Problem of the Day

The *knapsack problem* is as follows: given a set of integers $S = \{s_1, s_2, \ldots, s_n\}$, and a given target number T, find a subset of S which adds up exactly to T. For example, within $S = \{1, 2, 5, 9, 10\}$ there is a subset which adds up to $T = 22$ but not $T = 23$.

Find counterexamples to each of the following algorithms for the knapsack problem. That is, give an S and T such that the subset is selected using the algorithm does not leave the knapsack completely full, even though such a solution exists.
Solution

- Put the elements of S in the knapsack in left to right order if they fit, i.e. the first-fit algorithm?
- Put the elements of S in the knapsack from smallest to largest, i.e. the best-fit algorithm?
- Put the elements of S in the knapsack from largest to smallest?
The RAM Model of Computation

Algorithms are an important and durable part of computer science because they can be studied in a machine/language independent way. This is because we use the RAM model of computation for all our analysis.

- Each “simple” operation (+, -, =, if, call) takes 1 step.

- Loops and subroutine calls are not simple operations. They depend upon the size of the data and the contents of a subroutine. “Sort” is not a single step operation.
• Each memory access takes exactly 1 step.

We measure the run time of an algorithm by counting the number of steps, where:
This model is useful and accurate in the same sense as the flat-earth model (which is useful)!
Worst-Case Complexity

The *worst case complexity* of an algorithm is the function defined by the maximum number of steps taken on any instance of size n.
Best-Case and Average-Case Complexity

The *best case complexity* of an algorithm is the function defined by the minimum number of steps taken on any instance of size n.

The *average-case complexity* of the algorithm is the function defined by an average number of steps taken on any instance of size n.

Each of these complexities defines a numerical function: time vs. size!
Exact Analysis is Hard!

Best, worst, and average are difficult to deal with precisely because the details are very complicated:

It easier to talk about *upper and lower bounds* of the function. Asymptotic notation (O, Θ, Ω) are as well as we can practically deal with complexity functions.
Names of Bounding Functions

- $g(n) = O(f(n))$ means $C \times f(n)$ is an upper bound on $g(n)$.
- $g(n) = \Omega(f(n))$ means $C \times f(n)$ is a lower bound on $g(n)$.
- $g(n) = \Theta(f(n))$ means $C_1 \times f(n)$ is an upper bound on $g(n)$ and $C_2 \times f(n)$ is a lower bound on $g(n)$.

C, C_1, and C_2 are all constants independent of n.
\(\Theta, \Omega, \text{ and } \Theta \)

The definitions imply a constant \(n_0 \) beyond which they are satisfied. We do not care about small values of \(n \).
Formal Definitions

- \(f(n) = O(g(n)) \) if there are positive constants \(n_0 \) and \(c \) such that to the right of \(n_0 \), the value of \(f(n) \) always lies on or below \(c \cdot g(n) \).

- \(f(n) = \Omega(g(n)) \) if there are positive constants \(n_0 \) and \(c \) such that to the right of \(n_0 \), the value of \(f(n) \) always lies on or above \(c \cdot g(n) \).

- \(f(n) = \Theta(g(n)) \) if there exist positive constants \(n_0, c_1, \) and \(c_2 \) such that to the right of \(n_0 \), the value of \(f(n) \) always lies between \(c_1 \cdot g(n) \) and \(c_2 \cdot g(n) \) inclusive.
Big Oh Examples

\[3n^2 - 100n + 6 = O(n^2) \text{ because } 3n^2 > 3n^2 - 100n + 6 \]
\[3n^2 - 100n + 6 = O(n^3) \text{ because } .01n^3 > 3n^2 - 100n + 6 \]
\[3n^2 - 100n + 6 \neq O(n) \text{ because } c \cdot n < 3n^2 \text{ when } n > c \]

Think of the equality as meaning in the set of functions.
Big Omega Examples

\[3n^2 - 100n + 6 = \Omega(n^2) \text{ because } 2.99n^2 < 3n^2 - 100n + 6 \]

\[3n^2 - 100n + 6 \neq \Omega(n^3) \text{ because } 3n^2 - 100n + 6 < n^3 \]

\[3n^2 - 100n + 6 = \Omega(n) \text{ because } 10^{10^{10}} n < 3n^2 - 100 + 6 \]
Big Theta Examples

\[3n^2 - 100n + 6 = \Theta(n^2) \text{ because } O \text{ and } \Omega \]
\[3n^2 - 100n + 6 \neq \Theta(n^3) \text{ because } O \text{ only} \]
\[3n^2 - 100n + 6 \neq \Theta(n) \text{ because } \Omega \text{ only} \]
Big Oh Addition/Subtraction

Suppose $f(n) = O(n^2)$ and $g(n) = O(n^2)$.

- What do we know about $g'(n) = f(n) + g(n)$? Adding the bounding constants shows $g'(n) = O(n^2)$.
- What do we know about $g''(n) = f(n) - |g(n)|$? Since the bounding constants don’t necessary cancel, $g''(n) = O(n^2)$.

We know nothing about the lower bounds on g' and g'' because we know nothing about lower bounds on f and g.
Big Oh Multiplication by Constant

Multiplication by a constant does not change the asymptotics:

\[O(c \cdot f(n)) \rightarrow O(f(n)) \]
\[\Omega(c \cdot f(n)) \rightarrow \Omega(f(n)) \]
\[\Theta(c \cdot f(n)) \rightarrow \Theta(f(n)) \]
Big Oh Multiplication by Function

But when both functions in a product are increasing, both are important:

\[
O(f(n)) \times O(g(n)) \rightarrow O(f(n) \times g(n))
\]

\[
\Omega(f(n)) \times \Omega(g(n)) \rightarrow \Omega(f(n) \times g(n))
\]

\[
\Theta(f(n)) \times \Theta(g(n)) \rightarrow \Theta(f(n) \times g(n))
\]