Compositionality Results for Cardiac Cell Dynamics

Abhishek Murthy, Computer Science, Stony Brook University

Joint work with: Md. Ariful Islam, Ezio Bartocci, Flavio H. Fenton, Scott A. Smolka and Radu Grosu

Cardiac Cell Dynamics

Observables (output): Transmembrane voltage V. Transmembrane ion fluxes I_{Na} and I_{K}. Electrical signal $S(t)$.

Input: Transmembrane electrical stimulation. Ion concentrations Na^{+} and K^{+}.

Model:

- **Immunnochemical Model (IMW Model):** 13-state sodium and 10-state potassium channel models.
- **Hybrid Automata:** Kripke structures, etc.
- **JSR NSR:** Intermediate Model(s).

Mathematical Modeling:

- **Formal Analysis:** Automated exhaustive exploration of state/parameter space.
- **Model Checking:** (MC) Abstract Interpretation (AI), Parameter Estimation.

Simulation:

- **Intermediate Model(s):** Evaluated via Refinement (RA).

Summary:

- **Sodium Channel:** I_{Na} current, responsible for the AP.
- **Potassium Channel:** I_{K} current, responsible for repolarization.
- **AP:** Endowed by I_{Na}, followed by I_{K}.

Compositionality with Feedback

Ion-channel component-models are composed with the rest of the cardiac cell model using feedback.

Small-Gain Theorem for Composing Bifurcation Functions (BFs)

BFs computed in SOSTOOLS [5] using sum-of-squares relaxations and input space sampling:

1. $S(x_1, x_2) = \|g_1(x_1) - g_2(x_2)\|$ is an SOS polynomial.
2. $\sum_{i=1}^{n} f_i(x_1, x_2) = -\sum_{i=1}^{n} f_i(x_1, x_2) + \|u_1(t) - u_2(t)\|$ is an SOS polynomial. Satisfy constraint at finite (u_1, u_2) pairs that cover the input space.

Conclusions and Ongoing Work

- Voltage clamp simulation-based procedure used for model-order reduction of ion-channel models M_{Na} and M_{K} to obtain approximate bisimilar HH-type abstractions $M_{Na'}$ and $M_{K'}$.
- Ion-channel component composed with rest of IMW model using feedback.
- BFs capture input-output stability. Small-gain theorem used to prove compositionality.
- Computed BFs in SOSTOOLS toolbox using sum-of-squares relaxation for simplified neuron-like models.
- Bounded error due to input space sampling.
- Implement model-order reduction and prove compositionality for whole-cell models.

Acknowledgments

This research was supported by the NSF Expeditions project on Computational Modeling and Analysis for Complex Systems (CMACS). Funded by the grant NSF CCF-0329190 (http://cmacs.cs.stonybrook.edu).

References

Simulation Results showing the stability of model-order-reduced ion-channel components within the IMW model.

Mean L1 errors V: 2.29 mV, conductance: 9.15 pA/pF.

Cardiac Cell Dynamics (a): Transmembrane ion-channel mechanisms and currents in the IMW model. (b): Typical AP (output) produced by the IMW model.

Biological experiments

- Formal Analysis → Automated exhaustive exploration of state/parameter space
- Model Checking (MC) Abstract Interpretation (AI), Parameter Estimation.

Towers of Abstraction for insightful analysis of cardiac models. Compositionality of model-order reduced components with the rest of the model makes the layers sound.