of the
network other than those of the bottleneck router, where we
set RTT, bandwidth, buffer size, and loss rate. The kernel has
been modified to include BBRv2, which is not included in the
Linux kernel by default. We also modify BBRv2’s module
parameters to allow us to collect debug logs of BBRv2’s
internal variables.

In our WAN experiments, the client is located in South
Korea while the iPerf3 sender is located in the Northeast

US, resulting in an RTT of around 200 ms and maximum
goodput of approximately 100 mbps. In both LAN and WAN
experiments, we induce up to 2% packet loss at the sender.
Other recent studies induced or observed packet loss at similar
rates [11], [12].

b) Cellular: The cellular experiments are also run on the
aforementioned LAN with cellular conditions emulated using
cell-emulation-util [13]that replays cellular traces collected by
Akamai from a cellular ISP [10].

To understand the difference in performance between BBR
and BBRv2, we ran experiments under a variety of network
conditions, including varied bandwidth, RTT, buffer size, and
random loss rates. The network conditions used in these
experiments are shown in Table I. All experiments were run
for five minutes at least five times per condition.

We measure performance using goodput and fairness using
the harm metric. Goodput is total bytes received by the iperf
server divided by the experiment length. Harm is a recently
proposed metric [4] as an alternative to the classical Jain’s
fairness index. Jain’s fairness index is an appropriate fairness
metric when all flows are able to reach their full potential.
However, it does not work well when one or more flows is
unable to use its full share of the bandwidth due to factors
not caused by other flows. To calculate the harm done by a
new congestion control x to a legacy congestion control y, we
need to know the throughput of x and y in competition, as
well as the throughput of y alone. Then the harm done by x
to y is:

throughput(y alone) − throughput(y with x)
throughput(y alone)

.

For example, if legacy congestion control y’s throughput is 2
mbps alone and 1 mbps in competition with new congestion
control x, the harm done by x to y is 0.5, meaning that y’s
throughput decreases by 50% when it competes with a flow
using x. While there are many thresholds for the amount of
harm considered acceptable, we reason that a new congestion
control’s harm to legacy congestion control is acceptable if it
is less than or equal to the harm the legacy congestion control
would do to itself. Therefore, to evaluate the harm inflicted by
BBR and BBRv2 on Cubic, we calculate their harm values,
as well as Cubic’s harm to itself as a baseline.

For DASH experiments, we evaluate video quality between
0 (1 mbps bitrate) and 10 (25 mbps bitrate).

B. Decision Tree for BBRv2 vs. BBR

We present all our experimental results using the conditions
in Table I as a decision tree in Figure 1. We create the decision
tree using scikit-learn’s decision tree classifier. The target class
for each pair of experiments is BBR or BBRv2. The decision
tree returns BBR, if BBR achieves better throughput than
BBRv2 in more experimental runs under a set of conditions,
and returns BBRv2 otherwise. The BBR version that provides
better throughput under each set of conditions is indicated in
each node. To better illustrate the difference in throughput, we
color code the nodes such that darker shades indicate larger



Fig. 1: Decision tree based on our experiments highlighting the choice between BBRv2 and BBR. Blue node indicate that
BBR performs better than BBRv2 and orange node is vice versa (darker color indicate higher performance difference). Nodes
in white indicate negligible goodput difference. Highlighted leaves are those where we see improvement of at least 10%.
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Fig. 2: The goodput for BBR and BBRv2, under 100 ms RTT,
500 mbps bandwidth, and a 2 MB buffer on LAN and in the
WAN with 2% loss. BBRv2 experiences poor goodput under
high loss

differences in throughput. If the difference is negligible (less
than 1%), the node is colored white. For ease of readability,
we highlight nodes (with a darker bounding box) where the
difference is at least 10%.

