
MERIT: Model-driven Rehoming for VNF Chains
Muhammad Wajahat∗, Bharath Balasubramanian†, Anshul Gandhi∗, Gueyoung Jung†,

Shankaranarayanan Puzhavakath Narayanan†
∗Stony Brook University †AT&T Labs - Research

Abstract—Network service providers often run service chains
of Virtual Network Functions (VNFs) on privately owned clouds
with limited capacity. These specialized service chains need to
meet strict Service Level Objectives (SLOs), especially along the
lines of availability (e.g., First responder services). Hence, VNFs
in such thinly provisioned clouds may need to be frequently
moved, or rehomed, when reacting to various cloud events like
hotspots, failures and upgrades. In this paper, we perform a
detailed measurement study to show that naive strategies for
rehoming, applied uniformly across all VNFs of the service chain,
are often sub-optimal when considering different metrics like the
user-perceived service downtime and the provider-incurred time
delay to complete the rehoming. We propose a novel ModEl-
driven RehomIng Technique (MERIT) for VNF chains and
empirically analyze the effect of various system parameters on
different rehoming actions. Based on our analysis, we develop
generic rehoming cost models and further, design and implement
an autonomous rehoming system based on MERIT that identifies
and executes the optimal rehoming action for each VNF in a
service chain. Our experimental results on OpenStack using real-
world chains show that MERIT can reduce the chain rehoming
delay by up to 47% and the chain downtime by up to 49%.

I. INTRODUCTION

Network function virtualization (NFV) has several benefits
such as cost-efficient deployment on commodity hardware,
elasticity, and reduced tie-in to proprietary hardware. To avail
these benefits, major Network Service Providers like AT&T
and Verizon are replacing specialized networking hardware
with Virtual Network Function (VNF) chains [1], where indi-
vidual VNFs provide integrated network services (the tenants)
on virtualized infrastructure (the cloud provider).

VNF service chains often have stringent performance Ser-
vice Level Objectives (SLOs) [2]. For example, first responder
services (EMS, police, fire) require very high system availabil-
ity [3]. This is challenging since events like hotspots (com-
pute/network bottlenecks), VM workload shifts, etc., lower
the performance and availability of the service [4]. Further,
network provider clouds are typically resource constrained as
they primarily consist of cloud sites (including edge sites)
that host anywhere between 10–500 servers [5]. To maintain
service chain SLOs under these constraints, network providers
often have to rehome (or move) one or more VNFs (or VMs,
used interchangeably) of the service chain to a different host.

The typical approach to rehoming an entire service chain
involves applying the same corrective action, such as VM live
migration, to all VNFs in the chain [6], [7]. For example,
in Figure 1, to address a hotspot in one of the physical
servers that hosts video optimizer VNFs, all the resident VNFs
can be live-migrated to different hosts. However, knowing
that the video optimizer VNFs are stateless, rebuilding them
(which recreates VMs and re-routes traffic) may be a quicker

Video
Optimizer Pool

DPI+Router Router

Load Balancer

Firewall

Video
traffic

Other
traffic

Regular Service Path
Video Service Path

NFV Infrastructure
(NFVI)

VIRTUALIZATION LAYER
Hardware
resources Compute Network Storage

VNFs

Fig. 1: An NFV ecosystem showing a video optimizing service chain,
the VNFs of which are deployed on virtualized infrastructure (NFVI).

option. Based on this intuition, this paper aims to address the
following question – “What is the optimal rehoming action for
each VNF in a service chain?”. In particular, given a service
chain and a set of potential rehoming actions, our goal is to
determine the exact rehoming action that must be employed for
each VNF in the chain; different VNFs may have a different
optimal rehoming action.

To the best of our knowledge, no prior work has addressed
the question of identifying the optimal set of rehoming actions
for a service chain. While most of the prior work ([6], [7],
[8], [9]) has focused exclusively on live migration, and on
the effect of rehoming on individual VMs, we show that the
rehoming action of one VNF can impact the rehoming cost
of other VNFs in a service chain. Note that our focus is not
on developing new rehoming actions or on enhancing existing
rehoming actions, but on determining which of the available
actions to employ for each VNF in the service chain. This is
a challenging task for several reasons:
• The candidate set of rehoming actions for a chain grows

exponentially with the number of VNFs. For example, in
Figure 1, if we only consider rebuild, cold-migrate and live-
migrate as available rehoming actions, there are 35 possible
rehoming choices for the service chain with 5 VNFs.

• The optimal rehoming actions for a chain depend on the
exact metric(s) being considered. Even for a single VNF,
optimizing for time taken to complete the rehoming (or
rehoming delay) can lead to a choice which is different from
the choice for optimizing the service connectivity downtime.

• The optimal rehoming action(s) can change with the state
of the VMs (e.g., the image size or disk size) and the state
of the underlying platform (e.g., total traffic).

