L ecture 4.
Elementary Data Structures

Steven Skiena
Department of Computer Science
State University of New York
Stony Brook, NY 11794-4400

http://www.cs.sunysb.edu/~skiena

Problem of the Day

True or False?
1. 2n* +1 = O(n?)
2. /n = 0O(logn)
3. logn = O(y/n)
4. n*(1 4 y/n) = O(n*logn)
5.3n* + /n = 0(n?)
6. /nlogn = O(n)
7.logn = O(n~1/?)

The Baseisnot Asymptotically Important

Recall the definition, %% = 2 and that

log.a

1 _
V8 & log.b

6.643 Is just a constant, it does not matter in the Big Oh.

Federal Sentencing Guidelines

2F1.1. Fraud and Deceit; Forgery; Offenses Involving Altered or Counterfeit Instruments other than Counterfeit Bearer Obligations of the United States.
(a) Base offense Level: 6
(b) Specific offense Characteristics

(1) If the loss exceeded $2,000, increase the offense level as follows:

Loss(Apply the Greatest) Increase in Level
(A) $2,000 or less no increase
(B) More than $2,000 add 1
(C) More than $5,000 add 2
(D) More than $10,000 add 3
(E) More than $20,000 add 4
(F) More than $40,000 add5
(G) More than $70,000 add 6
(H) More than $120,000 add 7
(1) More than $200,000 add 8
(J) More than $350,000 add 9
(K) More than $500,000 add 10
(L) More than $800,000 add 11
(M) More than $1,500,000 add 12
(N) More than $2,500,000 add 13
(O) More than $5,000,000 add 14
(P) More than $10,000,000 add 15
(Q) More than $20,000,000 add 16
(R) More than $40,000,000 add 17
(Q) More than $80,000,000 add 18

Makethe CrimeWorth the Time

The increase in punishment level grows logarithmically in the

amount of money stolen.
Thus it pays to commit one big crime rather than many small

crimes totalling the same amount.

Elementary Data Structures

“Mankind’s progress is measured by the number of things we
can do without thinking.”

Elementary data structures such as stacks, queues, lists,
and heaps are the “off-the-shelf” components we build our

algorithm from.
There are two aspects to any data structure:

e The abstract operations which it supports.
e The implementation of these operations.

Data Abstraction

That we can describe the behavior of our data structures in
terms of abstract operations is why we can use them without
thinking.

That there are different implementations of the same abstract
operations enables us to optimize performance.

Contiguousvs. Linked Data Structures

Data structures can be neatly classified as either contiguous
or linked depending upon whether they are based on arrays or
pointers:

e Contiguously-allocated structures are composed of single
slabs of memory, and include arrays, matrices, heaps, and
hash tables.

e Linked data structures are composed of multiple distinct
chunks of memory bound together by pointers, and
include lists, trees, and graph adjacency lists.

Arrays

An array is a structure of fixed-size data records such that
each element can be efficiently located by its index or
(equivalently) address.

Advantages of contiguously-allocated arrays include:

e Constant-time access given the index.

e Arrays consist purely of data, so no space is wasted with
links or other formatting information.

e Physical continuity (memory locality) between successive
data accesses helps exploit the high-speed cache memory
on modern computer architectures.

Dynamic Arrays

Unfortunately we cannot adjust the size of simple arrays in
the middle of a program’s execution.

Compensating by allocating extremely large arrays can waste
a lot of space.

With dynamic arrays we start with an array of size 1, and
double its size from m to 2m each time we run out of space.
How many times will we double for n elements? Only

[logy n].

How Much Total Wor k?

The apparent waste in this procedure involves the recopying
of the old contents on each expansion.

If half the elements move once, a quarter of the elements
twice, and so on, the total number of movements M is given

by
lgn . lgn . .
M = .gzlz')2 =n .gzli/QZ <n3i/2 =
Thus each of the n elements move an average of only twice,

and the total work of managing the dynamic array is the same
O(n) as a simple array.

Pointersand Linked Structures

Pointers represent the address of a location in memory.
A cell-phone number can be thought of as a pointer to its

owner as they move about the planet.
In C, * p denotes the item pointed to by p, and &x denotes the

address (i.e. pointer) of a particular variable x.
A special NULL pointer value is used to denote structure-

terminating or unassigned pointers.