a) No induced loss: BBR and BBRv2 largely perform
similarly when no additional random loss is induced; see the
left sub-tree under the root node in Figure 1. Both achieve
goodput close to the full bandwidth, though BBR incurs more
retransmissions in the process (results not shown). The only
case in which the difference in goodput is greater than 10% is
the smallest BDP and large buffer size (leaf node that is second
from left), where BBRv2 outperforms BBR by 13%. This is
because we use a burst size of 1MB which is proportionally
large for the smallest BDP. Under these conditions, BBR is
known to perform poorly due to bufferbloat [14].

b) Induced loss and Large BDP: Under induced loss,
BBR consistently achieves higher goodput than BBRv2; see
the right sub-tree under the root node in Figure 1. The
difference in goodput ranges from 7% to 871%. Figure 2

takes a closer look at the goodput for BBR and BBRv2 under
high bandwidth (500mbps), a 2 MB buffer, and 2% induced
loss, which is the condition where we see the most difference
between BBR and BBRv2. In this setting, BBRv2 has very low
goodput—as much as 7.8× (with 2 MB buffer) – 21.2× (with
10 MB buffer) lower compared to BBR. This observation also
holds in the WAN, as shown in the right plot of Figure 2; we
see that BBRv2 achieves about 6.5× lower goodput compared
to BBR under 2% induced loss. For video experiments, BBRv2
continues to suffer under high losses, though the performance
drop is not as pronounced. Under 2% loss, we find that BBRv2
has 18% lower quality than BBR.

One of the reasons BBR has higher goodput compared to
BBRv2 is that it does not react to losses. Consequently, BBR
sends a large number of packets even under losses, resulting in
as much as 3.3× higher retransmissions compared to BBRv2.
To summarize, our analysis suggests that under high loss rate,
BBR significantly outperforms BBRv2 in terms of goodput.

C. Evaluating fairness under BBRv2 and BBR

For a complete performance evaluation of BBRv2 vs. BBR,
we now empirically contrast the fairness of BBRv2 and BBR
when they (individually) coexist with Cubic flow(s). We use
the same experimental methodology to run LAN experiments
with iPerf3 as described in Section III-A.

We evaluate the harm fairness metric under a large BDP
and small, medium, and large bottleneck buffers. We include
results for no induced loss and 2% induced random loss. Ta-
ble II shows the full set of results. Recall, from Section III-A,
that a lower harm value is better, with Cubic Cubic Harm
values being ideal. To understand how to interpret these values,



Loss Buffer Size BBR Cubic Harm BBRv2 Cubic Harm Cubic Cubic Harm

0%
Small 0.98 0.61 0.48
Medium 0.50 0.33 0.47
Large 0.39 0.33 0.54

2%
Small 0.38 0.03 0.05
Medium 0.40 0.05 0.03
Large 0.42 0.02 0.01

TABLE II: Harm results when BBR, BBRv2, and Cubic coexist with Cubic under large BDP setting (500mbps bandwidth and
100ms RTT) and various loss and buffer settings.

consider the following example. Under 0% induced loss and a
small buffer, the Cubic Cubic Harm value is 0.48, meaning that
a Cubic flow’s goodput decreased by 48% when competing
with another Cubic flow, compared to its goodput alone. The
corresponding BBR Cubic Harm value is 0.98, meaning that
the Cubic flow’s goodput decreased by 98% when competing
with a BBR flow, compared to its goodput alone.

Under no induced loss, we see that BBRv2 is more fair
than BBR, especially for a small buffer. Because BBR does
not react to losses, it is particularly unfair to Cubic in small
buffers where losses occur frequently. BBRv2 reacts to loss
and is therefore fairer to Cubic in this situation. Under a 2%
induced loss, again BBRv2 is significantly more fair to Cubic
than BBR; this is because, again, BBR does not react to losses
and aggressively consumes available bandwidth, starving other
flows. In summary, BBRv2 is consistently fairer than BBR,
especially under losses.

D. Cellular

All experiments described thus far have been under con-
trolled conditions, as well as persistent (induced) random loss.
To strengthen our findings about BBRv2’s poor performance
under loss, we ran experiments using cellular network traces.
In cellular networks, losses do not occur at uniform random
intervals. Instead they come in short bursts of high loss, and
the timing and duration of these bursts is not deterministic.