We address these challenges through a novel Model-driven
Rehoming Technique, MERIT, that determines the optimal
rehoming actions for the entire VNF chain, based on four key
features: (1) Model-driven: developing VNF-agnostic models
for each rehoming action based on detailed empirical studies
that capture the impact of various parameters on connec-
tivity downtime and rehoming delay; (2) Contention-aware:
accounting for the resource contention that results when re-

homing the entire service chain as multiple rehoming actions
migrate state simultaneously across the network and on shared
storage; (3) Graybox: leveraging information exchange (e.g.,
statefulness of VNFs) between tenants and network provider,
typically common in such private clouds, to identify the fea-
sible rehoming actions for each VNF, thus reducing the state
space of candidate actions; and (4) Autonomous: employing
an end-to-end implementation to automatically rehome VNFs
and continually update cost models at runtime. Based on these
features, we make the following contributions in this paper:
• Looking beyond live migrate (Section II): In sharp contrast

to prior works that only focus on live migrate, we show
that rebuild and cold migrate could be potentially superior
alternatives, especially for memory-intensive VNFs or non-
shared storage environments where live migrate is infeasible.

• Empirical analysis of rehoming costs (Section III): We
perform measurement studies on an OpenStack cluster to
capture the impact of system parameters on the rehoming
cost for different out-of-the box rehoming actions.

• Modeling of rehoming costs (Section IV): Using our mea-
surements, we leverage supervised learning to model the
delay and downtime for different rehoming actions.

• Implementation and evaluation on real-world service
chains (Sections V and VI): We implement an (open-
source [10]) autonomous rehoming system that leverages
empirically trained models and interacts with OpenStack to
execute optimal rehoming on service chains. Our experi-
mental evaluation on real-world service chains shows that
MERIT accurately predicts the rehoming costs for the entire
chain by accounting for the network contention created by
simultaneously rehomed VNFs. Compared to the existing
practice of applying homogeneous rehoming actions for all
VNFs in the chain, MERIT reduces the chain rehoming
delay by about 26% on average (and up to 47%) and the
chain downtime by about 20% on average (and up to 49%).
Importantly, the chain rehoming costs incurred by MERIT
are almost always within 10% of the costs incurred by the
unrealistic but optimal clairvoyant (oracle) policy.

II. BACKGROUND AND OVERVIEW

When analyzing the rehoming performance, we consider the
following metrics, collectively referred to as rehoming costs:
• Rehoming delay: This is the time to perform the rehoming

action, and represents the (resource) cost incurred by the
provider to rehome a VNF.

• Connectivity downtime: This is the time until the service
chain’s end-to-end connectivity is restored, and represents
the performance loss for the tenant due to rehoming.
Cloud platforms typically provide out-of-the-box mecha-

nisms that help with rehoming; we consider three such prac-
tical rehoming actions, as described below. While variants of
rehoming actions are possible, our focus is on determining the
optimal VNF rehoming actions from among the available ac-
tions, and not on optimizing the rehoming actions themselves.
Nonetheless, our methodology is not specific to the considered
actions and can be applied to cases where additional rehoming

actions are available. In the following, we refer to the VM prior
to rehoming as the “original” VM and the VM after rehoming
as the “rehomed” VM.
1) Rebuild: This involves taking down the original VM and

rebuilding it from the VM’s image while retaining some
metadata (e.g., IP address and interfaces) [11]. Rebuild has
low rehoming delay, but it can only be used for stateless
VNFs, since the disk and memory state of the original VM
are not preserved, resulting in loss of state.

2) Cold migrate: This involves migrating a VM with its disk
contents [11]. By default, only disk contents are copied
to the rehomed VM. The in-memory state of the original
VM can be optionally restored on the rehomed VM by
writing to disk prior to migration. Thus, cold migrate does
preserve some state. However, the rehoming delay under
cold migrate can be high, especially for a large disk size.

3) Live migrate: This action migrates an active VM instance
to a different host, and tends to induce minimal disruption
(connectivity downtime) to the hosted application [6]. Live
migration (using “pre-copy”) involves a warm-up phase
where memory pages are copied from the source to desti-
nation host before starting the rehomed VM, and a stop-
and-copy phase where the original VM is suspended and
the remaining dirty pages are copied over to the rehomed
VM. Note that live migrate requires shared storage to be
feasible (Section III-C3). Live migration can take a long
time to complete, especially for applications with a high
page dirty rate [12]. In such cases, live migration can be
aborted via a timeout feature [11].

III. EMPIRICAL ANALYSIS OF REHOMING

Our problem statement is as follows: Given the various rehom-
ing actions, when a service chain needs to be rehomed, which
rehoming action should be employed for each VNF in the chain
to optimize rehoming costs? The “optimize” here refers to
minimizing the connectivity downtime and/or rehoming delay,
as specified by a user-provided objective or utility function.