Linked List Structures

typedef struct list {
ltemtype item
struct |ist xnext;
}list;

.7 Lincoln Jefferson

Clinton

NIL

Searchingalist

Searching in a linked list can be done iteratively or
recursively.

list *search_list(list x|, itemtype Xx)

{
if (I == NULL) return(NULL);

if (I —>item== x)
return(l);
el se
return(search.list(l— >next, x));

|nsertion intoa List

Since we have no need to maintain the list in any particular
order, we might as well insert each new item at the head.

void insert_list(list x|, itemtype Xx)

{

list xp;

p = malloc(sizeof(list));
p—>item = x;
p— >next = *I;
* | = p;
}

Note the + | | since the head element of the list changes.

Deletingfrom aList

deletelist(list *=xI, itemtype Xx)

{
list *p; (* item pointer =*)
list xlast = NULL; (* predecessor pointer x)

p:*|;

while (p—>item!=x) { (* find itemto delete x)
| ast = p;
p = p— >next;

}

if (last == NULL) (* splice out of the list =)
*| = p— >next;

el se

| ast — >next = p— >next;

free(p); (* return nenory used by the node x)

Advantagesof Linked Lists

The relative advantages of linked lists over static arrays
include:

1. Overflow on linked structures can never occur unless the
memory is actually full.

2. Insertions and deletions are ssimpler than for contiguous
(array) lists.

3. With large records, moving pointers is easier and faster
than moving the items themselves.

Dynamic memory allocation provides us with flexibility on
how and where we use our limited storage resources.

Stacks and Queues

Sometimes, the order in which we retrieve data is independent
of its content, being only a function of when it arrived.

A stack supports last-in, first-out operations: push and pop.
A queue supports first-in, first-out operations: enqueue and
dequeue.

Lines in banks are based on queues, while food in my
refrigerator is treated as a stack.

lmpact on Tree Traver sal

Both can be used to store nodes to visit in a tree, but the order
of traversal is completely different.

Queue Stack

Which order is friendlier for WWW crawler robots?

Dictonary / Dynamic Set Operations

Perhaps the most important class of data structures maintain
a set of items, indexed by keys.

e Search(SK) — A query that, given a set S and a key value
k, returns a pointer x to an element in S such that key|z]
= k, or nil if no such element belongs to S.

e Insert(Sx) — A modifying operation that augments the set
S with the element .

e Delete(Sx) — Given a pointer x to an element in the set S,
remove = from S. Observe we are given a pointer to an
element x, not a key value.

e Min(S), Max(S - Returns the element of the totally
ordered set S which has the smallest (largest) key.

e Next(SX), Previous(Sx) — Given an element = whose key
Is from a totally ordered set .S, returns the next largest
(smallest) element in S, or NIL if z is the maximum
(minimum) element.

There are a variety of implementations of these dictionary
operations, each of which vyield different time bounds for
various operations.

Array Based Sets. Unsorted Arrays

e Search(S,k) - sequential search, O(n)

e Insert(S,x) - place in first empty spot, O(1)

e Delete(S,x) - copy nth item to the xth spot, O(1)
e Min(S,x), Max(S,x) - sequential search, O(n)

e Successor(S,x), Predecessor(S,x) - sequential search,
O(n)

Array Based Sets. Sorted Arrays

e Search(S,k) - binary search, O(lgn)

e Insert(S,x) - search, then move to make space, O(n)
e Delete(S,x) - move to fill up the hole, O(n)

e Min(S,x), Max(S,x) - first or last element, O(1)

e Successor(S,x), Predecessor(S,x) - Add or subtract 1 from
pointer, O(1)

Pointer Based | mplementation

We can maintain a dictionary in either a singly or doubly
linked list.

A -8l c| .ol JE| F|

HFJ

| A

LB |

Doubly Linked Lists

We gain extra flexibility on predecessor queries at a cost of
doubling the number of pointers by using doubly-linked lists.
Since the extra big-Oh costs of doubly-linkly lists is zero,
we will usually assume they are, although it might not be
necessary.

Singly linked to doubly-linked list is as a Conga line is to a
Can-Can line.