Condition BW (mbps) Loss (%) Buffer (KB)
Good 3 1.5 9, 40, 128 KB
Median 1.7 5 9, 20, 128 KB
Poor 1.4 10 9, 18, 128 KB

TABLE III: Average bandwidth, loss rate for the good, median,
and poor cellular conditions from traces [10]. The latency is
50ms for all traces.

We use existing cellular traces [10] where the traces are
divided into good, median, and poor conditions. The charac-
teristics of the three traces are shown in Table III. We emulate
these conditions in our LAN and set different buffer sizes for
the three conditions as shown in the table.

In all cases, BBR’s average goodput is greater than BBRv2’s
average goodput. Figure 3 shows the results for the median
network condition; results are similar for the poor and good
network conditions. In these experiments, we use two band-
width settings. One is the default bandwidth, which refers to
the bandwidth seen by the cellular network. We also increase
the bandwidth to 10mbps to simulate a high bandwidth cellular
condition. In the small and medium buffers, BBR significantly
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Fig. 3: Cellular: Goodput for BBR and BBRv2 under the
median cellular condition.

outperforms BBRv2, by as much 6.6×; the difference is
smaller in the large buffer case. The difference in goodput
between BBR and BBRv2 is greater under the simulated
high bandwidth condition; for all three buffer sizes, BBR
outperforms BBRv2 by at least 2×. This is because BBR
does not react to losses and so continues to aggressively use
the available bandwidth. By contrast, under the burst losses
experienced under cellular conditions, BBRv2 backs off its
delivery rate substantially (as discussed later in Section IV-A).

We also analyze the fairness when BBR and BBRv2 coexist
with Cubic under cellular conditions. Similarly to LAN con-
ditions, BBRv2 is fair to Cubic while BBR is unfair. These
results are omitted for brevity.

IV. EXAMINING BBRV2’S PERFORMANCE UNDER LOSS

Our results above show that BBRv2 sees a huge perfor-
mance hit (as much as 16.9×) under sustained and bursty
losses. In this section, we analyze BBRv2 to understand why.

A. BBRv2’s Behavior Under Loss

Figure 4 shows how losses affect BBRv2’s sending rate dur-
ing different phases of its operation. Recall from Section II that
BBRv2 maintains a short-term lower bound (called inflight_lo)
and a long-term upper bound (called inflight_hi). The number
of packets in flight (cwnd) is bound between these two values.
Losses affect both these bounds, as we describe below

a) STARTUP: Both BBR and BBRv2 have a startup
phase where sending rate increases quickly. In both cases, the
protocol exits the startup phase when the delivery rate plateaus.
In addition, BBRv2 can also exit the startup phase when the
loss rate (calculated from the beginning of the startup) exceeds
the loss threshold of 2%. When the loss threshold is exceeded,
BBRv2 sets the long-term upper bound to the current cwnd.
The short-term lower bound is not set in this phase.

b) PROBE_DOWN, PROBE_CRUISE, PROBE_REFILL,
PROBE_UP: These four phases represent the steady state
for BBRv2. Together, they last one cycle of 2–3 seconds
from the start of the last PROBE_DOWN, plus one RTT
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Fig. 4: Flowchart showing phases of BBRv2’s cycle including
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for PROBE_REFILL and a maximum of one RTT for
PROBE_UP. The short-term lower bound is set to the current
cwnd at the start of the cycle. Thereafter, each time a (single)
loss occurs, the short-term lower bound is reduced by 30% or
set to the maximum number of packets in flight in the previous
roundtrip, whichever is greater. Since this is a short-term
bound, it is reset once per cycle, before each PROBE_REFILL.

But the long-term upper bound is set differently in response
to losses. If the long-term upper bound is not set in the startup
phase, it is set to infinity. In the steady state, the long-term
upper bound is decreased when the loss threshold is exceeded
(rather than reacting to a single loss). Specifically, the upper
bound is set to 30% less than BDP or the packets in flight,
whichever is greater. The loss threshold is estimated over the
cycle, so it is a longer-term loss estimate. If the loss threshold
is not exceeded, upper bound value is increased incrementally
(there are some corner cases that we omit).