To help address the above question, we empirically an-
alyze the rehoming costs for different rehoming actions to
understand the trade-offs between them. In this section, we
start by comprehensively analyzing a simple VNF chain under
various parameter settings and then extrapolate our results,
in Section IV, to arbitrary settings and VNF chains. For our
empirical analysis, we measure (i) rehoming delay based on
the relevant timestamped entries in the OpenStack logs and/or
from the Nova status API [11], and (ii) connectivity downtime
by calculating the delay between successful pings from the
client to the server in the chain; this delay includes the time
to get console access to the VM.
A. Experimental setup
Our experimental test-bed comprises of several bare metal
servers with Intel E5-2683 CPUs and 256GB memory in
CloudLab (Clemson site) running OpenStack (Rocky release).
We deploy our service chains on VMs (running Ubuntu
18.04) hosted on this test-bed. For shared storage, we employ
GlusterFS (v4.1) as our shared network filesystem over ext4

0 5 10 15 20

Memory capacity, MEM (GB)

0

10

20

30

R
e
h
o
m

in
g
 d

e
la

y
 (

s
)

High background I/O

Moderate background I/O

Low background I/O

(a) Rebuild rehoming delay vs. instance capacity
for different background I/O loads.

0 1000 2000 3000 4000 5000 6000

Disk size, DSK (MB)

0

200

400

600

800

1000

R
e
h
o
m

in
g
 d

e
la

y
 (

s
)

Low n/w BW, medium instance

Low n/w BW, xlarge instance

Medium n/w BW, medium instance

Medium n/w BW, xlarge instance

High n/w BW, medium instance

High n/w BW, xlarge instance

(b) Cold migrate rehoming delay vs. disk size for
different instance sizes and background I/O loads.

0 8 16 24 32

Page dirty rate, PDR (kilo pages/s)

0

400

800

1200

R
e

h
o

m
in

g
 d

e
la

y
 (

s
)

High n/w BW

Medium n/w BW

Low n/w BW

(c) Live migrate rehoming delay vs. page dirty
rate for different network bandwidths.

Fig. 2: Empirical results for rehoming delay of rebuild, cold migrate, and live migrate under shared storage.

using a single brick Gluster volume.
B. Experimental methodology
We collect empirical data for analysis on a simple VNF service
chain consisting of a client VM, a switch VM, and a server
VM, with ping traffic going from client to server via the
switch. We consider the client and the server VM to be outside
the provider cloud, and only rehome the switch VNF.
VNF parameters. We experiment with image sizes of
250MB–3GB and disk sizes of 700MB–5GB (by adding soft-
ware and data). We consider different VM sizes (parameterized
by their memory capacity): 4GB (medium), 8GB (large), and
16GB (xlarge). We also vary the page dirty rate (PDR) by run-
ning Memcached on the switch VM. We vary the request rate
and data store size for Memcached to generate different data
points for PDR and working set size, respectively. To track
PDR, working set size, and other relevant features, we use a
modified QEMU with additional profiling capabilities [12].
Cloud Infrastructure parameters. To study the impact
of available bandwidth on rehoming, we employ Wonder-
Shaper [13] to limit the bandwidth to 100-900Mbps; the
link capacity in our setup is 950Mbps. We vary VM CPU
utilization by modifying the request rate of Memcached; this
also impacts PDR. For I/O contention, we use stress-ng [14]
to generate different background I/O loads at the target host.
We use mpstat and iostat to measure I/O statistics.
C. Empirical analysis of rehoming costs
1) Analysis of rehoming delay
The markers in Figure 2 show our empirical results for the
rehoming delay of all three actions under shared storage.
Figure 2(a) shows the rebuild rehoming delay as a function
of instance size, parametrized via the memory capacity of the
instance (MEM). We show results under a 1GB image size
and 335Mbps bandwidth; results are qualitatively similar for
other parameter settings. We see that the rehoming delay under
rebuild is quite small, almost always around 20s. We also see
that the rehoming delay is largely insensitive to the instance
size, and is only slightly impacted by the mean background
I/O load, with higher load contributing to higher rehoming
delay. This is likely because the background I/O load on
shared storage contends with the disk read and write operations
required for the booting process that are part of the rebuild
action on the target host.

Figure 2(b) shows the cold migrate rehoming delay as a
function of disk size for different combinations of background

network bandwidth (BW) and instance size. We see a nearly
linear relationship between rehoming delay and disk size, and
find that delay increases as BW decreases. This is because,
under OpenStack, the source VM’s disk contents are copied
onto shared storage over the network before migration is
considered complete. The rehoming delay under cold migrate
can be quite high, as much as 700s, for larger disk sizes.

Figure 2(c) shows the live migrate rehoming delay as a
function of PDR for different network bandwidths (BW). To
prevent live migration from getting stuck, we set a timeout
of 20 minutes. We see that the rehoming delay under live
migration can be quite high for moderate to high PDR, often
exceeding the peak rehoming delay under rebuild and cold
migrate. This is because the live migrate process has to
continually copy pages as they get dirtied. In fact, for high
PDR, we see that live migrate times out (shown as rehoming
delay of 1200s in Figure 2(c)); thus, for high PDR, live migrate
is infeasible. At low PDR, the rehoming delay is in the 25–
90s range (higher than rebuild but lower than cold migrate).
In terms of trend, the delay increases with PDR; further, the
delay also increases with a decrease in network bandwidth.
2) Analysis of connectivity downtime
The markers in Figure 3 show our empirical results for the
connectivity downtime of all actions under shared storage. The
results in Figure 3 are from the same experiments as Figure 2,
and thus the VNF and system parameters are the same.

