
Lecture 2:
Asymptotic Notation

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

Problem of the Day

The knapsack problem is as follows: given a set of integers
S = {s1, s2, . . . , sn}, and a given target number T , find a
subset of S which adds up exactly to T . For example, within
S = {1, 2, 5, 9, 10} there is a subset which adds up to T = 22
but not T = 23.
Find counterexamples to each of the following algorithms for
the knapsack problem. That is, give an S and T such that
the subset is selected using the algorithm does not leave the
knapsack completely full, even though such a solution exists.

Solution

• Put the elements of S in the knapsack in left to right order
if they fit, i.e. the first-fit algorithm?

• Put the elements of S in the knapsack from smallest to
largest, i.e. the best-fit algorithm?

• Put the elements of S in the knapsack from largest to
smallest?

The RAM Model of Computation

Algorithms are an important and durable part of computer
science because they can be studied in a machine/language
independent way.
This is because we use the RAM model of computation for
all our analysis.

• Each “simple” operation (+, -, =, if, call) takes 1 step.

• Loops and subroutine calls are not simple operations.
They depend upon the size of the data and the contents
of a subroutine. “Sort” is not a single step operation.

• Each memory access takes exactly 1 step.

We measure the run time of an algorithm by counting the
number of steps, where:
This model is useful and accurate in the same sense as the
flat-earth model (which is useful)!

Worst-Case Complexity

The worst case complexity of an algorithm is the function
defined by the maximum number of steps taken on any
instance of size n.

1 2 3 4 N

.

.

Number of

Steps

Problem Size

Best Case

Average Case

Worst Case

Best-Case and Average-Case Complexity

The best case complexity of an algorithm is the function
defined by the minimum number of steps taken on any
instance of size n.
The average-case complexity of the algorithm is the function
defined by an average number of steps taken on any instance
of size n.
Each of these complexities defines a numerical function: time
vs. size!

Exact Analysis is Hard!

Best, worst, and average are difficult to deal with precisely
because the details are very complicated:

1 2 3 4

It easier to talk about upper and lower bounds of the function.
Asymptotic notation (O, Θ, Ω) are as well as we can
practically deal with complexity functions.

Names of Bounding Functions

• g(n) = O(f (n)) means C × f (n) is an upper bound on
g(n).

• g(n) = Ω(f (n)) means C×f (n) is a lower bound on g(n).

• g(n) = Θ(f (n)) means C1 × f (n) is an upper bound on
g(n) and C2 × f (n) is a lower bound on g(n).

C, C1, and C2 are all constants independent of n.

O, Ω, and Θ

(c)

f(n)

c2*g(n)

n
n0

c1*g(n)
c*g(n)

f(n)

n
n0

f(n)

c*g(n)

n
n0

(b)(a)

The definitions imply a constant n0 beyond which they are
satisfied. We do not care about small values of n.

Formal Definitions

• f (n) = O(g(n)) if there are positive constants n0 and c

such that to the right of n0, the value of f (n) always lies
on or below c · g(n).

• f (n) = Ω(g(n)) if there are positive constants n0 and c

such that to the right of n0, the value of f (n) always lies
on or above c · g(n).

• f (n) = Θ(g(n)) if there exist positive constants n0, c1, and
c2 such that to the right of n0, the value of f (n) always lies
between c1 · g(n) and c2 · g(n) inclusive.

Big Oh Examples

3n2 − 100n + 6 = O(n2) because 3n2 > 3n2 − 100n + 6

3n2 − 100n + 6 = O(n3) because .01n3 > 3n2 − 100n + 6

3n2 − 100n + 6 6= O(n) because c · n < 3n2 when n > c

Think of the equality as meaning in the set of functions.

Big Omega Examples

3n2 − 100n + 6 = Ω(n2) because 2.99n2 < 3n2 − 100n + 6

3n2 − 100n + 6 6= Ω(n3) because 3n2 − 100n + 6 < n3

3n2 − 100n + 6 = Ω(n) because 1010
10

n < 3n2 − 100 + 6

Big Theta Examples

3n2 − 100n + 6 = Θ(n2) because O and Ω

3n2 − 100n + 6 6= Θ(n3) because O only

3n2 − 100n + 6 6= Θ(n) because Ω only

Big Oh Addition/Subtraction

Suppose f (n) = O(n2) and g(n) = O(n2).

• What do we know about g′(n) = f (n)+g(n)? Adding the
bounding constants shows g′(n) = O(n2).

• What do we know about g′′(n) = f (n) − |g(n)|? Since
the bounding constants don’t necessary cancel, g′′(n) =
O(n2)

We know nothing about the lower bounds on g′ and g′′

because we know nothing about lower bounds on f and g.

Big Oh Multiplication by Constant

Multiplication by a constant does not change the asymptotics:

O(c · f (n)) → O(f (n))

Ω(c · f (n)) → Ω(f (n))

Θ(c · f (n)) → Θ(f (n))

Big Oh Multiplication by Function

But when both functions in a product are increasing, both are
important:

O(f (n)) ∗ O(g(n)) → O(f (n) ∗ g(n))

Ω(f (n)) ∗ Ω(g(n)) → Ω(f (n) ∗ g(n))

Θ(f (n)) ∗ Θ(g(n)) → Θ(f (n) ∗ g(n))