In other words, the short-term lower bound is affected by
a single loss, but the value does not carry over beyond a
cycle. In contrast, the long-term upper bound is set based on
loss calculated over a longer period of time and the value
persists. The cwnd is set between the short-term lower bound
and long-term upper bound, but is always 15% less than the
upper bound, also referred to as the headroom.

c) PROBE_RTT: The short-term lower bound is reset to
infinity at the end of each PROBE_RTT to prevent the low
sending rate from persisting.

B. Importance of Upper and Lower Bounds

To illustrate the effects of the short-term lower bound and
long-term upper bound on BBRv2’s delivery rate, we show
their values, along with the values of delivery rate and the

(a) 0% random loss

(b) 2% random loss

Fig. 5: BBRv2’s delivery rate, the short-term lower bound,
and the long-term upper bound during a five-minute run with
100 ms RTT, 500 mbps bandwidth, and a 2 MB buffer. Black
vertical lines indicate times when loss threshold was exceeded.

times when the loss threshold was exceeded (indicated with a
black vertical line).

Figure 5a shows a scenario with no induced loss. In this
case, losses do occur due to relatively small buffers. But,
every time a single loss occurs, the short-term lower bound
value reduces the sending rate. By doing so, further losses are
avoided and the long-term loss rate rarely exceeds the loss
threshold. Consequently, the long-term upper bound persists
at a high value. The delivery rate stays at 15% lower than the
long-term upper bound value, resulting in high goodput.

In contrast, Figure 5b shows BBRv2’s behavior under the
same condition but with 2% induced random loss. When the
loss threshold is exceeded repeatedly, the long-term upper
bound and short-term lower bound decrease rapidly until cwnd
converges to a very small value (by the end of the run).
Because the long-term upper bound never gets reset, its value
remains low and the sending rate is never given an opportunity
to recover. At the beginning of each cycle, the short-term lower
bound is set to the minimum of the short-term lower bound
and long-term upper bound. Therefore, even though the short-
term lower bound is reset and given a chance to increase every
cycle, its value is influenced by the long-term upper bound,
limiting its ability to increase goodput.

The main takeaway is that the short-term lower bound reacts
to short-term buffer losses and is able to control the sending
rate. However, when the losses persist (either because we
induce the loss or when the losses are bursty as in the case
of cellular conditions), the long-term upper bound reduces
significantly, resulting in poor goodput.

V. MAKING BBRV2 ROBUST TO LOSSES

Our goal is to improve BBRv2’s goodput under loss while
maintaining most of its fairness improvements. Our approach
is to modify the loss response of BBRv2.

A. How important is the long-term upper bound?

A natural first step is to not set the long-term upper bound
at all, essentially leaving it at infinity. To do this, we set the



loss threshold to an arbitrarily high value (1000%, in our
experiments) so that the long-term upper bound will almost
never be set. Recall that the upper bound value is set only when
the loss estimate exceeds the loss threshold. By not setting the
long-term upper bound, this version of BBRv2 will react to
losses solely via the short-term lower bound value.

With this setting, the goodput dramatically improves, with
BBRv2 (removing upper bound) performing similarly to BBR.
However, it also results in poor fairness. The unfairness is not
as bad as BBR, but is considerably worse than BBRv2.

The reason for the unfairness is that, without an upper
bound value, the delivery rate can increase in an unbounded
manner. Recall that the packets in flight is set to 15% less than
the upper bound in the original BBRv2, providing an upper
limit. Thus, removing the loss threshold and eliminating the
long-term upper bound meets our performance goal (of high
goodput), but at the expense of fairness.