Figure 3(a) shows the connectivity downtime for the rebuild
action. We see that downtime follows the same trend as delay,
except that there is now a slightly linear relationship be-
tween downtime and instance size, and the downtime is more
sensitive to background I/O load. In general, the downtime
numbers for rebuild are in the 100–200s range, with higher
values for higher background I/O load. The downtime is higher
than delay under rebuild because restoring the connectivity
requires some post-boot processes to execute, such as network
configuration and host-ssh key generation.

Figure 3(b) shows the connectivity downtime for cold
migrate. The trends are very similar to those in Figure 2(b).
For cold migrate, the downtime and delay values are not
very different, unlike rebuild; this is because both rehoming
costs include the time needed to copy the disk. Nonetheless,
downtime is typically higher under cold migrate than rebuild,
especially for larger disk sizes.

Finally, Figure 3(c) shows the downtime for live migrate.
In stark contrast to rebuild and cold migrate, the downtime

0 5 10 15 20

Memory capacity, MEM (GB)

0

50

100

150

200

C
o
n
n
e
c
ti
v
it
y
 d

o
w

n
ti
m

e
 (

s
)

High background I/O

Moderate background I/O

Low background I/O

(a) Rebuild connectivity downtime vs. instance
capacity for different background I/O loads.

0 1000 2000 3000 4000 5000 6000

Disk size, DSK (MB)

0

200

400

600

800

1000

C
o
n
n
e
c
ti
v
it
y
 d

o
w

n
ti
m

e
 (

s
)

Low n/w BW, medium instance

Low n/w BW, xlarge instance

Medium n/w BW, medium instance

Medium n/w BW, xlarge instance

High n/w BW, medium instance

High n/w BW, xlarge instance

(b) Cold migrate downtime vs. disk size for different
instance sizes and background I/O loads.

0 8 16 24 32

Page dirty rate, PDR (kilo pages/s)

0

4

8

12

C
o

n
n

e
c
ti
v
it
y
 d

o
w

n
ti
m

e
 (

s
)

High n/w BW

Medium n/w BW

Low n/w BW

(c) Live migrate connectivity downtime vs. page
dirty rate for different network bandwidths.

Fig. 3: Empirical results for connectivity downtime of different rehoming actions under shared storage.

under live migrate is much shorter. While we see a loosely
linear correlation between downtime and PDR, the downtime
is less than 12s in all cases. This is because downtime only
includes the stop-and-copy phase wherein the source VM is
stopped and only the remaining dirty memory is copied to the
target VM. However, there is a caveat here. Since live migrate
times out under high PDR, the rehoming does not complete in
such cases; consequently, there is no downtime to be reported.
3) Analysis of rehoming costs under non-shared storage
The rehoming cost results for rebuild and cold migrate under
non-shared storage do not change significantly when compared
to shared storage; we refer interested readers to our technical
report for full results [15]. Note that live migrate is infeasible
under non-shared storage.

IV. MODELING THE REHOMING COSTS

This section first presents our modeling results for a single
VNF, and then, in Section IV-C, we show how MERIT
leverages the single VNF models to predict the optimal
simultaneous rehoming actions for the entire service chain.
A. Modeling methodology
We consider the simple client-switch-server VNF chain and
focus on modeling the rehoming costs for the switch VM.
1) Learning techniques
We employ multiple linear regression (LR), support vector
regression (SVR), and neural networks (NN) to train our
rehoming delay and connectivity downtime models. For NN,
we consider the sigmoid and the rectified linear unit (ReLU)
activation functions for the hidden layer. We experiment with
multiple, diverse techniques so we can evaluate their accuracy
and determine the best model for each rehoming action. While
LR is easy-to-use and quick to train, it cannot model non-
linearities or dependencies between features. SVR can model
non-linearities, but cannot easily model dependencies between
features. NN can model both non-linearities and dependencies,
but is more complex and slow to train [16].
2) Features used for model training
Since different rehoming actions work differently, we choose
features based on the specific action being modeled. However,
to model a given action, we employ the same features for all
learning techniques and rehoming costs (delay and downtime).

For rebuild, we use the following features: (i) image size of
the original VM , (ii) instance size, denoted by its memory ca-
pacity (MEM), (iii) VM CPU usage, (iv) available bandwidth
(BW), (v) mean I/O wait time, and (vi) standard deviation of

I/O wait time. The intuition for including these features is that
rebuild involves booting a new VM using the image, and as
we observed in our empirical analysis, the instance size and
I/O load impact the rehoming cost under rebuild. For cold
migrate, we additionally use the disk size since cold migrate
involves moving the disk contents. To capture I/O contention,
we also use the IOPS and the read and write kBps as features.

For live migration, prior works have investigated the set of
useful features for modeling [6], [12], and so we leverage these
results to finalize our feature set as: (i) instance size (MEM),
(ii) network bandwidth (BW), (iii) page dirty rate (PDR), (iv)
working set size, (v) modified words per page, (vi) working set
entropy (WSE), and (vii) non-working set entropy (NWSE).
To capture I/O contention, as before, we also use the IOPS and
the read and write kBps as features. The intuition for including
these features is to capture the memory state transfer time
under live migration, which is the only state to be migrated
since image and disk are on shared storage.
B. Modeling results for rehoming costs
Our models employ the empirical data collected in Section III
for training. We have about 400, 1600, and 1000 empirical data
points for rebuild, cold migrate, and live migrate, respectively.
In all cases we remove outliers, and in the case of live migrate,
we omit data points where live migrate times out.

The average 5-fold cross validation errors for all rehoming
actions under all learning techniques for shared and non-shared
storage are shown in Tables I and II, respectively. In general,
we find that SVR and NN typically have higher accuracy than
LR, especially for cold migrate and live migrate; in fact, for
live migrate, LR has very poor accuracy, suggesting the need to
employ a non-linear model for predicting the rehoming costs
of live migrate. For rebuild, since the empirical data exhibits
a nearly linear relationship, LR performs equally well.

For rebuild, we find that the feature weights for instance
size and image size for our empirical data are negligible. For
cold migrate, disk size and bandwidth have significant weights.
For live migrate, PDR and bandwidth have significant weights,
whereas WSE and NWSE have negligible weights.

Based on the final results in Tables I and II, we choose LR
models for rebuild and cold migrate rehoming costs. While LR
has slightly worse accuracy compared to other techniques for
cold migrate, LR provides intuitive, closed-form expressions
for the final models, and LR is quick to train. However, for
live migrate, LR has poor accuracy, making it an impractical
choice for MERIT. Instead, for live migrate, we choose NN

Model Rebuild Cold Migrate Live Migrate
delay dtime delay dtime delay dtime

LR 4.2% 2.8% 5.6% 4.4% 92.6% 35.4%
SVR 4.1% 3.8% 11.2% 7.7% 27.8% 33.7%

NN sig 4.6% 2.0% 4.4% 3.7% 11.0% 34.6%
NN ReLU 4.3% 2.0% 4.4% 3.9% 13.0% 36.6%

TABLE I: 5-fold cross validation error for different modeling
techniques under shared storage.

Model Rebuild Cold Migrate
delay dtime delay dtime

LR 5.0% 4.7% 1.4% 1.6%
SVR 5.3% 2.6% 3.3% 2.8%

NN, sigmoid 5.6% 2.1% 1.1% 1.3%
NN, ReLU 5.4% 2.6% 1.1% 1.1%

TABLE II: 5-fold cross validation error for different modeling
techniques under non-shared storage.

with ReLU activation function. Note that, for live migrate, the
downtime modeling accuracy is not important as the downtime
is almost always less than 12s (and thus superior to rebuild and
cold migrate), except when live migrate times out under high
PDR, making live migrate infeasible (see Section III-C2). The
timeout event can be predicted by comparing the NN rehoming
delay prediction with the timeout value (1200s, in our case).

The final LR models for rebuild and cold migrate are shown
as the solid lines in Figures 2(a), 2(b), 3(a), and 3(b). For live
migrate rehoming costs, the NN with ReLU model is shown
as the solid lines in Figures 2(c) and 3(c).
C. Modeling network contention when applying MERIT
At run-time, due to simultaneous rehoming of VNFs in the
chain, the available network bandwidth (BW) is shared among
them. Thus, BW for each VNF rehoming action must be
estimated at run-time when applying the rehoming models.

Let the available network bandwidth at the host be B MB/s.
We can account for background traffic by subtracting that
amount from the available bandwidth. If the chain has n VNFs
on a host, then the available bandwidth for each will be B/n,
assuming they have the same amount of state to be migrated.
If the amount of state to be transferred is different, then the
bandwidth computation is more complex. In general, for a host
with n VNFs, with the VNFs indexed in increasing order of
state migration size x1 < x2 < . . . < xn, the state migration
time and BW for the ith VNF are:

Ti =
x1

B/n
+

x2−x1

B/(n−1)
+ .. =

∑i−1
j=1 xj + (n−i+1) · xi

B
(1)

Bi =
xi

Ti
=

xi ·B
x1 + x2 + . . . xi−1 + (n− i+ 1) · xi

(2)

Note that Ti is not the same as rehoming delay since the lat-
ter may include additional delays due to the rehoming process
specifics (see Section III-C). The state size, xi, depends on
the rehoming action to be performed on VNF i. For rebuild,
there is no state transfer involved. For cold migrate, the disk
contents are transferred over the network. For live migrate,
under shared storage, the memory contents, iteratively dirtied
pages, and the final dirty memory during stop-and-copy phase
comprise the state to be migrated; the size of the state can be
estimated based on the PDR and available network bandwidth.

MERIT

Scheduler

Inventory

Orchestration
Wrapper

Rehoming
Trigger

Update VNF

List of hosts

Predict cost

Modeling & Prediction
Module Predict Cost for each VNF in

combination

Identify actionsIdentify VNFs Identify
targets

Identify action combinations, target
hosts and optimize cost

Update models

Host Scheduler

Resource Monitor

Nova Interfacer
VNF Properties and Host Mappings

1
2 3

4

5

6

7

8

9

Confirmation
Monitor
status

Fig. 4: Illustration of our MERIT system implementation.