B. Adaptive long-term upper bound
Instead of removing the upper bound entirely, we propose to

set it adaptively. The problem with the upper bound regulation
algorithm in unmodified BBRv2 is that the value can drop to
arbitrarily low numbers across cycles when loss persists. Our
approach to stem this free fall of the upper bound value is to
reset it periodically and adaptively.

a) When should the upper bound be reset?: Setting the
long-term upper bound only once at the beginning of the flow
means that the long-term upper bound will reflect the unsus-
tainably high sending rate during the startup phase. Setting it
once per cycle at the beginning of the steady state causes the
long-term upper bound to reflect the low sending rates used
during PROBE_RTT, which reduces goodput unnecessarily.
We verified both of the above scenarios empirically.

Instead, we set the long-term upper bound after the
steady state is reached, specifically, at the beginning of
PROBE_REFILL (see Figure 4). When BBRv2 is in steady
state, the number of packets sent is a near-accurate estimate
of the capacity of the network. We update the value at every
PROBE_REFILL, allowing the upper bound to reflect changes
in bandwidth.

b) What value should the upper bound be reset to?:
Rather than devising a complicated algorithm, we consider
a simple heuristic that is easy to deploy: we set the long-
term upper bound to the maximum number of packets in-flight
during the last round trip. BBRv2 already tracks this value (as
inflight_latest), making it easy to implement.

The intuition here is that, as stated above, the number of
packets in flight during steady state is a good estimate of the
capacity of the network. This value represents a high but safe
sending rate, even in the presence of losses. Since BBRv2
must send at least 15% less than this upper bound, BBRv2
will send more conservatively and consequently be more fair.

VI. EVALUATION

We now evaluate the performance and fairness of our
BBRv2 with adaptive long-term upper bound; we refer to this
version of BBRv2 as “our solution” in the results.

Fig. 6: Packets delivered, short-term lower bound, and long-
term upper bound for our adaptive version of BBRv2. Experi-
ment settings are the same as in Figure 5 (a) and (b). The loss
threshold is never exceeded, but the long-term upper bound is
reset every cycle.

A. Methodology

The evaluation setup is similar to the one described in
Section III. In addition to BBR and BBRv2, we evaluate the
performance of our adaptive variant of BBRv2. Unless stated
otherwise, we report results averaged over at least 5 runs. We
present results from four network environments:

• LAN, WAN, and cellular setups (see Section III-A)
• LAN with changing bandwidth: In this scenario, we

change the bandwidth during the course of the experiment
to study how well our solution can adapt its sending rate.

B. Performance evaluation under LAN and WAN settings

Figure 6 shows the long-term upper bound, short-term lower
bound, and the delivery rate for each ack during a five-
minute run using a 2 MB buffer and 2% induced loss. Our
modification causes the long-term upper bound to be set to
the maximum number of packets in flight during the latest
round trip at the beginning of each PROBE_REFILL, limiting
the long-term upper bound to 85% of that value. The long-
term upper bound remains steady throughout the flow, unlike
unmodified BBRv2 (in Figure 5b). The experiment length in
Figure 6 is the same as in Figure 5b, but the significantly
increased delivery rate with our solution results in more acks
on the x-axis in Figure 6.
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Fig. 7: Goodput for BBRv2 and our adaptive solution in the
LAN, under a 100 ms RTT and 500 mbps bandwidth, and in
the WAN with 0%, 1%, and 2% induced random loss.

Figure 7 shows goodput for our modified BBRv2 alongside
unmodified BBRv2 in the LAN and in the WAN. When no
additional loss is induced, the two BBRv2 versions perform
similarly, achieving goodput comparable to BBR. Under 1%
and 2% loss, the our modified BBRv2 vastly outperforms
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Fig. 8: LAN set up: Harm values for 2% loss, 500mpbs
bandwidth, and 100ms RTT.

standard BBRv2 due to its reduced loss response. The re-
transmission rate (not shown) is similarly low for both BBRv2
variants, showing that unlike BBR, our modified BBRv2 does
not incur excessive retransmissions to maximize goodput.

We also find that our modified BBRv2 achieves optimal
video quality similar to that of BBR under 2% induced loss
(results not shown).

Figure 8 shows the harm metric [5] for our LAN exper-
iments under 2% induced loss. Under the 2% induced loss
setting, our solution is significantly more fair than BBR, but
more unfair than BBRv2. This is because BBRv2, with its
default loss threshold of 2%, significantly reduces its delivery
rate (resulting in its unusually low goodput in Figure 7),
leaving more bandwidth for Cubic to leverage. By contrast, our
solution maintains high goodput while significantly improving
fairness over BBR.

In summary, our adaptive solution achieves high goodput
compared to BBRv2 while improving fairness over BBR.

C. Performance under changing bandwidth

We confirm that our adaptive BBRv2 is able to respond to
changes in bandwidth. We consider a five-minute changing
bandwidth scenario which starts with a bandwidth of 500
mbps, followed by 50 mbps decrements in available bandwidth
every 20 secs until the bandwidth reaches 250 mbps. The
bandwidth remains at 250 mbps for 50 secs before increasing
by 50 mbps every 20 secs until reaching 500 mbps, where it
stays for the remainder of the run. The buffer size is 10 MB.
We include experiments with 0% and 2% induced loss.

Figure 9 shows that our adaptive BBRv2 responds to
changes in bandwidth as quickly as BBR. Thus, setting the
long-term upper bound once per cycle suffices to allow our
version of BBRv2 to respond quickly to changes in bandwidth.
BBR, BBRv2, and our adaptive BBRv2 achieve similar good-
put under the changing bandwidth condition except for BBRv2
under 2% induced loss. In this case, BBRv2 has low goodput
due to its loss response, rather than an inability to respond
to changes in bandwidth. Thus, our solution responds well to

BBR BBRv2 BBRv2 (our solution)
0% induced loss 363 360 364
2% induced loss 359 23 342

TABLE IV: Goodput (mbps) for BBR, BBRv2, and our
adaptive BBRv2 under the changing bandwidth condition.

changing bandwidth and maintains high goodput (on par with
BBR) under these conditions as well, as shown in Table IV.

D. Performance evaluation under cellular setting

We also analyze the performance of our modified BBRv2
under emulated cellular conditions.

Our adaptive BBRv2 provides significant goodput improve-
ments over unmodified BBRv2 under cellular conditions.
Figure 10 shows the goodput achieved by BBRv2 and our
adaptive BBRv2 under the median cellular condition and
10mbps bandwidth. Our version provides, on average, 143%
improvement across all cases, and as much as 191% for
the small buffer setting. We see similar improvements under
good and poor cellular conditions for 10mbps and 100mbps
bandwidth (not shown here).

Our solution is much fairer than BBR under the small buffer.
Our solution is slightly more fair than BBR under the medium
and large; however, BBRv2 is much more fairer than our
solution in all cases.

In the small buffer case, all variants of BBRv2 achieve
low goodput compared to BBR. Our adaptive BBRv2 solution
does increase goodput by nearly 3× compared to unmodified
BBRv2, but this throughput is still lower than BBR (not
shown). Thus, when run with Cubic, all versions of BBRv2
leave significant bandwidth for Cubic, decreasing their harm.

While our solution’s fairness is better than that of BBR
under cellular conditions, there is much room for improvement
when comparing with BBRv2. In results not shown here,
we find that under some conditions, goodput improves while
fairness suffers, and under others, fairness is acceptable but
goodput is still low. The problem here is the extreme loss. The
median cellular condition in some cases sees a burst of loss
where as much as 80% of packets are lost, with the average
loss rate being about 5% overall. Our solution is currently
unable to gracefully tradeoff fairness with Cubic at the expense
of increased goodput under such large loss bursts.

E. Performance evaluation for DASH video application

We compare the performance of our BBRv2 modification
on a DASH video application to that of BBR and unmodified
BBRv2. As shown in Table V, when no loss is induced,
all three BBR variants achieve near-optimal video quality.
However, under 2% loss, BBRv2’s video quality decreases.
Our modified BBRv2 improves video quality over standard
BBRv2 in this case by 20%.