V. SYSTEM DESIGN AND IMPLEMENTATION

Figure 4 shows the system implementation of our MERIT
approach. While MERIT includes an offline component which
constructs the rehoming action models using empirical data,
the figure only shows the online components. We implement
the system in Python and bash, consisting of ∼1200 lines of
open-source code [10].

The NFV Infrastructure (NFVI) monitoring systems (e.g,
Ceilometer in OpenStack [11]) trigger a rehoming event
and specify the physical host(s) that need to be evacuated
in response to the event (1). From the Inventory, MERIT
identifies the VNFs that reside on these physical hosts, and
obtains their features, such as image size, disk size, PDR,
etc. (2), along with the feasible actions for each of the
VNFs (3); note that this information is kept up-to-date in
the Inventory through communication with the hypervisors
via the Orchestration Wrapper (4). Based on the obtained
VNF information, MERIT uses a Cartesian product to list all
possible rehoming action combinations. The Host Scheduler
in the Orchestration Wrapper selects target hosts for each
VNF that have the most spare resource capacity (such as
available host disk space or available host memory). The
selected host information is then sent to the Scheduler, along
with the monitored host bandwidth information obtained via
the Orchestration Wrapper (5). The Scheduler then forwards
this information, along with the list of possible rehoming
action combinations, to the Modeling & Prediction Module
(6), which in turn employs the trained rehoming cost models to
obtain predictions of the rehoming cost of each combination.

Once the Scheduler receives the predicted costs, it picks
the minimum-cost action combination to optimize a given,
user-specified, utility function, U(R,D), where R and D are
the rehoming delay and connectivity downtime of the chain,
respectively. Examples of such a utility function include the
product U(R,D) = R · D, which we employ in our experi-
mental evaluation. Since MERIT predicts the utility value for
all feasible rehoming combinations, the minimum-cost choice
from among these combinations will be the (theoretically)
optimal rehoming action combination.

Finally, the Scheduler communicates with Orchestration
Wrapper to call the Openstack Nova API to perform the opti-
mal rehoming for each VNF (7). Upon completion, Scheduler
sends a confirmation back to the trigger (9) and directs the
Modeling & Prediction Module to update its cost models based
on the new data obtained during this rehoming run (8).

Switch

FirewallGateway

Server

FFMpeg Transcoder

Client

Snort

Apache Traffic Server

Fig. 5: Gi-LAN service chain used in our evaluation. VNFs are based
on real-world reference implementations from OPNFV [17].

VI. EVALUATION RESULTS

For our experimental evaluation of MERIT, we implement
several VNF service chains which are built using real-world
reference implementations of the VNFs from OPNFV [17].
1) Gateway-Internet Local Area Network (Gi-LAN) chain

comprises a client VM, packet gateway, firewall VM, IDS
VM, switch VM, stream transcoder VM (FFMpeg [18]),
cache VM (Apache Traffic Server [ATS] [19]), and a server
VM. This chain, illustrated in Figure 5, is representative of
a Gi-LAN and has two branches based on traffic type: (1)
video stream traffic that is transcoded by FFMpeg, and (2)
web traffic that is served through the ATS caching proxy.

2) Intrusion detection system (IDS) chain comprises a client
VM, switch VM, IDS VM (Snort [20]), and server VM, and
is representative of a network intrusion detection system.

We also evaluate MERIT for a Firewall chain and a Web
caching chain; due to lack of space, we defer the discussion
and results for these chains to our technical report [15].
A. Evaluation methodology
We focus on the following chain-specific metrics:
• Chain rehoming delay: This is the sum of rehoming delay

for all VNFs in the chain that are being rehomed, and
represents the rehoming cost incurred by the provider.

• Chain downtime: This is the time until the service chain’s
end-to-end connectivity is restored, and is defined as the
maximum connectivity downtime across all VNFs.

We refer to rebuild, cold migrate, and live migrate actions as
RB, CM , and LM , respectively. When rehoming a chain, to
avoid additional connectivity downtime, we consider all VNFs
of the chain to be rehomed simultaneously; this mimics a real
deployment where the entire chain needs to be rehomed in
response to maintenance or failures. The client and server VM
are typically outside the private cloud, so we do not rehome
these VMs. For the rehoming, we assume that the target host
is known (OpenStack decides the target host for migration).
For each chain, we compare MERIT with the following:
• The Oracle policy applies the optimal rehoming actions at

each VNF. We “implement” the unrealistic Oracle by experi-
menting with all feasible combinations and then labeling the
minimum-cost optimal combination as the Oracle policy.

• The Homogeneous policy uniformly applies the same re-
homing action across all VNFs that need to be rehomed.
To implement this policy, we select the lowest cost feasible
rehoming combination that applies the same action (from
among RB, CM , and LM) for all VNFs to be rehomed.

Chain Delay Downtime
B1

Downtime
B2

Downtime
avg

Product Cost
0

50

100

C
o

s
t

in
c
re

a
s
e

 c
o

m
p

a
re

d

 t
o

 O
ra

c
le

 p
o

lic
y
 (

%
)

0% 0% 0%
9% 10%

89%

40%

66%

41%

106%

0% 0% 0%

MERIT Homogeneous LM-all

Fig. 6: Percentage increase in cost, relative to the Oracle policy, for
MERIT and the best homogeneous policy for the Gi-LAN chain. Also
shown, for completeness, is the infeasible live-migrate all policy.

B. Rehoming evaluation results
1) Rehoming the Gi-LAN chain
For the Gi-LAN chain, the Firewall, Snort IDS, FFMpeg,
and ATS VNFs are subject to rehoming while the gateway
and switch are fixed. For the stateful firewall VNF (due to
IPTables), RB is not a feasible option. Likewise, RB and
CM are infeasible for ATS (since contents could be cached in
memory) and LM is infeasible for memory intensive IDS and
FFMpeg VNFs. Under our graybox approach, MERIT only
considers the remaining 8 feasible action combinations for the
chain (CM and LM for firewall; RB and CM for IDS and
FFMpeg). We use shared storage and medium instance size (2
cores, 4GB memory) for the above four VNFs, with 250MB
image and 1GB disk for Firewall, 1.6GB image and 970MB
disk for IDS, 330MB image and 700MB disk for FFM, and
850MB image and 500MB disk for ATS. We note that these
configurations were not part of the model training data.
Rehoming cost results: Figure 6 shows the percentage
increase in rehoming cost for MERIT and Homogeneous,
relative to the Oracle rehoming cost. All reported results are
averaged over 3 experimental runs. We consider the chain
rehoming delay, chain downtime, and the product of chain
rehoming delay and chain downtime (as an example of a utility
function U(R,D) = R · D). We also consider the branch-
specific chain downtimes for the video traffic (branch B1) and
web traffic (branch B2); the chain downtime is the average of
the branch-specific downtimes.

We see that MERIT is almost always within 10% of the cost
incurred by Oracle, and often has the same cost as Oracle. By
contrast, the Homogeneous policy incurs a substantially higher
cost for all metrics we consider, with an average cost increase
of about 68% across all metrics. For the Gi-LAN chain, the
Homogeneous policy employs CM for all rehomable VNFs
(fireall, IDS, FFMpeg), except ATS since ATS can only be live-
migrated. While various other combinations can be considered
for comparison, we note that MERIT’s cost relative to the
Oracle policy demonstrates our superiority.

For completeness, we empirically evaluate the (infeasible)
option of live-migrating all four rehomable VNFs; we refer to
this policy as LM-all in Figure 6. Since some of the VNFs time
out under LM-all, the rehoming never completes (infinite chain
rehoming delay). While chain downtime increase is shown as
0%, note that the rehoming action times out and so the chain
is never rehomed. Fortunately, MERIT is able to predict that
LM will indeed time out for the FFMpeg and IDS VNFs, and
so MERIT does not consider the LM-all option.

Prediction accuracy: The superior performance of MERIT
can be attributed to its accurate rehoming cost prediction mod-
els. Across all experiments, the average prediction error for
chain delay and downtime is 7.7% and 7.6%, respectively; a
detailed analysis of prediction accuracy and MERIT-predicted
rehoming actions can be found in our technical report [15].
2) Rehoming the IDS (client-switch-IDS-server) chain
For the IDS chain, LM is infeasible for IDS VNF (due
to high PDR) but there are no constraints for switch VNF.
Consequently, due to its gray-box nature, MERIT considers
2 × 3 = 6 feasible action combinations, as opposed to the
3×3 = 9 combinations a black-box approach would consider.

Delay Downtime Product
0

50

100

150

200

C
o

s
t

in
c
re

a
s
e

 c
o

m
p

a
re

d

 t
o

 O
ra

c
le

 p
o

lic
y
 (

%
)

0% 0% 3%0%

98%

3%

123%

31%
51%

MERIT

Homogeneous RB

Homogeneous CM

Fig. 7: Percentage increase in cost,
relative to Oracle policy, for IDS chain.

When optimizing for
chain rehoming delay,
MERIT accurately
predicts the optimal
rehoming combination
of RBs RBids (rebuild
switch VNF and
rebuild IDS VNF),
thus resulting in the
same cost as Oracle and Homogeneous (Figure 7). In fact,
the predicted ordering of the combinations, in terms of
chain delay, is exactly in agreement with the empirically
observed ordering for chain delay. When optimizing for chain
downtime, MERIT again correctly predicts LMs CMids as
the best option. Instead, if we use the Homogeneous policy,
we would either pick RBs RBids or CMs CMids, which
would result in an increase in chain downtime of 98% and
31%, respectively. When minimizing the product of chain
delay and downtime, MERIT incorrectly picks RBs RBids as
the optimal, instead of the Oracle LMs CMids combination.
However, the misprediction error is small, thus incurring
only a 3% cost increase over Oracle. Across all feasible
combinations, MERIT accurately predicts the rehoming costs
with a mean prediction error of 5%–8%.