VII. RELATED WORK

Given that BBRv2 recently had its alpha release in 2019 [6],
there is little published work on BBRv2’s performance. The
work by Ivanov at al. [8] study BBRv2 on the Dropbox edge
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Fig. 9: Changing bandwidth set up: Throughput for BBR, BBRv2, and our adaptive BBRv2 under a changing bandwidth
scenario with 2% induced loss.
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BBR BBRv2 BBRv2 (our solution)
0% induced loss 9.614 9.43 9.542
2% induced loss 9.754 8.002 9.746

TABLE V: Video quality, where 0 is the lowest bitrate and
10 is the highest, for BBR, BBRv2, and our adaptive BBRv2
under 100 ms RTT, 25 mbps bandwidth, and a 100 KB buffer.

network and show that the throughput of BBRv2 is comparable
to BBR under high bandwidth and low buffer conditions.
The study reports lower packet loss rates, less data in flight,
lower RTTs, and higher fairness as compared to BBR. Yang
et al. [9] evaluate BBRv2 using Mininet and find that it has
slow receptivity to changing bandwidth and low resilience
to random losses. To this end, they propose BBRv2+ which
alters the bandwidth probe phase of BBRv2 to include a delay
parameter based on the network conditions while providing
more fair behavior.

Tierney et al. [15] study BBR and BBRv2 on Data Transfer
Nodes (DTNs), which are characterized by high speed hosts,
a large number of parallel flows, and high latency paths. The
authors find that BBR performs much better on high latency
and high loss paths, but at the expense of high retransmis-
sions. They also state that long BBRv2 flows are unfair to
Cubic flows on long latency and high loss paths. Nandagiri
et al. [16] perform an experimental evaluation of BBR vs.
BBRv2, focusing on fairness, queue delay, and link utilization.
The authors confirm BBR’s unfairness to Cubic due to its lack
of response to losses. Our focus in this paper is primarily on
BBRv2’s poor performance under loss. Recently, there have

been modeling works on BBRv2. Scherrer et al. [17] model
the performance and fairness of BBR and BBRv2 and validate
their model using Mininet. Mishra et al. [18] model BBR’s
performance when it competes with differing proportions of
BBR and Cubic flows and conclude that BBR’s throughput
advantage over Cubic diminishes as more BBR flows join.
Their model also gives accurate throughput predictions for
BBRv2 when RTT is small.

However, to the best of our knowledge, ours is the first
measurement study that evaluates BBRv2’s performance in
LAN and WAN settings under diverse network conditions.

In contrast, there have been several studies that evaluate
the performance of BBR. For example, Cao et al. [3] study
the performance of BBR under various network conditions
and find that BBR is unfair to conventional TCP congestion
algorithms and does not perform well under deep buffer
conditions. Ware et al. [5] show that BBR is especially unfair
when competing with multiple Cubic flows and Philip et
al. [19] find that BBR can be unfair even to itself when
experiments are not run at the edge but at the core.

VIII. CONCLUSION

This work presents the first performance evaluation of
BBRv2 versus BBR under a diverse set of network and
loss conditions. We construct a decision tree based on our
empirical measurements to compare the performance of BBR
and BBRv2. Our key finding is that, under induced random
loss and bursty losses, BBRv2 experiences significant goodput
degradation (as much as 871%) compared to BBR. This
performance degradation extends to the WAN, cellular network
conditions, and video quality. Our investigation of BBRv2’s
code reveals that the long-term upper bound on packets-in-
flight employed by BBRv2 excessively suppresses the goodput
under lossy conditions. To address this problem, we devise a
modification to BBRv2 that sets the upper bound adaptively,
making BBRv2 react to losses without reducing performance.
Our adaptive BBRv2 achieves goodput comparable to BBR
and achieves close to the fairness achieved by BBRv2. We
conclude that, with our modifications, BBRv2 can be a suitable
replacement for BBR, especially under losses.
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