VII. RELATED WORK

Prior work on modeling rehoming costs has largely focused
only on live migration. Nathan et al. [6] perform a thorough
evaluation of existing models to predict VM live migration
time and propose a new model that takes into account impor-
tant factors such as the writable working set size (WSS) and
page dirty rate (PDR). Akoush et al. [8] provide simulation
models based on historical observations of page dirtying rate
in Xen-based VMs to predict the total live migration and
service interruption times. Wu et al. [9] develop regression
models that capture the impact of CPU resource availability
on the performance of live migration. MERIT’s modeling of
rehoming costs also considers rebuild and cold migrate, which
are viable alternatives to live migrate.

Mistral [21] optimizes the overall data center utility by
choosing adaptation actions such as increasing the CPU al-
location, migrating VMs, and restarting hosts. Hence, Mistral
may lead to sub-optimal decisions from the perspective of each
service chain. By contrast, we focus on the rehoming actions

for VNFs to optimize chain-specific metrics such as rehoming
delay and connectivity downtime. Wood et al. [7] espouses
a graybox approach for VM migration taking into account
OS and application-level statistics. Our graybox rehoming
involves simple user information such as the nature of the
VMs (stateful/stateless) in the chain.

VIII. CONCLUSION

This paper identifies a practical problem in network provider
clouds – how to optimally rehome a VNF service chain in
response to hotspots, upgrades or failures. We demonstrate
the importance of considering multiple, alternative rehoming
actions, such as rebuild and cold migrate, in addition to
the existing de-facto option of live migrate. We empirically
analyze the rehoming costs of various rehoming actions and
identify the features which facilitate the modeling of rehoming
costs. Finally we present the design and implementation of the
MERIT system that leverages our models to rehome service
chains by estimating, at run time, the impact of single-VNF
rehoming on other simultaneous rehoming actions.

ACKNOWLEDGMENT
This work was supported by NSF grants 1717588 & 1750109.

REFERENCES

[1] “Unraveling AT&T’s and Verizon’s Virtualization Vendors,”
https://www.sdxcentral.com/articles/news/unraveling-att-and-verizons-
virtualization-vendors/2016/08/.

[2] B. Han et al., “Network function virtualization: Challenges and opportu-
nities for innovations,” IEEE Communications Magazine, vol. 53, no. 2,
pp. 90–97, 2015.

[3] “First Responder Network,” https://www.firstnet.gov.
[4] H. Nguyen et al., “AGILE: Elastic Distributed Resource Scaling for

Infrastructure-as-a-Service,” in ICAC 2013, San Jose, USA, pp. 69–82.
[5] “AT&T DataCenter locations,” https://www.business.att.com/solutions/

Service/cloud/colocation/data-center-locations/.
[6] S. Nathan et al., “Towards a comprehensive performance model of

virtual machine live migration,” in SoCC 2015. ACM, pp. 288–301.
[7] T. Wood et al., “Black-box and gray-box strategies for virtual machine

migration,” in NSDI’07, Cambridge, MA, USA, 2007.
[8] S. Akoush et al., “Predicting the performance of virtual machine

migration,” in IEEE/ACM MASCOTS’10, Miami, FL, 2010, pp. 37–46.
[9] Y. Wu and M. Zhao, “Performance modeling of virtual machine live

migration,” in IEEE CLOUD, Washington, D.C., 2011, pp. 492–499.
[10] M. Wajahat, “MERIT System Implementation with Openstack,” https:

//github.com/PACELab/merit system.
[11] “Open source software for creating private and public clouds,”

https://www.openstack.org.
[12] C. Jo et al., “A Machine Learning Approach to Live Migration Model-

ing,” in SoCC 2017, Santa Clara, CA, USA, 2017, pp. 351–364.
[13] B. Hubert et al., “WonderShaper: Command-line utility for limiting an

adapter’s bandwidth,” https://github.com/magnific0/wondershaper.
[14] “Stress-ng,” http://kernel.ubuntu.com/∼cking/stress-ng.
[15] M. Wajahat et al., “Model-driven rehoming for vnf chains,” https://tr.cs.

stonybrook.edu/tr/sbcs-tr-2020-13, Tech. Rep., 2020.
[16] P. Cunningham et al., “Stability problems with artificial neural networks

and the ensemble solution,” Artificial Intelligence in Medicine, vol. 20,
no. 3, pp. 217–225, 2000.

[17] “Open Platform for NFV (OPNFV),” https://wiki.opnfv.org/display/
functest/List+Of+VNFs.

[18] “FFmpeg,” https://www.ffmpeg.org/.
[19] The Apache Software Foundation. Apache Traffic Server. http : / /

trafficserver.apache.org.
[20] Cisco. Snort - Network Intrusion Detection and Prevention System.

https://www.snort.org.
[21] G. Jung et al., “Mistral: Dynamically Managing Power, Performance,

and Adaptation Cost in Cloud Infrastructures,” in ICDCS 2010, Genoa,
Italy, pp. 62–73.

